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Abstract

We study the nucleon-nucleon interaction in the isoscalar-scalar channel

using the chiral unitary approach. The t-matrix of the pion-pion scattering in

this channel is summed up to all orders using the B-S equation. We find that

the calculated results at long distances are close to those of the σ-exchange

interaction. In addition, there appears a shorter range repulsion in this chan-

nel.

1 Introduction

The intermediate range attraction in the NN interaction has been traditionally
described by the σ-exchange in the meson exchange picture. [1] It has also been
noticed [2, 3, 4] that box diagrams with two-pion exchange and intermediate ∆
excitation lead to an intermediate range attraction. A weakened σ exchange together
with these box diagrams has also been used to describe the intermediate range NN
attraction. [1]

With the success of chiral perturbation theory (χPT ) in the meson-meson and
meson-baryon sectors, [5] attempts to extend these ideas to the NN sector have been
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pursued. [6, 7, 8] In a recent paper, [9] following the line of Ref. [8], the peripheral
NN partial waves are studied within a chiral scheme, using the meson-meson and
the meson-baryon interaction Lagrangians. With this input, together with more
conventional processes with ∆ box diagrams, ρ exchange and other meson exchange,
a good reproduction of the NN data for L > 2 partial waves is obtained.

A striking feature of Ref. [9] is that the exchange of two interacting pions in
the scalar-isoscalar channel (the σ channel) leads to a repulsion (although weak),
instead of the commonly accepted attraction from σ exchange. Simultaneously, from
the box diagrams with intermediate ∆, an attraction is obtained with the range and
strength of the standard σ exchange of the boson exchange models. Two basic
approximations lead to these results. First, the ππ isoscalar interaction is used only
to lowest order in χPT . Second, no form factors are considered for the ∆ box
diagrams.

In the present work we wish to reconsider this idea and go further by treating
the exchange of two interacting pions in the isoscalar channel in a nonperturbative
way. The approach followed here for the ππ interaction produces a σ pole in the
complex plane in the physical region s > 4m2

π. Then the analytical extrapolation of
the model is used in order to find the strength of the isoscalar exchange interaction
for the situation s < 0, which one encounters in the NN scattering problem.

The σ meson has been rather problematic, with ups and downs in the particle
data tables, where it has been once again welcome. [10] Some analyses of the ππ
data rely on the σ pole in the ππ t matrix. [11, 12, 13] Theoretical models for the
ππ interaction based on meson exchange [14] find also a pole in the t matrix for the
σ meson. Yet, of relevance to the present work is the fact that the σ pole is found in
recent chiral nonpertubative approaches which have developed independently. [15,
16] In Ref. [15] the inverse amplitude method using the lowest order and second order
chiral Lagrangians is formulated and it leads to a pole position for σ at 440 − i245
MeV. In Ref. [16] the Bethe Salpeter equation, with a cutoff in the loops fitted to
the data of the scalar sector, is shown to reproduce accurately the data in the scalar
sector up to around

√
s = 1.2 GeV, using only the lowest order chiral Lagrangian

as input. In this case, σ appears as a pole at 469 − i203 MeV [Ref. [16],erratum].
The approach of Ref. [16], using coupled channels, is able to reproduce the σ and
f0 (980) resonance in the scalar-isoscalar sector and the a0(980) resonance at L = 0,
I = 1. The approach of Ref. [15] using only the ππ channel could only generate σ in
the scalar channel, but ρ and K∗ in the vector channel were accurately reproduced.

A generalization of the inverse amplitude method of Ref. [15], incorporating
coupled channels as in Ref. [16] and using the lowest and second order chiral La-
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grangians, is given in Ref. [17], and there, all meson-meson data up to
√

s = 1.2
GeV are accurately reproduced. In the latter work, the σ pole appears at 442− i225
MeV.

A different chiral approach is employed in Ref. [18], using the N/D method.
This explicitly intoduces resonances on top of the lowest order chiral Lagrangian.
That approach, which includes contributions from the physical and unphysical cuts
through dispersion relations, produces good results up to

√
s = 1.4 GeV and also

leads to a σ pole at 445 − i221 MeV.
As we can see, all these different schemes, which uses the lowest order chiral

Lagrangian and the implementation of exact unitarity, lead invariably to a σ pole
around 450 − i225 MeV, with small fluctuations.

Our aim here is to follow these lines and use the unitary scheme to generate
the ππ scalar isoscalar amplitude in the unphysical (virtual) region, and later its
contribution to the NN interaction.

