Neutrino oscillation phenomenology in the standard model and beyond
NAGIOS: RODERIC FUNCIONANDO

Neutrino oscillation phenomenology in the standard model and beyond

DSpace Repository

Neutrino oscillation phenomenology in the standard model and beyond

Show simple item record

dc.contributor.advisor Tórtola Baixauli, María Amparo
dc.contributor.author Ternes, Christoph Andreas
dc.contributor.other Facultat de Física es_ES
dc.date.accessioned 2020-07-29T07:45:51Z
dc.date.available 2020-07-30T04:45:05Z
dc.date.issued 2020 es_ES
dc.date.submitted 23-07-2020 es_ES
dc.identifier.uri https://hdl.handle.net/10550/75387
dc.description.abstract Over the last 20 years measurements of neutrino oscillation parameters have become very precise. In the standard neutrino oscillation picture most of the parameters are measured at the percent level. In this thesis we study neutrino oscillations in the standard picture and beyond. We analyze data from all types of neutrino oscillation experiments to obtain a global picture of neutrino oscillations. The remaining unknowns in the standard picture are the value of the CP-violating phase $\delta$, the octant of the atmospheric angle $\theta_{23}$ and the neutrino mass ordering. We discuss the current status of these unknowns and also comment on how well future experiments will do in measuring these quantities, where we discuss new facilities which will observe accelerator, atmossperic and reactor neutrinos. Using oscillation data it is possible to bound a possible violation of the CPT symmetry in the neutrino sector. This is done by performing a fit to neutrino and antineutrino oscillation data separately. We also address the capability of the future experiment DUNE to this scenario. We show that DUNE could improve some of the current bounds considerably. We discuss the sensitivity of DUNE together with the next generation reactor neutrino experiment JUNO to measure quasi-Dirac neutrino oscillations. We find that the future experiments will be able to bound the important quantities, mostly unbounded by current data. Finally, we discuss atmospheric neutrinos at the next generation neutrino telescope ORCA. We show that ORCA will put the best bounds on the invisible neutrino decay of $\nu_3$, coming from neutrino oscillation experiments. We also find that, a scenario like this would not affect the standard measurements of ORCA, namely the determination of the atmospheric neutrino oscillation parameters and the measurement of the neutrino mass ordering. es_ES
dc.format.extent 226 p. es_ES
dc.language.iso en es_ES
dc.subject neutrino physics es_ES
dc.subject neutrino physics es_ES
dc.subject particle physics es_ES
dc.subject physics beyond the standard model es_ES
dc.title Neutrino oscillation phenomenology in the standard model and beyond es_ES
dc.type info:eu-repo/semantics/doctoralThesis es_ES
dc.subject.unesco UNESCO::FÍSICA es_ES
dc.embargo.terms 0 days es_ES

View       (5.217Mb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics