dc.contributor.author |
Bretó Martínez, Carles |
|
dc.contributor.author |
Espinosa, Priscila |
|
dc.contributor.author |
Hernández, Penélope |
|
dc.contributor.author |
Pavía Miralles, José Manuel |
|
dc.date.accessioned |
2022-05-25T14:54:19Z |
|
dc.date.available |
2022-05-25T14:54:19Z |
|
dc.date.issued |
2019 |
|
dc.identifier.uri |
https://hdl.handle.net/10550/82980 |
|
dc.description.abstract |
This paper applies a Machine Learning approach with the aim of providing a single aggregated prediction from a set of individual predictions. Departing from the well-known maximum-entropy inference methodology, a new factor capturing the distance between the true and the estimated aggregated predictions presents a new problem. Algorithms such as ridge, lasso or elastic net help in finding a new methodology to tackle this issue. We carry out a simulation study to evaluate the performance of such a procedure and apply it in order to forecast and measure predictive ability using a dataset of predictions on Spanish gross domestic product. |
|
dc.language.iso |
eng |
|
dc.relation.ispartof |
Entropy, 2019, vol. 21, num. 10 |
|
dc.source |
Bretó Martínez, Carles Espinosa, Priscila Hernández, Penélope Pavía Miralles, José Manuel 2019 An entropy-based machine learning algorithm for combining macroeconomic forecasts Entropy 21 10 |
|
dc.subject |
Economia matemàtica |
|
dc.subject |
Macroeconomia |
|
dc.subject |
Tecnologia |
|
dc.title |
An entropy-based machine learning algorithm for combining macroeconomic forecasts |
|
dc.type |
journal article |
es_ES |
dc.date.updated |
2022-05-25T14:54:20Z |
|
dc.identifier.doi |
https://doi.org/10.3390/e21101015 |
|
dc.identifier.idgrec |
135757 |
|
dc.rights.accessRights |
open access |
es_ES |