2 Lowest order contribution in isoscalar exchange

in the NN interaction

We first investigate the lowest-order contribution to the ππ interaction in the scalar
isoscalar channel, which is given by the diagrams of Fig. 1 for pp → pp. We leave
out the box diagram contribution here and just refer the literature. [1]

Considering the ~τ ~φ isospin dependence of the πNN coupling, one gets from the
sum of the diagrams in Fig.1 the combination,

tπ0π0→π0π0 + 2tπ0π0→π+π− + 2tπ+π−→π0π0 + 4tπ+π−→π+π− . (1)

Taking into account the unitary normalization of the ππ states of Ref. [16],

|ππ, I = 0〉 = − 1√
6
|π0π0 + π+π− + π−π+〉, (2)

the combination of t-matrices in Eq. (1) corresponds, in terms of the isoscalar ππ
amplitude, to

6t(I=0)
ππ→ππ. (3)

We should note here that all the pion lines in Fig. 1 are off shell, which requires the
use of the off shell t-matrix. From Ref. [16] this off shell amplitude obtained from
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Figure 1: The lowest-order processes in the ππ interaction in the scalar isoscalar
channel for pp→pp

the lowest order meson-meson Lagrangian is given by

t(I=0,L)
ππ→ππ = − 1

9f 2

(
9s +

15m2
π

2
− 3

∑

i

p2
i

)
, (4)

where f is the pion decay constant (f = 93 MeV), s is the ππ Mandelstam variable,
and the pi are the momenta of the pion lines. We define the on-shell value of the
amplitude as that of Eq. (4) when p2

i = m2
π. This allows us to write in a convenient

way

t(I=0,L)
ππ→ππ = t(I=0,L,OS)

ππ→ππ +
1

3f 2

∑

i

(p2
i − m2

π), (5)

with the on shell value of the amplitude

t(I=0,L,OS)
ππ→ππ = − 1

f 2

(
s − m2

π

2

)
. (6)

In what follows we prove that the off shell contribution of the amplitude, i.e.,
the terms proportional to p2

i − m2
π, cancels exactly with the diagrams of Fig. 2,
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Figure 2: The processes with three meson vertex at a baryon line for pp → pp.

which appear at the same order of the chiral counting. The diagrams of Fig. 2
contain the vertices with one baryon line and three mesons. The baryon-meson chiral
Lagrangian relates this function to that with one meson attached to the baryon line.
This interaction term is given by [19]

L(B)
1 =

D + F

2
(p̄γµγ5u

11
µ p + n̄γµγ5u

22
µ n + n̄γµγ5u

21
µ p + p̄γµγ5u

12
µ n) (7)

where p and n represent the proton or neutron fields. In Eq. (7) uµ is the SU(2)
matrix given by

uµ = −
√

2

f
∂µΦ +

√
2

12f 3
(∂µΦΦ2 − 2Φ∂µΦΦ + Φ2∂µΦ), (8)

and Φ is the SU(2) matrix for the pions given by

Φ =

( 1√
2
π0 π+

π− − 1√
2
π0

)
. (9)

Equation(7), with the first term of uµ in Eq. (8) gives rise to the πNN coupling,
which in the nonrelativistic reduction, γµγ5 → σkδµk, reads

−itπiNN = Ci
D + F

2f
~σ · ~p,

Cπ+ = Cπ− =
√

2; Cπ0pp = 1; Cπ0nn = −1 (10)
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Figure 3: Diagrams involving the three pion vertex. The figure displays the coeffi-
cient which multiplies D+F

2f
~σ~p for each three pion vertex.

for incoming pion with momentum ~p.
The second term in the expansion of uµ gives rise to the three pion vertices and

involves derivatives in the three pion fields. However, given the fact that the πNN
vertex in the loops with meson momentum p of Fig. 2 contain the p-wave coupling
~σ~p, only the term which involves the derivative in the pion with momentum p, which
will give rise to another ~σ~p vertex, will contribute in the loop integration. In Fig. 3
we show the diagrams corresponding to the loop in Fig. 2(a) for the different isospin
combinations of Fig. 1, together with the contribution of the three meson vertex to
each diagram.

If one sums the contributions of all the diagrams in Fig. 3 including the isospin
weight of the πNN vertices one obtains an equivalent three pion vertex,

− it3π ≡ 1

3f 2

D + F

2f
~σ · ~p (2 + 2 + 2) =

6

3f 2

D + F

2f
~σ · ~p. (11)

Now let q be the momentum exchanged between the protons and let us evaluate
the diagrams of Fig. 1 with the off shell part of the meson-meson vertex and the
diagrams of Fig. 3. We present them in Fig. 4 with the appropriate momentum
assignment.

The loops to the right in both diagrams of the figure are the same. Hence, we
concentrate only on the loop of the left. Let us pick up the term ((p+q)2−m2

π)/3f 2
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Figure 4: Diagrams where off-shell cancellations appear. Diagram (A) with the off
shell part of the π π amplitude from the line p + q cancels diagram (B).

of the meson-meson vertex, which provides the off shell contribution of the left top
meson in diagram (A). We then get

V (A) = i

(
D + F

2f

)2 ∫ d4p

(2π)4
~σ · (~p + ~q)~σ · ~p 6

1

3f 2
[(p + q)2 − m2

π]
1

p2 − m2
π + iǫ

1

(p + q)2 − m2
π + iǫ

M

E(~p1 + ~p)

1

p0
1 + p0 − E(~p1 + ~p) + iǫ

, (12)

with M and E the mass and on shell energy of the nucleon. Similarly, we obtain
the contribution from the loop on the left in diagram (B),

V (B) = −i

(
D + F

2f

)2 ∫
d4p

(2π)4
~σ · ~p ~σ · ~p 6

1

3f 2

1

p2 − mπ2 + iǫ

M

E(~p1 + ~p)

1

p0
1 + p0 − E(~p1 + ~p) + iǫ

. (13)

In Eq. (12) one can see a cancellation of the off-shell part of the meson-meson vertex
with the corresponding meson propagator. The rest of the integrand only contains q
in the term ~σ · ~q ~σ · ~p. This term vanishes exactly in the limit ~p1 → 0, or in any case
if one makes the heavy baryon approximation p1

0 −E(~p1 + ~p) = 0. (The corrections
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are of order (~p1/M)2, which we can neglect.) We shall evaluate the NN potential
for ~p1 = 0 for simplicity. With the ~σ · ~q ~σ · ~p term of Eq. (12) vanishing, we observe
that V (A) and V (B) are equal but with opposite sign, and hence there is an exact
cancellation of these two terms.

If now we take the off shell part of the meson vertex corresponding to the other
mesons we would observe an exact cancellation with the diagrams (b)-(d) of Fig.
2. This is interesting for practical purposes since it means at the end that we
must evaluate only the diagrams of Fig. 1 and using only the on-shell value of the
meson-meson vertex.

The need to include this subset of chiral diagrams to find cancellations in the
NN isoscalar interaction was already stressed in Ref. [9]. There, different arguments
were used, recalling that in the expansion of the pion field matrix U(~π), the third
order term has ambiguities and the result cannot depend upon them. The on-
shell amplitude does not depend on these ambiguities, so here we also prove that,
after summing the terms discussed above, the results do not depend on unknown
parameters which would affect the off shell meson-meson amplitude.

The derivation here is particularly useful for our purposes, since in Ref. 16) it
was also shown that in the construction of the full meson-meson amplitude, only
the on-shell part of the meson-meson vertex was needed. This allows us to sum
immediately the set of diagrams that were included in the unitary Bethe-Salpeter
approach to the scalar meson amplitude and, hence, in the NN interaction we would
have the set of diagrams shown in Fig. 5.

Figure 5: The nucleon-nucleon interaction in the scalar-isoscalar channel, where the
ππ scattering t-matrix is summed up to all orders in the unitary approach.
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3 Unitary approach for the interacting pions in

the isoscalar chnnel

The diagrams of Fig. 5 are easily summed up. First one must substitute the
on-shell lowest-order meson-meson amplitude of Eq. (6) with the Bethe-Salpeter
amplitude, [16]

t(I=0)
ππ→ππ = − 1

f 2

(s − mπ
2

2
)

1 + 1
f2 (s − mπ

2

2
)G(s)

. (14)

The function G(s) is the loop function with two pion propagators,

G(s) = i
∫

d4q

(2π)4
1

q2 − mπ
2 + iǫ

1

(P − q)2 − mπ
2 + iǫ

, (15)

where P is the total momentum of the two-pion system and P 2 = s. In Ref. [16]
the integral in Eq. (15) was regularized with a cut-off in the CM frame of the two
mesons. Here it is better to work in the CM of the two nucleons, and hence an
invariant form for G(s) is preferable. This can be done by using the results for G(s)
obtained with dimensional regularization, which are shown in Appendix A of Ref.
[20] to be equivalent to those of a cut-off. We then have

G(s) =
1

(4π)2

[
−1 + ln

mπ
2

µ2
+ σ ln

σ + 1

σ − 1

]
, (16)

with µ the regularization mass, which was found to be µ = 1.2qmax = 1.1 GeV for
the value of the cutoff, qmax, needed for a good fit to the data with the B-S equation
and the lowest order χPT as the kernel of the equation. In Eq. (16) the magnitude
of σ is

σ =

√

1 − 4mπ
2

s
, (17)

In the range 0 < s < 4mπ
2, one has an analytical extrapolation which leads to

σ ln
σ + 1

σ − 1
→ (π − 2α)

√
4mπ

2

s
− 1; α = arctan

√
4mπ

2

s
− 1, (18)

and for s > 4mπ
2 the log of Eq. (16) develops a negative imaginary part. For s < 0,

σ is always larger than 1, and the log term behaves smoothly.
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Figure 6: The nucleon-nucleon interaction with the two-pion nucleon vertex in the
isoscalar channel.

