On Finite Minimal Non-nilpotent Groups

A. Ballester-Bolinches†, R. Esteban-Romero‡, and Derek J. S. Robinson§

23rd January 2013

Abstract

A critical group for a class of groups \mathcal{X} is a minimal non-\mathcal{X}-group. The critical groups are determined for various classes of finite groups. As a consequence, a classification of the minimal non-nilpotent groups (also called Schmidt groups) is given, together with a complete proof of Gol’fand’s theorem on maximal Schmidt groups.

1 Introduction

Given a class of groups \mathcal{X}, we say that a group G is a minimal non-\mathcal{X}-group, or an \mathcal{X}-critical group, if $G \not\in \mathcal{X}$, but all proper subgroups of G belong to \mathcal{X}. It is clear that detailed knowledge of the structure of minimal non-\mathcal{X}-groups can provide insight into what makes a group belong to \mathcal{X}. All groups considered in this paper are finite.

Minimal non-\mathcal{X}-groups have been studied for various classes of groups \mathcal{X}. For instance, minimal non-abelian groups were analysed by Miller and Moreno [10], while Schmidt [14] studied minimal non-nilpotent groups. The latter are now known as Schmidt groups. Itô [9] considered the minimal non-p-nilpotent groups for p a prime, which turn out to be just the Schmidt groups. Finally, the third author [12] characterised the minimal non-T-groups (T-groups are groups in which normality is a transitive relation). He also
characterised in [13] the minimal non-PST-groups, where a PST-group is a group in which Sylow permutability is a transitive relation.

The aim of this paper is to give more precise information about the structure of Schmidt groups and show how to construct them in an efficient way. As a consequence of our study, a new proof of a classical theorem of Gol’fand is given.

Our approach depends on the classification of critical groups for the class of PST-groups given in [13]. Recall that a subgroup H is said to be Sylow-permutable, or S-permutable, in a group G if H permutes with every Sylow subgroup of G. We mention a similar class \mathcal{Y}_p, which was introduced in [2].

If p is a prime, a group G belongs to the class \mathcal{Y}_p if G enjoys the following property: if H and K are p-subgroups of G such that H is contained in K, then H is S-permutable in $N_G(K)$. Clearly every PST-group is a \mathcal{Y}_p-group.

There is a close relation between the class of groups just introduced and p-nilpotence, as in shown by the following result, which was proved in [2; Theorem 5].

Theorem 1. A group G is a \mathcal{Y}_p-group if and only if either it is p-nilpotent or it has an abelian Sylow p-subgroup P and every subgroup of P is normal in $N_G(P)$.

Our first main result is:

Theorem 2. The minimal non-\mathcal{Y}_p-groups are just the minimal non-PST-groups with a non-trivial normal Sylow p-subgroup. Such groups are of the types described in I to IV below. Let p and q be distinct primes.

Type I: $G = [P]Q$, where $P = \langle a, b \rangle$ is an elementary abelian group of order p^2, $Q = \langle z \rangle$ is cyclic of order q^r, with q a prime such that q^r divides $p - 1$, $q^r > 1$ and $r \geq f$, and $a^z = a^i$, $b^z = b^{j+1}$, where i is the least positive primitive q^f-th root of unity modulo p and $j = 1 + qk^{f-1}$, with $0 < k < q$.

Type II: $G = [P]Q$, where $Q = \langle z \rangle$ is cyclic of order $q^r > 1$, with q a prime not dividing $p - 1$ and P an irreducible Q-module over the field of p elements with centralizer $\langle z^q \rangle$ in Q.

Type III: $G = [P]Q$, where $P = \langle a_0, a_1, \ldots, a_{q-1} \rangle$ is an elementary abelian p-group of order p^q, $Q = \langle z \rangle$ is cyclic of order q^r, with q a prime such that q^r is the highest power of q dividing $p - 1$ and $r > f$. Define $a_j^z = a_{j+1}$ for $0 \leq j < q - 1$ and $a^z_{q-1} = a_0$, where i is a primitive q^f-th root of unity modulo p.

2
Type IV: \(G = [P]Q\), where \(P\) is a non-abelian special \(p\)-group of rank \(2m\), the order of \(p\) modulo \(q\) being \(2m\), \(Q = \langle z \rangle\) is cyclic of order \(q’ > 1\), \(z\) induces an automorphism in \(P\) such that \(P/\Phi(P)\) is a faithful irreducible \(Q\)-module, and \(z\) centralizes \(\Phi(P)\). Furthermore, \(|P/\Phi(P)| = p^{2m}\) and \(|P’| \leq p^m\).

Since a group is a soluble \(PST\)-group if and only if it belongs to \(\mathcal{Y}_p\) for all primes \(p\) [2; Theorem 4], Theorem 2 may be regarded as a local approach to the third author’s classification of minimal non-\(PST\)-groups [13].

An interesting consequence of Theorem 2 is the following classification of Schmidt groups. In order to describe the classification, we must introduce one further type of group:

Type V: \(G = [P]Q\), where \(P = \langle a \rangle\) is a normal subgroup of order \(p\), \(Q = \langle z \rangle\) is cyclic of order \(q’ > 1\), and \(a^i = z \cdot a^i\), where \(i\) is the least primitive \(q\)-th root of unity modulo \(p\).

Our main result can now be stated as:

Theorem 3. The Schmidt groups are exactly the groups of Type II, Type IV and Type V.

Our next result shows that \(p\)-soluble groups with Sylow \(p\)-subgroups isomorphic to a normal subgroup of a minimal non-\(\mathcal{Y}_p\)-group have a restricted structure.

Theorem 4. Let \(G\) be a \(p\)-soluble group with a Sylow \(p\)-subgroup \(P\). If \(P\) is isomorphic to a non-trivial normal Sylow subgroup of a minimal non-\(\mathcal{Y}_p\)-group, then \(G\) has \(p\)-length 1.

In [4] Gol’fand stated the following result:

Theorem 5. Let \(p\) and \(q\) be distinct primes, let \(r\) be a given positive integer, and let \(a\) be the order of \(p\) modulo \(q\). Then there is a unique minimal non-\(p\)-nilpotent group \(G_0\) of order \(p^{a_0}q^r\), where \(a_0 = a\) if \(a\) is odd and \(a_0 = 3a/2\) if \(a\) is even, such that all minimal non-\(p\)-nilpotent groups of order \(p^i q^r\) are isomorphic to quotients of \(G_0\) by central subgroups.

Only a sketch of proof of this theorem is given in Gol’fand’s article. In Section 3, we show how to construct the Schmidt groups of Gol’fand and we also give a complete proof of Theorem 5. We remark that Rédei [11] has given another construction of the Schmidt groups of maximum order.
2 Proofs of Theorems 2, 3 and 4

Proof of Theorem 2. Assume that G is a minimal non-\mathcal{Y}_p-group and let P be a Sylow p-subgroup of G. Since G does not belong to \mathcal{Y}_p, there exist subgroups H and K of P such that $H \leq K$ and H is not S-permutable in $N_G(K)$. Consequently there is an element $z \in N_G(K)$ such that z does not normalise H. Here it can be assumed that z has order q^r for some prime $q \neq p$. Then $G = K \langle z \rangle$ because G is a minimal non-\mathcal{Y}_p-group. This implies that K is a normal Sylow p-subgroup of G and $Q = \langle z \rangle$ is a cyclic Sylow q-subgroup of G. Then G is not a PST-group, yet every proper subgroup has \mathcal{Y}_p and \mathcal{Y}_q, and thus is a PST-group by [2].

Conversely, if G is a minimal non-PST-group, then G does not have \mathcal{Y}_p for some prime p. Since all its proper subgroups satisfy \mathcal{Y}_p, the group G is a minimal non-\mathcal{Y}_p-group. The classification of minimal non-PST-groups given in [13] completes the proof. (Notice that the groups of Types IV and V of [13] are both of Type IV above).

Proof of Theorem 3. Let G be a minimal non-nilpotent group. Then G is a minimal non-p-nilpotent group for some prime p. Suppose that G is not a \mathcal{Y}_p-group, so that G is a minimal non-\mathcal{Y}_p-group. By Theorem 2, the group G is of one of the types I–IV. By examining the group structure, we see that groups of Type I and III are not minimal non-p-nilpotent. Therefore G must be of Type II or IV.

Assume now that G belongs to \mathcal{Y}_p. Then by [1; Theorem A] and [3; VII, 6.18], the p-nilpotent residual P of G is an abelian minimal normal Sylow subgroup which is complemented in G by a cyclic Sylow q-subgroup Q. Moreover Q normalizes each subgroup of P. This implies that P is cyclic of order p, say $P = \langle a \rangle$. In addition, $a^i = a^j$ for some $0 < i < j$ and z^q centralizes a. This implies that i must be a primitive q-th root of unity modulo p and, by taking a suitable power of z as a generator of Q, we can assume that i is the least such positive integer. Hence G is of Type V.

Proof of Theorem 4. Assume that G is a p-soluble group with p-length > 1 and G has least order subject to possessing a Sylow p-subgroup P which is isomorphic to a non-trivial normal Sylow subgroup of a Schmidt group. By [6; VI, 6.10], we conclude that P is not abelian. Thus P is a Sylow p-subgroup of a group of Type IV in Theorem 2. By minimality of order $O_p'(G) = 1$ and $O_p^p(G) = G$. In addition, since the class of groups of p-length at most 1 is a saturated formation, we have $\Phi(G) = 1$ and hence G has a unique minimal normal subgroup which is an elementary abelian p-group. Let $D = O_p(G)$; then D is a non-trivial elementary abelian group and $C_G(D) = D$. Moreover $\Phi(P) = Z(P) \leq D$ and so P/D is elementary abelian.
Let T be the subgroup defined by $T/D = O_p'(G/D)$. Since P/D is an elementary abelian p-group, G/D has p-length at most 1 by [6; VI, 6.10]. It follows that $(T/D)(P/D)$ is a normal subgroup of G/D. Therefore TP is a normal subgroup of G. Assume that TP is a proper subgroup of G. Now $O_p'(TP) \leq O_p'(G) = 1$, so P is a normal subgroup of TP and hence of G, a contradiction which shows that $G = TP$.

Assume now that P/D is a non-cyclic elementary abelian group. By [8; X, 1.9], we have $T/D = \langle C_{T/D}(xD) \mid xD \in P/D, xD \neq D \rangle$. Let $x \in P D$. Since P/D centralizes xD, we have $P/D \leq N_{G/D}(C_{T/D}(xD))$. Let $T_x/D = C_{T/D}(xD)$. Assume that $PT_x = G$; then $T_x = T$ is a normal subgroup of G and thus $O_p'(G/D) = T_x/D$. This implies that $(x)D/D \leq Z(G/D)$ and $(x)D$ is a normal p-subgroup of G, so that $(x)D$ is contained in D, a contradiction. Consequently PT_x is a proper subgroup of G for all $1 \neq xD \in P/D$. Hence PT_x has p-length at most 1 by minimality of G. Since $C_G(D) = D$ and $O_p'(PT_x)$ centralizes D, we conclude that $O_p'(PT_x) = 1$. Therefore P is a normal subgroup of PT_x, which shows that T normalizes P and thus P is a normal subgroup of G. This contradiction shows that P/D is cyclic.

Since P has class 2, we see from [7; IX, 5.5] that, if $p > 3$, then G has p-length at most 1. Therefore $p \leq 3$. Let X be a minimal non-\mathcal{Y}_p-group such that P is a Sylow p-subgroup of X. Note that $P/\Phi(P)$ is an irreducible X-module. In particular D, the subgroup of the previous paragraphs, is not normal in X and so $P = DD^g$ for some $g \in X$. Since D is abelian, $D \cap D^g \leq Z(P) = \Phi(P)$, and it follows that $P/\Phi(P)$ has order p^2. This implies that P is an extra-special group of order p^3. If $p = 2$, then, since $C_G(D) = D$, we see that G must be a symmetric group of degree 4. Hence P is dihedral of order 8, which cannot lead to a group of Type IV since $\text{Aut}(P)$ is a 2-group. Hence $p = 3$. But a non-abelian group of order 3^3 cannot occur as the normal Sylow 3-subgroup of a Schmidt group, because the only prime divisor of $3^2 - 1$ is 2 and the order of 3 modulo 2 is 1. This contradiction completes the proof of the theorem.

\[\square\]

3 The Construction of Gol’fand’s Groups and a Proof of Gol’fand’s Theorem

We begin by constructing groups of Type IV with a Sylow p-subgroup P of order p^{3m} and $|P/\Phi(P)| = p^{2m}$. These groups were constructed in [13] by a different method, but the present approach is more convenient when $p = 2$. We will use the following result on linear operators.
Lemma 6. Let p be a prime and let r be a positive integer such that $\gcd(p, r) = 1$. Let β be a linear operator of order p^ru on a vector space V over the field of p-elements, where u is a non-negative integer. If β has irreducible minimum polynomial f, then β^{pu} also has minimum polynomial f.

Proof. Let g be the minimum polynomial of β^{pu}. Now $f(\beta^{pu}) = f(\beta)^{pu} = 0$, so that g divides f. Since f is irreducible, $f = g$. \hfill \square

Construction 7. Let p and q be distinct primes such that the order of p modulo q is $2m$, $m \geq 1$. Let F be the free group with basis $\{f_0, f_1, \ldots, f_{2m-1}\}$. Write $R = F^p F$ and $R^* = [F, R] R^p$. Then F/R is an elementary abelian p-group of order p^{2m} and $H = F/R^*$ is a p-group such that $R/R^* = \Phi(H)$ is an elementary abelian p-group contained in $\mathbb{Z}(H)$. Moreover H is a non-abelian group because an extra-special group of order p^{2m+1} is an epimorphic image of H.

Denote by g_i the image of f_i under the natural epimorphism of F onto $H = F/R^*$, $0 \leq i \leq 2m-1$. Since H has class 2, we know that $\Phi(H)$ is generated by all $[g_i, g_j]$, with $i < j$, and g_{i}^{p}. Therefore $\Phi(H)$ has dimension as $\text{GF}(p)$-vector space at most $\frac{1}{2}(2m(2m - 1) + 2m = m(2m + 1))$. Assume that the dimension is less than $m(2m + 1)$. Then there exists an element

$$
r = \prod_{j} (f_{j}^{p})^{\lambda_{j}} \prod_{j<k} [f_{j}, f_{k}]^{\mu_{jk}} \in R^*
$$

with some λ_j or μ_{jk} not divisible by p. It is clear that $p \mid \lambda_{j}$ for all j since $F^{p} F'/F'$ is a free abelian group with basis $\{f_{j}^{p} F' \mid 0 \leq j \leq 2m-1\}$. Suppose that $p \nmid \mu_{ik}$ for some $i < k$ and let ρ_{i} be the endomorphism of F defined by $\rho_{i}^{p} f = f_{i}^{p}$, $f_{i}^{p} = f_{i}$ for $l \neq i$. Then $\rho_{i}^{p} R^* = R^*$ and so $\rho_{i}^{p} R^* = R^*$. This implies that

$$
w = \prod_{j<i} [f_{j}, f_{i}]^{\mu_{ji}} \prod_{i<l} [f_{i}, f_{l}]^{\mu_{il}} \in R^*.
$$

On the other hand, by applying ρ_{k} we find that

$$
w^{\rho_{k} w^{-1} R^*} = [f_{i}, f_{k}]^{\mu_{ik}} R^* = R^*.
$$

Since $p \nmid \mu_{ik}$, it follows that μ_{ik} has an inverse modulo p. This means that $[f_{i}, f_{k}] \in R^*$. Now since permutations of the generators of F induce endomorphisms in F and R^* is fully invariant, it follows that $F' \leq R^*$ and H is abelian, a contradiction. Therefore $\Phi(H)$ has dimension $m(2m + 1)$ and so $|\Phi(H)| = p^{m(2m+1)}$.

Let $f(t) = c_{0} + c_{1} t + \cdots + c_{2m-1} t^{2m-1} + t^{2m}$ be an irreducible factor of the cyclotomic polynomial of order q over $\text{GF}(p)$ and let α be the endomorphism
of F given by $f_i^α = f_{i+1}$ for $0 ≤ i ≤ 2m - 2$, $f_{2m-1}^α = f_0^{-c_0}f_1^{-c_1} \cdots f_{2m-1}^{-c_{2m-1}}$. Since $R^α$ is a fully invariant subgroup of F, it follows that $α$ induces an endomorphism $β$ on $H = F/R^α$. In turn, $β$ induces an automorphism $\bar{β}$ on $H/Φ(H)$. Since $H/Φ(H) = (H/Φ(H))^{\bar{β}} \leq H^{β}Φ(H)/Φ(H)$, it follows that $H = H^{β}Φ(H)$, whence $H = H^β$. Consequently $β$ is an automorphism of H.

It is clear that $β$ induces the linear operator $\bar{β}$, with minimum polynomial f, on the vector space $H/Φ(H)$. Now by [6; III, 3.18], we conclude that $β^q$ has order p^m for some u and hence $β$ has order $p^μq$. By Lemma 6, there is a $GF(p)$-basis $\{g_0, g_1, \ldots, g_{2m-1}\}$ of $H/Φ(H)$, where $g_i^α = g_iΦ(H)$, such that $g_i^{β^q} = g_i^{q^2}$ for $0 ≤ i ≤ 2m - 2$ and $g_{2m-1}^{β^q} = g_0^{-c_0}g_1^{-c_1} \cdots g_{2m-1}^{-c_{2m-1}}$. Hence we can replace $β$ by $β^{p^m}$ and assume without loss of generality that $β$ has order q.

It follows that $Φ(H)$ is a $GF(p)T$-module, where $T = \langle β \rangle$ is a cyclic group of order q. By Maschke’s Theorem $Φ(H)$ is a direct sum of irreducible T-modules. Let N be the sum of all non-trivial irreducible submodules in the direct decomposition and write $P = H/N$. It is clear that N is $β$-invariant and therefore $β$ induces an automorphism $γ$ of order q in P. Let $Q = \langle z \rangle$ be a cyclic group of order q^r acting on P via $z \mapsto γ$. Let $G = [P]Q$ be the corresponding semidirect product.

It is easily checked that G is a Schmidt group. Next we show that P has order p^{3m}. From Theorem 3 we see that $Φ(P)$ has order at most p^m, where $|P/Φ(P)| = p^{2m}$. On the other hand, $|Φ(H)| = p^m(2m+1)$, and N has order a power of p^{2m} because every faithful irreducible $\langle β \rangle$-module over $GF(p)$ has dimension $2m$. Therefore $|Φ(P)| = p^m$.

Remark 8. In the group of Construction 7, we may assume that $\bar{g}_{2m-1}^z = \bar{g}_0^{-c_0}\bar{g}_1^{-c_1} \cdots \bar{g}_{2m-1}^{-c_{2m-1}}$, where $g_i = g_iN$.

Proof. We know that $\bar{g}_{2m-1}^z = \bar{g}_0^{-c_0}\bar{g}_1^{-c_1} \cdots \bar{g}_{2m-1}^{-c_{2m-1}}$ where $\bar{w} ∈ Φ(P)$. Since $f(t)$ is irreducible, 1 is not a root of $f(t)$ and it follows that $c = c_0 + c_1 + \cdots + c_{2m-1} + 1 ≠ 0 (mod p)$. Consequently there exists an integer d such that $cd ≡ -1 (mod p)$. Put $w_0 = \bar{w}^d$ and consider the automorphism $δ$ of P defined by $\bar{g}_i^δ = \bar{g}_i w_0$ for $0 ≤ i ≤ 2m - 1$. If we write $γ_0 = δγδ^{-1}$, it is easily checked by an elementary calculation that $\bar{g}_i^{γ_0} = \bar{g}_{i+1}$ for $0 ≤ i ≤ 2m - 2$, and $\bar{g}_{2m-1}^{γ_0} = \bar{g}_0^{-c_0}\bar{g}_1^{-c_1} \cdots \bar{g}_{2m-1}^{-c_{2m-1}}$. Let $\langle z_0 \rangle$ be a cyclic group of order q^r, with z_0 acting on P via $z_0 \mapsto γ_0$. Since $\langle z_0 \rangle$ and $\langle z \rangle$ are conjugate in $Aut(P)$, it follows by [3; B, 12.1] that the groups $P\langle z \rangle$ and $P\langle z_0 \rangle$ are isomorphic.

Remark 9. The group in Construction 7 does not depend on the choice of irreducible factor $f(t)$.
Proof. Assume that the group $G_1 = [P_1]\langle z_1 \rangle$ has been constructed by using another irreducible factor $g(t)$ of the cyclotomic polynomial of order q over $\text{GF}(p)$. Since G and G_1 have the same order, it will be enough to find a set of generators of G_1 for which the relations of G hold. Since z centralizes $\Phi(P)$ and z_1 centralizes $\Phi(P_1)$, we have $G/\Phi(P) \cong [P/\Phi(P)]\langle z \rangle$ and $G_1/\Phi(P_1) \cong [P_1/\Phi(P_1)]\langle z_1 \rangle$. But $P/\Phi(P)$ and $P_1/\Phi(P_1)$ are faithful irreducible modules for a cyclic group of order q. Therefore $[P/\Phi(P)]((z)/(z^q))$ is isomorphic to $[P_1/\Phi(P_1)]((z_1)/(z_1^q))$ by [3; B, 12.4]. Let ϕ be an isomorphism between these groups. Then it is clear that ϕ induces an isomorphism ψ between $G/\Phi(P)$ and $G_1/\Phi(P_1)$.

Let $\tilde{h}_i = h_i \Phi(P)$, $0 \leq i \leq 2m - 1$. Put $\tilde{k}_i = \tilde{h}_i^\psi$ and $\tilde{u} = \tilde{z}^\psi$. We show how to extend the isomorphism ψ to an isomorphism between G and G_1. In order to do so, we choose representatives k_i of \tilde{k}_i and u of \tilde{u} such that the order of u is q'. There is no loss of generality in assuming that $k_i^u = k_{i+1}^u$ for $0 \leq i \leq 2m - 2$: indeed, if $k_i^u = k_{i+1}^u w_{i+1}$, with $w_{i+1} \in \Phi(P_1)$, then $k_i^u = k_i w_i \cdots w_1$ for $1 \leq i \leq 2m - 1$, $k_0' = k_0$ are representatives of k_i and $k_i'^u = k_{i+1}'^u$ for $1 \leq i \leq 2m - 1$ because u centralizes $\Phi(P_1)$. By using the same argument as in Remark 8, we may also assume $k_i'^u = k_0'^u k_1'^u \cdots k_{2m-1}'^u$. Therefore G and G_1 satisfy the same relations and by Von Dyck’s theorem they are isomorphic.

Remark 10. In Construction 7, it is not necessary to assume that β has order q. Indeed, it can be proved that β^q fixes all elements of $\Phi(H)$ and that the automorphism γ induced by β in H/N has order q.

Gol’fand’s result (Theorem 5) can be recovered with the help of Construction 7 and Theorem 3.

Proof of Theorem 5. Let p and q be distinct primes and let a be the order of p modulo q. Then a is the dimension of each non-trivial irreducible module for a cyclic group of order q over $\text{GF}(p)$. Assume that a is odd. Then every Schmidt group G with a normal Sylow p-subgroup P such that $|P/\Phi(P)| = p^a$ is of Type II or Type V. Then the theorem holds in this case because all Schmidt groups of the same type with isomorphic Sylow q-subgroups are actually isomorphic.

Assume now that a is even, with say $a = 2m$. Then we are dealing with Schmidt groups of Type II or Type IV. Let G_0 be the group of Construction 7. Then $|G_0| = p^{3m} q^r$ and $|P_0/\Phi(P_0)| = p^{2m}$, where P_0 is a normal Sylow p-subgroup of G_0. It is clear that $G_0/\Phi(P_0)$ is a Schmidt group of Type II. Therefore, if G is a Schmidt group of Type II with order $p^t q^r$ and a normal Sylow p-subgroup, then $G \cong G_0/\Phi(P_0)$ and $\Phi(P_0) \leq Z(G_0)$. Consequently, we need only show that all Schmidt groups of Type IV and order $p^t q^r$, $t \leq 3m$,
which have a normal Sylow-p-subgroup are isomorphic to quotients of G_0 by central subgroups.

Let \overline{G} be a Schmidt group of Type IV and order $p'q^r$ with a normal Sylow p-subgroup P. Then $G_0/\Phi(P_0)$ and $\overline{G}/\Phi(\overline{P})$ are isomorphic. Let us choose generators z and \bar{z} of Sylow q-subgroups Q of G_0 and \overline{Q} of \overline{G} such that the minimum polynomial of the actions of z on $P_0/\Phi(P_0)$ and \bar{z} on $\overline{P}/\Phi(\overline{P})$ coincide. Also choose generators $g_0, g_1, \ldots, g_{2m-1}$ of the Sylow p-subgroup P_0 of G_0 and generators $\bar{g}_0, \bar{g}_1, \ldots, \bar{g}_{2m-1}$ of the Sylow p-subgroup \overline{P} of \overline{G} such that $g_j^z = g_{j+1}$ and $\bar{g}_j^\bar{z} = \bar{g}_{j+1}$ for $0 \leq j \leq 2m - 2$. Since $\Phi(P_0) = P'_0$ and $\Phi(\overline{P}) = \overline{P}'$, and both P_0 and \overline{P} have class 2, the subgroup $\Phi(P_0)$ can be generated by the commutators $[g_i, g_j]$, while $\Phi(\overline{P})$ is generated by the commutators $[\bar{g}_i, \bar{g}_j]$. On the other hand, if $u_i = [g_0, g_i^z]$, we have $u_i = u_{i+1} = [g_k, g_k^z]$. It is easy to see that $u_i = [g_0, g_i^z] = [g_0^q, g_0^z] = u_{q-i}$.

Observe that q is odd since $2m$ divides $q - 1$: write $q = 2s + 1$. By definition of the g_i and u_i, and use of the minimum polynomial of the action of z on $P_0/\Phi(P_0)$, it may be shown that for $l \geq 1$

$$u_{s+m+l} = u_{s-m+l}u_{s-m+l+1}^{-1} \cdots u_{s+m+l-2}^{-1}u_{s+m+l-1}^{-1}.$$

Now this formula and the relations $u_i = u_{q-i}^{-1}$ allow us to show by induction that each u_{s+m+l} can be expressed in terms of elements of the set $B = \{u_{s-m+l}, u_{s-m+2}, \ldots, u_s\}$. Since $\Phi(P_0)$ has dimension m over $GF(p)$, this expression is unique. It follows that each u_j can be uniquely expressed in terms of the elements of B, and so this is also true for each generator of $\Phi(P_0)$. The same argument shows that the generators of $\Phi(\overline{P})$ have a similar unique expression subject to the same relations.

The arguments of Remark 9 allow us to assume that

$$\bar{g}_{2m-1} = \bar{g}_0^{-c_0}\bar{g}_1^{-c_1} \cdots \bar{g}_{2m-1}^{-c_{2m-1}} \text{ and } g_{2m-1} = g_0^{-c_0}g_1^{-c_1} \cdots g_{2m-1}^{-c_{2m-1}}.$$

Consequently, all relations of G_0 are satisfied by \overline{G}. By Von Dyck’s theorem, it follows that \overline{G} is an epimorphic image of G_0 by a central subgroup of G_0.

\section*{References}

