A Note on k-Generalized Projections

Leila Lebtahi, Néstor Thome*
Departamento de Matemática Aplicada
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia, Spain
E-mail:{leilebep,njthome}@mat.upv.es
Corresponding author: Néstor Thome

Abstract

In this note, we investigate characterizations for k-generalized projections (i.e., $A^k = A^*$) on Hilbert spaces. The obtained results generalize those for generalized projections on Hilbert spaces in [Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra and its Applications, 400, (2005), 313–318] and those for matrices in [J. Benitez, N. Thome, Characterizations and linear combinations of k-generalized projectors, Linear Algebra and its Applications, In Press].

Keywords: Projections; Normal matrices; t-Potent matrices.
AMS Classification: 47A05, 15A57

In [2], it was defined a generalized projection as a complex matrix A satisfying $A^2 = A^*$. This concept was extended in [3] for infinite-dimensional Hilbert spaces. For a Hilbert space, we shall denote

$$\mathcal{B}(H) = \{A/ A \text{ is linear and bounded operator, } A : H \to H\}.$$

If k is an integer greater than 1, we define a k-generalized projection as an element A of $\mathcal{B}(H)$ such that $A^k = A^*$, where A^* is the adjoint operator of A.

*This work has been partially supported by Generalitat Valenciana Grupos 03/062.
Moreover, the $n \times n$ complex matrices such that $A^k = A^*$ (where A^* denotes its conjugate transpose) were characterized in [1].

We recall that $A \in \mathcal{B}(H)$ is said to be normal if $AA^* = A^*A$, it is said to be orthogonal projection if $A^2 = A = A^*$, and A is called k-potent if $A^k = A$. In particular, A is a projection if $A^2 = A$ and A is tripotent if $A^3 = A$. In addition, the spectrum of A will be denoted by $\sigma(A)$.

The main purpose of this note is to give characterizations of the k-generalized projections by using the spectral theorem for normal operators on Hilbert spaces (see [4]). We quote this theorem for the sake of completeness.

Theorem 1 ([4]) Let H be a Hilbert space and $A \in \mathcal{B}(H)$. If A is normal then there exists a unique resolution of the identity E on the Borel subsets of $\sigma(A)$ which satisfies

\[A = \int_{\sigma(A)} \lambda dE(\lambda), \]

where $E(\lambda)$ denotes the spectral projection associated with the spectral point $\lambda \in \sigma(A)$ and $E(\lambda) = 0$ if $\lambda \notin \sigma(A)$.

The main result of this note is the following.

Theorem 2 Let H be a Hilbert space and $A \in \mathcal{B}(H)$. Then the following statements are equivalent.

(a) A is a k-generalized projection.

(b) A is normal and $\sigma(A) \subseteq \{0\} \cup \left\{ k^{1/2} \right\}$, where $k^{1/2}$ denotes the unity roots of order $k + 1$.

(c) A is normal and $(k + 2)$-potent.

In this case, one has

\[A = \bigoplus_{\lambda \in \mathcal{R}} \lambda E(\lambda), \]

where $E(\lambda) = 0$ if $\lambda \notin \sigma(A)$ and \oplus stands for the direct sum.

Proof. (a) \Rightarrow (b). Suppose that $A^k = A^*$. It is evident that $AA^* = A^*A$, i.e., A is normal. Theorem 1 assures that

\[A = \int_{\sigma(A)} \lambda dE(\lambda) \]

where $E(\lambda) = 0$ if $\lambda \notin \sigma(A)$ and \oplus stands for the direct sum.
and then \(0 = A^k - A^* = \int_{\sigma(A)} (\lambda^k - \overline{\lambda}) dE(\lambda)\), which implies \(\lambda^k - \overline{\lambda} = 0\) for all \(\lambda \in \sigma(A)\). The roots of this equation are 0 and \(\frac{k+1}{2}\) since if \(\lambda = re^{i\theta}\), with \(r > 0\) and \(-\pi \leq \theta < \pi\), then we get \(r^k e^{ik\theta} = re^{-i\theta}\) and so \(r = 1\) and \(e^{i(k+1)\theta} = 1\), i.e., \(\lambda = e^{i\theta} \in \frac{k+1}{2}\). From (2), it is clear that (1) holds.

(b) \(\Rightarrow\) (c). If \(A\) is normal and \(\sigma(A) \subseteq \{0\} \cup \frac{k+1}{2}\) then (1) is true from Theorem 1. Now, since \(\lambda^{k+2} = \lambda\) for all \(\lambda \in \sigma(A)\),

\[
A^{k+2} = \bigoplus_{\lambda \in \frac{k+1}{2}} \lambda^{k+2} E(\lambda) = \bigoplus_{\lambda \in \frac{k+1}{2}} \lambda E(\lambda) = A.
\]

(c) \(\Rightarrow\) (a). If \(A\) is normal, from Theorem 1 one has that

\[
A = \int_{\sigma(A)} \lambda dE(\lambda).
\]

From \(A^{k+2} = A\) we get that

\[
0 = A^{k+2} - A = \int_{\sigma(A)} (\lambda^{k+2} - \lambda) dE(\lambda).
\]

Hence, \(\lambda^{k+2} - \lambda = 0\) for all \(\lambda \in \sigma(A)\). Now, it is easy to deduce \(\lambda^k = \overline{\lambda}\) for all \(\lambda \in \sigma(A)\) and so, from (3) we obtain \(A^k = A^*\).

This completes the proof. \(\square\)

Theorem 2 in [3] and Theorem 2.1 in [1] can be obtained as corollaries of Theorem 2.

Corollary 1 Let \(H\) be a Hilbert space and let \(A \in \mathcal{B}(H)\) be a \(k\)-generalized projection.

(I) If \(\sigma(A) \subseteq \mathbb{R}\) and

(a) \(k\) is even then \(A\) is a projection.

(b) \(k\) is odd then \(A\) is a tripotent operator.

(II) If \(\sigma(A) \subseteq i\mathbb{R}\) and

(a) \(k\) is a multiple of 4 then \(A^3 = -A\).

(b) \(k\) is not a multiple of 4 then \(A = O\).
Proof. By Theorem 2 we know that A is normal and $\sigma(A) \subseteq \{0\} \cup k\sqrt{1}$.

(I) By hypothesis, $\sigma(A) \subseteq \{0\} \cup (k\sqrt{1} \cap \mathbb{R})$. If k is even then $\sigma(A) \subseteq \{0, 1\}$, hence $A^2 = A$. If k is odd then $\sigma(A) \subseteq \{-1, 0, 1\}$, hence $A^3 = A$.

(II) In this case, $\sigma(A) \subseteq i\mathbb{R} \cap (\{0\} \cup k\sqrt{1})$. If k is a multiple of 4 then $i\mathbb{R} \cap (\{0\} \cup k\sqrt{1}) = \{0, i, -i\}$ and hence $A^3 + A = O$. If k is not a multiple of 4 then $i\mathbb{R} \cap (\{0\} \cup k\sqrt{1}) = \{0\}$ and hence $A = O$. This conclude the proof.

It is well-known that: A is normal and $\sigma(A) \subseteq \mathbb{R}$ if and only if $A = A^*$ (i.e., A is self-adjoint). So, the hypothesis that “A is a k-generalized projection and $\sigma(A) \subseteq \mathbb{R}$” is equivalent to “$A$ is a k-generalized projection and $A^* = A$”. Analogously, the hypothesis that “A is a k-generalized projection and $\sigma(A) \subseteq i\mathbb{R}$” is equivalent to “$A$ is a k-generalized projection and $A^* = -A$” (i.e., A is skew self-adjoint).

Corollary 2 Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be a k-generalized projection. The range of A (denoted by $\mathcal{R}(A)$) is closed.

Proof. Since A is a k-generalized projection, by Theorem 2 we get that A is normal and its spectrum is finite, so 0 is not a limited point of the spectrum of the normal operator A, then $\mathcal{R}(A)$ is closed. This completes the proof.

A similar result to Theorem 2 can be established for matrices and it generalizes Corollary 4 in [3].

Corollary 3 Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be a k-generalized projection. Then A^{k+1} is an orthogonal projection.

Proof. From Theorem 2, we get $A^{k+2} = A$ and then $(A^{k+1})^2 = A^{k+2}A^k = AA^k = A^{k+1}$. Moreover, A^{k+1} is an orthogonal projection because

$$ (A^{k+1})^* - A^{k+1} = (A^kA)^* - A^kA = (A^*A)^* - A^*A = 0, $$

since A^*A is self-adjoint. This completes the proof.

It is clear that Corollary 2 and Corollary 3 generalize the results given in Corollary 3 in [3].

References

