External quantum efficiency measurements used to study the stability of differently deposited perovskite solar cells
NAGIOS: RODERIC FUNCIONANDO

External quantum efficiency measurements used to study the stability of differently deposited perovskite solar cells

DSpace Repository

External quantum efficiency measurements used to study the stability of differently deposited perovskite solar cells

Show simple item record

dc.contributor.author Hierrezuelo-Cardet, Pedro
dc.contributor.author Palechor-Ocampo, Anderzon F.
dc.contributor.author Caram, Jorge
dc.contributor.author Ventosinos, Federico
dc.contributor.author Pérez-del-Rey, Daniel
dc.contributor.author Bolink, Henk
dc.contributor.author Schmidt, Javier A.
dc.date.accessioned 2020-11-12T15:15:14Z
dc.date.available 2020-11-12T15:15:14Z
dc.date.issued 2020
dc.identifier.uri https://hdl.handle.net/10550/76355
dc.description.abstract The instability exhibited by perovskite solar cells when exposed to the environment under illumination is one major obstacle for the entry of perovskite technology on the photovoltaic market. In this work, we use the external quantum efficiency (EQE) technique to study the photoinduced degradation of two types of solar cells having CH3NH3PbI3 as absorber layer, one deposited by spin coating with an n-i-p architecture, and the other deposited by evaporation with an inverted p-i-n structure. We also study the effect of different encapsulants to protect the cells against atmospheric agents. We find that EQE provides information regarding the areas of the cell most susceptible to degradation, in addition to providing an estimate of the optical gap and the Urbach energy of the absorbent material. We confirm that the combined action of illumination and the environment markedly accelerate the degradation, which is reflected in the deterioration of all the parameters of the cell. The rear part of the cell is the first region to suffer the light-induced degradation. On the other hand, the cells deposited by evaporation and with a good encapsulation process are highly stable, since after 30 hours of exposure just small spectral change is noticed in the red/infrared region of the EQE spectrum.
dc.language.iso eng
dc.relation.ispartof Journal of Applied Physics, 2020, vol. 127, p. 235501
dc.rights.uri info:eu-repo/semantics/openAccess
dc.source Hierrezuelo-Cardet, Pedro Palechor-Ocampo, Anderzon F. Caram, Jorge Ventosinos, Federico Pérez-del-Rey, Daniel Bolink, Henk Schmidt, Javier A. 2020 External quantum efficiency measurements used to study the stability of differently deposited perovskite solar cells Journal of Applied Physics 127 235501
dc.subject Cèl·lules fotoelèctriques
dc.subject Materials
dc.title External quantum efficiency measurements used to study the stability of differently deposited perovskite solar cells
dc.type info:eu-repo/semantics/article
dc.date.updated 2020-11-12T15:15:15Z
dc.identifier.doi https://doi.org/10.1063/5.0011503
dc.identifier.idgrec 139919

View       (1.111Mb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics