Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity
NAGIOS: RODERIC FUNCIONANDO

Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity

DSpace Repository

Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity

Show simple item record

dc.contributor.author Caamaño, Katia
dc.contributor.author Heras-Mozos, Raquel
dc.contributor.author Calbo Roig, Joaquín
dc.contributor.author Cases Díaz, Jesús
dc.contributor.author Waerenborgh, João C.
dc.contributor.author Vieira, Bruno J. C.
dc.contributor.author Hernández Muñoz, Pilar
dc.contributor.author Gavara Clemente, Rafael
dc.contributor.author Giménez Marqués, Mónica
dc.date.accessioned 2022-03-03T14:08:32Z
dc.date.available 2022-03-03T14:08:32Z
dc.date.issued 2022
dc.identifier.uri https://hdl.handle.net/10550/81809
dc.description.abstract The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal-organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria innocua due to a triggered two-step carvacrol release from films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction between MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge-transfer process between the metallic MOF counterpart and carvacrol upon certain chemical stimuli. During this process, the preferred carvacrol binding site was monitored by infrared, Mössbauer, and electron paramagnetic resonance spectroscopies, and the results are supported by theoretical calculations.
dc.language.iso eng
dc.relation.ispartof Acs Applied Materials & Interfaces, 2022, vol. 14, num. 8, p. 10758-10768
dc.rights.uri info:eu-repo/semantics/openAccess
dc.source Caamaño, Katia Heras-Mozos, Raquel Calbo Roig, Joaquín Cases Díaz, Jesús Waerenborgh, João C. Vieira, Bruno J. C. Hernández Muñoz, Pilar Gavara Clemente, Rafael Giménez Marqués, Mónica 2022 Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity Acs Applied Materials & Interfaces 14 8 10758 10768
dc.subject Materials
dc.subject Bacteris
dc.subject Aliments Microbiologia
dc.title Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity
dc.type info:eu-repo/semantics/article
dc.date.updated 2022-03-03T14:08:33Z
dc.identifier.doi https://doi.org/10.1021/acsami.1c21555
dc.identifier.idgrec 150452

View       (3.986Mb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics