Real elements and p-nilpotence of finite groups
NAGIOS: RODERIC FUNCIONANDO

Real elements and p-nilpotence of finite groups

DSpace Repository

Real elements and p-nilpotence of finite groups

Show full item record

View       (163.8Kb)

    
Ballester-Bolinches, Adolfo Perfil; Esteban Romero, Ramón Perfil; Ezquerro Marín, Luis Miguel
This document is a artículoDate2016

Este documento está disponible también en : http://hdl.handle.net/10550/68726
Our first main result proves that every element of order 4 of a Sylow 2-subgroup S of a minimal non-2-nilpotent group G, is a real element of S. This allows to give a character-free proof of a theorem due to Isaacs and Navarro (see [9, Theorem B]). As an application, the authors show a common extension of the p-nilpotence criteria proved in [3] and [9].

    Ballester-Bolinches, Adolfo Esteban Romero, Ramón Ezquerro Marín, Luis Miguel 2016 Real elements and p-nilpotence of finite groups Advances in Group Theory and Applications 2 25 30
https://doi.org/10.4399/97888548970143

This item appears in the following Collection(s)

Show full item record

Search DSpace

Advanced Search

Browse

Statistics