Ballester-Bolinches, Adolfo Perfil; Esteban Romero, Ramón Perfil; Ezquerro Marín, Luis Miguel | |
This document is a artículoDate2016 | |
Este documento está disponible también en : http://hdl.handle.net/10550/68726 |
|
Our first main result proves that every element of order 4 of a Sylow 2-subgroup S of a minimal non-2-nilpotent group G, is a real element of S. This allows to give a character-free proof of a theorem due to Isaacs and Navarro (see [9, Theorem B]). As an application, the authors show a common extension of the p-nilpotence criteria proved in [3] and [9]. | |
Ballester-Bolinches, Adolfo Esteban Romero, Ramón Ezquerro Marín, Luis Miguel 2016 Real elements and p-nilpotence of finite groups Advances in Group Theory and Applications 2 25 30 |
|
https://doi.org/10.4399/97888548970143 |