Nonlinearity measurement undergoing dispersion and loss

DAVID CASTELLÓ-LURBE,1,2,3,*,† CHRISTIAN CUADRADO-LABORDE,4† ENRIQUE SILVESTRE,1,3 ANTONIO DÍEZ,1,2 and MIGUEL V. ANDRÉS1,2

1 Instituts Universitaris de Ciències dels Materials, Universitat de València, Catedràtic Agustín Escardino 9, 46980 Paterna, Spain
2 Departament de Física Aplicada i Electromagnetisme, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
3 Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
4 Instituto de Física Rosario (CONICET-UNR), Blv. 27 de Febrero 210bis, S2000EZP Rosario, Argentina
5 Departament d’Optica i Optometria i Ciències de la Visió, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
*Corresponding author: david.castello-lurbe@uv.es
† These authors contributed equally to this work.

Accurate knowledge of the nonlinear coefficient is extremely important to make reliable predictions about optical pulses propagating along waveguides. Nevertheless, determining this parameter when dispersion and loss are as important as nonlinear effects brings both theoretical and experimental challenges that have not yet been solved. A general method for measuring the nonlinear coefficient of waveguides under these demanding conditions is here derived and demonstrated experimentally in a kilometer-long standard silica fiber pumped close to 2 μm.

Nonlinear optical phenomena in guiding media are generally studied based on the propagation of the envelopes of the electromagnetic field modes [1]. Consequently, the nonlinear dynamics of these systems depend on several modal parameters such as the nonlinear coefficient γ, the group-velocity dispersion β₂, or the linear loss α [1]. Their accurate measurement thus becomes essential in the nonlinear modeling of fibers or integrated waveguides. Although β₂ and α can be precisely determined at low powers [2], where nonlinearities can be safely neglected, γ values suffer from uncertainties of a fundamental nature due to dispersion or loss [3,4].

The traditional inaccuracies in γ caused by dispersive effects have recently been overcome in Ref. [4]. The key difference of this novel method with respect to previous techniques [5–8] is to rely on an exact conservation law of the nonlinear Schrödinger equation (NLSE) instead of solving it approximately, which releases the measurement of γ from any assumption beyond the NLSE itself. Furthermore, if this approach could be applied to more complex systems such as waveguides where the dispersion slope or the loss is significant, then the lack of exact solutions to generalized versions of the NLSE would not limit experimental γ accuracies. Including higher-order dispersion terms should not represent, in principle, a major constraint since the corresponding nonlinear models fulfill extensions of the conservation law [9]. In contrast, accounting for a loss comparable to dispersion and nonlinearities defies the very basis of this framework as the conservation law is then broken [4].

Despite these envisaged issues, strong interplays between nonlinearities, dispersion (or diffraction), and loss (or gain) may occur in several cases with fundamental and technological relevance including nonlinear plasmonics [10,11], nonlinear PT-symmetric photonic systems [12], and nonlinear optics in integrated waveguides with 2D materials [13,14] or dispersive nonlinearities [15]. In addition, measurements of γ in lossy waveguides can be instrumental to check experimentally the different theoretical expressions reported to date for γ [16], as well as an effective means to study γ in active fibers. These current research topics call for sound solutions to the complexities inherent to determining γ when dispersion and loss are on an equal footing with nonlinear processes.

Here, an approach to determine β₂/γ, and hence γ if β₂ is available, in lossy waveguides is developed and proved numerically and experimentally using, in particular, a 1.16-km-long Corning SMF-28e+ fiber pumped at 1.951 μm, where it features a 10.9-dB km⁻¹ loss.

Let us consider the generalized NLSE in a lossy waveguide,

$$\frac{\partial}{\partial z} A(z,T) = -\frac{\alpha}{2} A - \frac{\beta_2}{2} \frac{\partial^2 A}{\partial T^2} + i \gamma |A(z,T)|^2 A,$$

where A is the complex envelope of the electric field and T denotes the time in the retarded frame [1]. Following Ref. [4], Eq. (1) implies

$$-\frac{d}{dz} \rho(z) - \alpha \rho(z) = \frac{\beta_2}{2 \gamma} \frac{d}{dz} \mu_2(z),$$

where \(\rho(z) = (1/2) \int_{-\infty}^{\infty} |A|^2 dT / \int_{-\infty}^{\infty} |A|^2 dT \) and \(\mu_2(z) = \int_{-\infty}^{\infty} \Omega^2 |A|^2 d\Omega \), with \(\bar{A}(z,\Omega) \) being the Fourier transform of A and Ω the relative angular frequency. If Eq. (2) is
Rewritten as
\[
e^{-\alpha f} \frac{d}{dz} \varrho(z) = \frac{\beta_2}{2\gamma} \frac{d}{dz} \mu_2(z),
\]
Eq. (3)
where \(\varrho(z) = e^{i\rho(z)} \), and it is integrated over a distance \(L \) where \(\varrho(z) \) grows monotonically, then, according to the mean value theorem,
\[
e^{-\alpha f} \Delta Q = \frac{\beta_2}{2\gamma} \Delta \mu_2,
\]
(4)
with \(0 < \ell < L \), where \(\Delta Q = e^{i\rho(L)} - \rho(0) \) and \(\Delta \mu_2 = \mu_2(L) - \mu_2(0) \). Note that, in the lossless case, \(e^{-\alpha f} \Delta Q = \rho(L) - \rho(0) = \Delta \rho \), and thus measuring input and output values of \(\rho \) and \(\mu_2 \) at different powers suffices to determine \(\beta_2/\gamma \), as reported in Ref. [4].

In the noisy case, however, and particularly when \(\alpha L > 1 \), \(\ell \) is required to obtain \(\beta_2/\gamma \), as Eq. (4) shows. This fact reflects that information of \(\rho \) along the waveguide is needed here, as seen by integrating Eq. (2).
\[
e^{-\alpha f} = \frac{\Delta \rho + \alpha \int_{0}^{\ell} \rho(z)dz}{\Delta Q}.
\]
(5)

Although the magnitudes \(\rho \) and \(\mu_2 \) are used in this work for experimental purposes, they turn to be very convenient to study the NLSE analytically. In this regard, a key step forward has been done in Ref. [17], where dynamical equations for \(\rho(z) \) and \(\mu_2(z) \) have been derived in the lossless case. Interestingly, if loss were incorporated into this theory, then \(\ell \) and hence \(\beta_2/\gamma \) could be determined. This derivation has been carried out in Appendix A and results in the following propagation equation for \(f(z) = (\varrho(z)/\varrho(0))^{-1} \) even in the presence of high loss,
\[
f^2 \frac{df}{dz^2} = 32 \kappa^2 \beta_2^2 \mu_{20}^2 \left(\frac{\gamma \rho_0}{\beta_2 \mu_{20}} e^{-\alpha f} + 1 \right),
\]
(6)
where \(\rho_0 = \rho(0) \), \(\mu_{20} = \mu_2(0) \), and \(\kappa \) is a shape factor defined in Ref. [17]. Note that Eq. (6) decouples the evolution of \(\rho(z) \) from \(\mu_2(z) \) and thus it also represents significant progress with respect to Ref. [17]. In addition, setting input powers so that \(\gamma \rho_0/(\beta_2 \mu_{20}) e^{-\alpha f} \gg 1 \) holds and thus the system does not enter the linear regime despite the loss, Eq. (6) can then be simplified to
\[
f^2 \frac{df}{dz^2} = \text{sign}(\beta_2) \eta^2 \rho_0 \mu_{20} e^{-\alpha f},
\]
(7)
where \(\eta^2 = 32 \kappa^2 [\beta_2] \gamma \). It is worth remarking that the initial conditions enter Eq. (7) via \(\rho_0 \) and \(\mu_{20} \), \(\eta^2 \) can be fitted so that Eq. (7) recovers the corresponding experimental output value \(f(L) \). Subsequently, \(e^{-\alpha f} \) (for the \(\rho_0 \) and \(\mu_{20} \) under consideration) can be evaluated by means of Eq. (7) and Eq. (5). Then, \(\beta_2/\gamma \) and, thus \(\gamma \) if \(\beta_2 \) is available, can be derived using Eq. (4). Finally, such a \(\gamma \) value can serve as a seed to initiate an iterative procedure to evaluate \(e^{-\alpha f} \) directly via Eq. (1), and hence \(\gamma \) through Eq. (4), to a greater accuracy until convergence is reached. In the next paragraph, this method is illustrated and tested numerically using parameters values corresponding to an SMF28 fiber pumped at 1.951 µm, which is the fiber eventually employed in our proof-of-concept experiment.

Let us consider 90-ps-long sech pulses propagating 1.16 km along a fiber with \(\alpha = 2.5 \times 10^{-3} \text{ m}^{-1} \), \(\beta_2 = -75 \text{ ps}^2 \text{ km}^{-1} \) and \(\gamma = 0.68 \text{ W}^{-1} \text{ km}^{-1} \). Note that \(\alpha L \sim 3 \), which is approximately two orders of magnitude larger than in Ref. [4]. It is worth emphasizing that our approach is not circumscribed to sech pulses pumped in the anomalous dispersion regime, but these conditions will correspond to our experiment specifically. For pulse peak powers of 10 W, 20 W, and 30 W, the evolution of \(\varrho(z)/\varrho(0) \) predicted by Eqs. (1) and (7) (with \(\eta^2 \) values selected to match the output values, as explained in the previous paragraph) are compared in Fig. 1(a). Based on the results provided by Eq. (7), \(e^{-\alpha f} \) is found to be 0.222 for 10 W, 0.213 for 20 W, and 0.198 for 30 W. These correction factors due to loss allow a first approximation to \(\gamma \) given by \(\gamma^{(1)} \sim 0.66 \text{ W}^{-1} \text{ km}^{-1} \) for 10 W, \(\gamma^{(1)} \sim 0.63 \text{ W}^{-1} \text{ km}^{-1} \) for 20 W, and \(\gamma^{(1)} \sim 0.58 \text{ W}^{-1} \text{ km}^{-1} \) for 30 W from Eq. (4). Once seed values for \(\gamma \) are available, \(e^{-\alpha f} \) can be directly evaluated, for each input peak power, through Eq. (1) to improve the measurement accuracy. The outcome of each iteration is plotted in Fig. 1(b), which also shows convergence to the real value, \(\gamma = 0.68 \text{ W}^{-1} \text{ km}^{-1} \), after a few iterations. Higher input powers require more iterations because the estimate provided by Eq. (7) is more accurate at lower input powers, as can be seen in Fig. 1(a). These simulations support the feasibility of our approach and, as such, bring us to its experimental test.

For our proof-of-concept experiment, ~90-ps-long pulses delivered at 1.951 µm from a passively mode-locked polarization-maintaining (PM) thulium-doped fiber (TDF) with a repetition rate of 18.45 MHz are amplified in a PM TDF amplifier and launched to a 1.16-km-long Corning SMF28e fiber and sampled using a 2-GHz bandwidth in conjunction with a 2-µm InGaAs photodetector (ET-5000F, Electro-Optics Technology, see Appendix B for more information) were used, as sketched in Fig. 2. A variable optical attenuator was also included to fix the operation of

![Fig. 1.](image-url)

(a) Comparison between the results given by Eq. (1) (solid lines) and Eq. (7) (dashed lines) for 10 W (black curves), 20 W (green curves), and 30 W (pink curves) of peak power. (b) Convergence study to determine \(\gamma \) in the cases in panel (a).
the PM amplifier to a single point. Input mean powers between 27 mW and 72 mW were considered. The bare values measured in this experiment are shown in Fig. 3(a). Processing these data following the steps outlined above (and considering a 6% error due to the precision of power measurements in the ρ values), β₂/γ = −102 ± 13 ps² W is derived from Fig. 3(b).

To check our result, on the one hand, β₂ = −75 ± 4 ps² km⁻¹ was measured using an optical-fiber version of a standard interferometric technique [2]. On the other hand, the value of γ measured at 1550 nm using our method for low-loss fibers [4] was scaled according to our numerical simulations (which were in line with Ref. [18]) and obtained γ = 0.68 ± 0.06 W⁻¹ km⁻¹. Consequently, β₂/γ = −110 ± 6 ps² km⁻¹, which is compatible with our direct measurement and validates our approach experimentally. Taking into account the error margins of this proof-of-concept experiment, no further iterations were carried out.

Finally, it is worth pointing out error sources that do not intrinsically limit our approach, but are related to the specific conditions of the setup where this measurement has been carried out. Having employed ~ 90-ps-long pulses, relatively small ΔQ are produced so that ρ uncertainties become more relevant when measuring β₂/γ. Moreover, under anomalous dispersion, such long pulses can be more sensitive to instabilities if too high powers are employed [1].

