Real elements and p-nilpotence of finite groups
NAGIOS: RODERIC FUNCIONANDO

Real elements and p-nilpotence of finite groups

DSpace Repository

Real elements and p-nilpotence of finite groups

Show simple item record

dc.contributor.author Ballester-Bolinches, Adolfo
dc.contributor.author Esteban Romero, Ramón
dc.contributor.author Ezquerro Marín, Luis Miguel
dc.date.accessioned 2019-01-25T14:56:18Z
dc.date.available 2019-01-25T14:56:18Z
dc.date.issued 2016
dc.identifier.uri http://hdl.handle.net/10550/68726
dc.description.abstract Our first main result proves that every element of order 4 of a Sylow 2-subgroup S of a minimal non-2-nilpotent group G, is a real element of S. This allows to give a character-free proof of a theorem due to Isaacs and Navarro (see [9, Theorem B]). As an application, the authors show a common extension of the p-nilpotence criteria proved in [3] and [9].
dc.language.iso eng
dc.relation.ispartof Advances in Group Theory and Applications, 2016, vol. 2, p. 25-30
dc.rights.uri info:eu-repo/semantics/openAccess
dc.source Ballester-Bolinches, Adolfo Esteban Romero, Ramón Ezquerro Marín, Luis Miguel 2016 Real elements and p-nilpotence of finite groups Advances in Group Theory and Applications 2 25 30
dc.subject Grups, Teoria de
dc.subject Matemàtica
dc.title Real elements and p-nilpotence of finite groups
dc.type info:eu-repo/semantics/article
dc.date.updated 2019-01-25T14:56:19Z
dc.identifier.doi https://doi.org/10.4399/97888548970143
dc.identifier.idgrec 120101

View       (163.8Kb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics