Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and feasibility
NAGIOS: RODERIC FUNCIONANDO

Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and feasibility

DSpace Repository

Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and feasibility

Show simple item record

dc.contributor.author Henares Jiménez, María
dc.contributor.author Izquierdo Sanchis, Marta
dc.contributor.author Marzal Doménech, Paula
dc.contributor.author Martínez Soria, Vicente
dc.date.accessioned 2017-09-06T14:19:39Z
dc.date.available 2017-09-06T14:19:39Z
dc.date.issued 2017
dc.identifier.uri http://hdl.handle.net/10550/60569
dc.description.abstract The performance, fouling and feasibility of a polydimethylsiloxane hollow fibre membrane module for in situ methane degasification from the effluent of an Expanded Granular Sludge Bed anaerobic reactor has been investigated. Experiments at different operational conditions were carried out (liquid flow, sweep gas flow and vacuum pressure) with maximum removal efficiency (77%) at lowest flow-rate (0.4 L h-1), highest vacuum gauge pressure (-800 mbar) and liquid flowing in lumen side. Mass transport analysis denoted a considerably higher methane transfer than that predicted (attributed to liquid over- saturation). An enhancement factor for liquid phase has been proposed to correlate the experimental results. Long-term experiments were also performed in order to determine the possible influence of fouling on the module performance, and it showed that relatively frequent cleaning with water might be carried out to ensure preservation of the membrane efficiency. Characterization of water quality before and after membrane module was carried out to elucidate fouling causes. Energy balance analysis evidenced that energy production exceeded the system energy requirements. A substantial reduction of CO2 equivalent emissions showed the positive environmental impact of this technology.
dc.language.iso eng
dc.relation.ispartof Separation and Purification Technology, 2017, vol. 186, p. 10-19
dc.rights.uri info:eu-repo/semantics/openAccess
dc.source Henares Jiménez, María Izquierdo Sanchis, Marta Marzal Doménech, Paula Martínez Soria, Vicente 2017 Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and feasibility Separation and Purification Technology 186 10 19
dc.subject Gasos d'efecte hivernacle
dc.title Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and feasibility
dc.type info:eu-repo/semantics/article
dc.date.updated 2017-09-06T14:19:39Z
dc.identifier.doi https://doi.org/10.1016/j.seppur.2017.05.035
dc.identifier.idgrec 119151

View       (225.0Kb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics