A note on a result of Guo and Isaacs about p-supersolubility of finite groups
NAGIOS: RODERIC FUNCIONANDO

A note on a result of Guo and Isaacs about p-supersolubility of finite groups

DSpace Repository

A note on a result of Guo and Isaacs about p-supersolubility of finite groups

Show simple item record

dc.contributor.author Ballester-Bolinches, Adolfo
dc.contributor.author Esteban Romero, Ramón
dc.contributor.author Qiao, ShouHong
dc.date.accessioned 2019-01-25T15:10:18Z
dc.date.available 2019-01-25T15:10:18Z
dc.date.issued 2016
dc.identifier.uri http://hdl.handle.net/10550/68727
dc.description.abstract In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to |H|. We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing |G| such that 1≤d<|P| , if H∩Op(G) is S-semipermutable in Op(G) for all normal subgroups H of P with |H|=d , then either G is p-supersoluble or else |P∩Op(G)|>d . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups.
dc.language.iso eng
dc.relation.ispartof Archiv der Mathematik, 2016, vol. 106, num. 6, p. 501-506
dc.rights.uri info:eu-repo/semantics/openAccess
dc.source Ballester-Bolinches, Adolfo Esteban Romero, Ramón Qiao, ShouHong 2016 A note on a result of Guo and Isaacs about p-supersolubility of finite groups Archiv der Mathematik 106 6 501 506
dc.subject Grups, Teoria de
dc.subject Matemàtica
dc.title A note on a result of Guo and Isaacs about p-supersolubility of finite groups
dc.type info:eu-repo/semantics/article
dc.date.updated 2019-01-25T15:10:19Z
dc.identifier.doi https://doi.org/10.1007/s00013-016-0901-7
dc.identifier.idgrec 110073

View       (347.5Kb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics