Modelo de conglomerados para el análisis bayesiano de datos epidemiológicos en áreas pequeñas
NAGIOS: RODERIC FUNCIONANDO

Modelo de conglomerados para el análisis bayesiano de datos epidemiológicos en áreas pequeñas

DSpace Repository

Modelo de conglomerados para el análisis bayesiano de datos epidemiológicos en áreas pequeñas

Show simple item record

dc.contributor.advisor Corberán-Vallet, Ana
dc.contributor.advisor Bermúdez Edo, José Domingo
dc.contributor.author Flórez Lozano, Karen Cecilia
dc.contributor.other Departament d'Estadística i Investigació Operativa es_ES
dc.date.accessioned 2016-06-01T08:09:48Z
dc.date.available 2016-06-02T04:45:06Z
dc.date.issued 2016 es_ES
dc.date.submitted 31-05-2016 es_ES
dc.identifier.uri http://hdl.handle.net/10550/53930
dc.description.abstract Uno de los principales objetivos del mapeo de la enfermedad es describir la variación espacial del riesgo de una enfermedad, para evaluar y cuantificar la cantidad de la verdadera heterogeneidad espacial y los patrones de riesgos asociados (Lawson, 2009). La mayoría de los modelos propuestos en la literatura proporcionan riesgos relativos estimados en áreas pequeñas teniendo en cuenta la estructura de vecindad, por lo que las áreas vecinas tienen riesgos similares, uno de los modelos más populares es el modelo de convolución (Besag et al., 1991). Sin embargo, hay situaciones en que esta suposición puede no ser apropiada. Estudios recientes en este ámbito son capaces de explorar con precisión la variación geográfica de la enfermedad en términos de diferentes factores de riesgo espacialmente subyacentes. El objetivo principal de esta tesis es el estudio de la variación geográfica del riesgo de una cierta enfermedad en una determinada zona de estudio. Dentro de esta temática se han propuesto trabajos que si bien logran estimar el riesgo relativo en áreas pequeñas, en ocasiones tienden a tener un exceso de suavizado, haciendo compleja la tarea de identificar zonas de alto riesgo. Nuestra propuesta intenta abordar los dos objetivos de mapeo de enfermedades simultáneamente, por un lado estimar el riesgo relativo en áreas pequeñas y al mismo tiempo tiempo detectar discontinuidades entre las mismas. Con el modelo de conglomerados que presentamos, hemos pretendido realizar una aportación al análisis bayesiano de datos epidemiológicos en áreas pequeñas. Dicho modelo permite obtener estimaciones del riesgo en cada una de las áreas que conforman la zona de estudio, como también estudiar el número de clases o conglomerados que pueden existir en una zona geográfica. El modelo que presentamos en esta tesis no requiere definir desde el inicio la dependencia o distancia entre vecinos, sino que expone una formulación donde variables de asignación de los riesgos permiten capturar diferentes estructuras de riesgo. Así pues, es un enfoque alternativo donde los riesgos relativos de las áreas pequeñas son asignados a riesgos subyacentes. Nuestra propuesta aplica ideas de modelos de mixturas, detección de conglomerados y de modelos con estructura latente (Knorr-Held and Rasser, 2000; Lee and Lawson, 2014). En el primer capítulo hacemos una revisón de la literatura en mapeo de enfermedades y describimos las características, similitudes y discrepancias de algunos modelos que hacen parte de la base de nuestra propuesta. En el Capítulo 2 presentamos el modelo de conglomerados con estructura de clases latentes que ha sido desarrollado y mostramos el análisis bayesiano del mismo. Para el estudio de la distribución conjunta a posteriori hemos implementado métodos MCMC debido a que el estudio analítico de dicha distribución es intratable. En el Capítulo 3 presentamos el estudio de simulación elaborado para estudiar el rendimiento del modelo propuesto. Mostramos los diferentes escenarios estudiados así como los principales resultados obtenidos. Algunas medidas de ajuste del modelo son mencionadas y finalizamos este capítulo con la aplicación de la propuesta en datos reales correspondientes a la incidencia de la varicela en la ciudad de Valencia en los años 2008 y 2013. En el Capítulo 4 proponemos una extensión del modelo presentado en el Capítulo 2 incluyendo covariables. En este capítulo mostramos el desarrollo teórico del modelo, su análisis bayesiano y algunas aplicaciones a datos reales. Por último, en el Capítulo 5 exponemos a modo de resumen las conclusiones generales a las que hemos llegado con los modelos propuestos y mencionamos algunas líneas futuras de investigación. es_ES
dc.format.extent 173 p. es_ES
dc.language.iso es es_ES
dc.subject mapeo de enfermedades es_ES
dc.subject estimación del riesgo relativo es_ES
dc.subject detección de conglomerados es_ES
dc.subject modelos jerárquicos bayesianos es_ES
dc.subject modelos de mixturas es_ES
dc.title Modelo de conglomerados para el análisis bayesiano de datos epidemiológicos en áreas pequeñas es_ES
dc.type info:eu-repo/semantics/doctoralThesis es_ES
dc.description.abstractenglish The model presented here does not require from the start to define dependency or distance between neighbours, but exposes a formulation variables where risk allocation can capture different risk structures. So, it is an alternative approach where the relative risks of small areas are assigned to underlying risks. There is an unknown number of latent risks and small areas are assigned to these latent risk. Areas in the same class have the same risk but they do not necessarily share any border. Our proposal applies ideas of mixtures models, cluster detection and latent structure models. To illustrate the accuracy of our procedure, we show the main results obtained in a simulation study. We study the incidence of chickenpox in the city of Valencia in 2008. es_ES
dc.embargo.terms 0 days es_ES

View       (1.761Mb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics