The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem
NAGIOS: RODERIC FUNCIONANDO

The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem

DSpace Repository

The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem

Show full item record

View       (135.2Kb)

    
Gigola, Silvia; Lebtahi, Leila; Thome, Néstor
This document is a artículoDate2016

Este documento está disponible también en : http://hdl.handle.net/10550/57745
The inverse eigenvalue problem and the associated optimal approximation problem for Hermitian reflexive matrices with respect to a normal {k+1}-potent matrix are considered. First, we study the existence of the solutions of the associated inverse eigenvalue problem and present an explicit form for them. Then, when such a solution exists, an expression for the solution to the corresponding optimal approximation problem is obtained.

    Gigola, Silvia Lebtahi, Leila Thome, Néstor 2016 The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem Journal of Computational and Applied Mathematics 291 449 457
http://dx.doi.org/10.1016/j.cam.2015.03.052

This item appears in the following Collection(s)

Show full item record

Search DSpace

Advanced Search

Browse

Statistics