dc.contributor.author |
Ballester-Bolinches, Adolfo |
|
dc.contributor.author |
Esteban Romero, Ramón |
|
dc.contributor.author |
Qiao, ShouHong |
|
dc.date.accessioned |
2019-01-25T15:10:18Z |
|
dc.date.available |
2019-01-25T15:10:18Z |
|
dc.date.issued |
2016 |
|
dc.identifier.uri |
http://hdl.handle.net/10550/68727 |
|
dc.description.abstract |
In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to |H|. We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing |G| such that 1≤d<|P| , if H∩Op(G) is S-semipermutable in Op(G) for all normal subgroups H of P with |H|=d , then either G is p-supersoluble or else |P∩Op(G)|>d . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups. |
|
dc.language.iso |
eng |
|
dc.relation.ispartof |
Archiv der Mathematik, 2016, vol. 106, num. 6, p. 501-506 |
|
dc.rights.uri |
info:eu-repo/semantics/openAccess |
|
dc.source |
Ballester-Bolinches, Adolfo Esteban Romero, Ramón Qiao, ShouHong 2016 A note on a result of Guo and Isaacs about p-supersolubility of finite groups Archiv der Mathematik 106 6 501 506 |
|
dc.subject |
Grups, Teoria de |
|
dc.subject |
Matemàtica |
|
dc.title |
A note on a result of Guo and Isaacs about p-supersolubility of finite groups |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.date.updated |
2019-01-25T15:10:19Z |
|
dc.identifier.doi |
https://doi.org/10.1007/s00013-016-0901-7 |
|
dc.identifier.idgrec |
110073 |
|