In conclusion, a successful measurement of β₂/γ, and hence γ if β₂ is available, has been demonstrated in guiding media where nonlinearities, dispersion, and loss play an equally important role. Our approach is built upon the extension of a conservation law of the NLSE to lossy waveguides. As such, this method can be very useful in current areas of nonlinear optics exploiting plasmons, PPT-symmetry, 2D materials, or dispersive nonlinearities, even to discriminate competing nonlinear theories.

APPENDIX A: NONLINEAR PROPAGATION EQUATION FOR ρ

The derivation of Eq. (6) is outlined in this section. On the one hand, the dynamical equation for the inverse generalized dispersive length, L⁻¹ NL(z) = (∂^2/2μLNL(z)), in lossy waveguides is obtained including the exponential decay of the pulse energy along z in the procedure described in the appendix of Ref. [17]. This modification turns into

\[
\frac{dL⁻¹}{dz} = 8 κ \text{sign}(β₂)e^{ρ(z)}L_D \left(\frac{L⁻¹}{L_D}\right)^2 \times \left(4 \text{sign}(β₂)L_D L⁻¹ - 8 e^{2ρ(z)}L⁻¹ (L⁻¹)^2\right)^{1/2},
\]

where L⁻¹ NL(z) = γρ(z) corresponds to the inverse generalized nonlinear length [4,9,17], and LNL and LD denote the classical nonlinear and dispersive length parameters, respectively [1].

Let us now define \(\tilde{ρ} = \rho(z)/\rho(0) \) and \(\tilde{β}_2 = μLNL(z)/μLNL(0) \), and rewrite Eqs. (3) and (8) as

\[
\frac{d\tilde{ρ}}{dz} = -\frac{1}{2} \tilde{μ} \frac{β₂}{γ} e^{ρ(z)} \frac{d\tilde{μ}_2}{dz},
\]

\[
\frac{d\tilde{μ}_2}{dz} = 8\sqrt{2} κ \gamma \rho_0 e^{−αz} (\tilde{ρ} - \tilde{γ})^{1/2},
\]

respectively. Using Eq. (10), Eq. (9) implies

\[
\left(\frac{1}{\tilde{ρ}} \frac{d\tilde{ρ}}{dz}\right)^2 = 32 κ^2 β₂^2 μLNLL(\tilde{μ}_2 - \tilde{γ}).
\]

Finally, Eq. (6) is obtained deriving Eq. (11) and writing \(d\tilde{μ}_2/dz \) in terms of \(d\tilde{ρ}/dz \) employing Eq. (9), which decouples the propagation equation for \(\tilde{ρ} \) from \(\tilde{μ}_2 \).

APPENDIX B: PHOTODETECTOR RESPONSE FUNCTION

Relying on second harmonic generation, autocorrelators typically require a power level that might not be reachable at the output in this context of high loss, and consequently ρ would have to be determined through direct photodetection. Indeed, this has been the case here. Attending to the intensity values below the offset observed in the oscillograms plotted in Fig. 4(a), photodetectors can distort the optical pulse shapes due to the so-called ringing when they are optimized for frequency-domain applications [19]. At first sight, this technical issue could severely hinder accurate measurements of ΔQ and, as such,
must be carefully analyzed. Let us express ρ in terms of the photodetector output $B(t) = \int_{-\infty}^{+\infty} R(\tau)|A(t-\tau)|^2 d\tau$,

$$\rho(z) = \frac{1}{4\pi} \frac{1}{\int_{-\infty}^{+\infty} B(z,t) dt} \int_{-\infty}^{+\infty} |\tilde{R}(\Omega)|^2 |\tilde{B}(z,\Omega)|^2 d\Omega,$$

(12)

where R is the response function of the photodetector satisfying $\int_{-\infty}^{+\infty} R(\tau) d\tau = 1$. Based on Eq. (12), a precise measurement of ρ employing distorted pulses due to the photodetection is still possible provided the spectrum of the photodetector response function, $|\tilde{R}(\Omega)|^2$, is known. Accordingly, $|\tilde{R}(\Omega)|^2$ was also characterized experimentally, see Fig. 4(b), to process our data correctly.

Fig. 4. (a) Normalized photodetected intensity profiles at the input (solid line) and output (dashed line). (b) Spectrum of the photodetector response function.