We would also like to note that at the same order as calculated in this section
there are other pieces, like in Fig. 6. The BBMM contact term is proportional to
γµτa, which implies vector and iso-vector exchange in the t channel, and hence we
do not have to consider it for the isoscalar exchange channel we are concerned with
here.

In the NN CM frame we have the momentum q exchanged between the nucleons
with q ≡ (0, ~q), such that s = −~q 2. The NN potential corresponding to the isoscalar
2π exchange of Fig. 5 then becomes

tNN (q) = Ṽ 2
N(q)

6

f 2

(~q 2 + mπ
2

2
)

1 − G(−~q 2) 1
f2 (~q 2 + mπ

2

2
)
. (19)

Here Ṽ (q) is the vertex corresponding to the triangle loop to the left in Fig. 4, which
in the limit ~p1 → 0 can be written as

ṼN(q) = i
∫

d4p

(2π)4

(
D + F

2f

)2

~σ · (~p + ~q)~σ · ~p 1

p2 − mπ
2 + iǫ

1

(p + q)2 − mπ
2 + iǫ

M

E(~p)

1

M + p0 − E(~p) + iǫ
. (20)

With the sums over the spins of the intermediate nucleon in the loop we have
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Figure 7: The two pion exchange triangle vertex through delta excitation.

~σ · (~p + ~q)~σ · ~p = (~p + ~q) · ~p + (~q × ~p) · ~σ, (21)

but the integral over ~p in Eq. (20) leads to a vector proportional to ~q, which makes
the term with ~σ of Eq. (21) vanish in the integral. Furthermore, the p0 integration
in Eq. (20) can be done analytically, and one finds

ṼN(q) =
∫

d3p

(2π)3

(
D + F

2f

)2

(~p 2 + ~p · ~q)M
E

1

2

1

ω

1

ω′

1

ω + ω′

1

E + ω − M

1

E + ω′ − M
[ω + ω′ + E − M ], (22)

with

E = E(~p); ω =
√

mπ
2 + ~p 2; ω′ =

√
mπ

2 + (~p + ~q) 2, (23)

The integral in Eq. (22) is logarithmically divergent.
It is straighforward to include the contribution with an intermediate ∆ instead

of a nucleon in the vertex function, as depicted in Fig. 7. It can be evaluated in
a straighforward way, substituting SiTj for σiτj with S and T the spin and isospin
transition operators.

11



The inclusion of the ∆ in the fermionic loops is required in order to satisfy the
basic rules in the large Nc limit, [21] and we include it here. We obtain

Ṽ∆(q) =
4

9

(
f ∗

πN∆

fπNN

)2 ∫
d3p

(2π)3

(
D + F

2f

)2

(~p 2 + ~p · ~q)M∆

E∆

1

2

1

ω

1

ω′

1

ω + ω′

1

E∆ + ω − M

1

E∆ + ω′ − M
[ω + ω′ + E∆ − M ], (24)

with M∆ the ∆ mass and E∆ = (M∆
2 + ~p 2)1/2. We take the empirical value for the

ratio of the couplings f ∗
πN∆ to fπNN as 2.12 .

The integral of Eq. (24) is also logarithmically divergent. In order to regularize
the integrals of Eqs. (22) and (24), one needs a cutoff or a form factor. Within
a quark model one finds natural form factors due to the finite size of the nucleon,
but one must still sum over excited states of the quarks in the intermediate states,
which leads to a divergence in spite of the form factors. [22] The regularization of
the loop in this case can be accomplished by a cutoff in the space of intermediate
states, together with a form factor. The truncation at ∆, together with the use
of monopole form factors with Λ of order 1 GeV has been found to be a sensible
regularization procedure, as proved by the success of such an approach in the cloudy
bag model. [23] We shall use here static form factors to keep the p0 integral of Eq.
(20) simple, and hence we include in the integrand of Eqs. (22) and (24) the product
of form factors

F (~p)F (~p + ~q) =
Λ2

Λ2 + ~p 2

Λ2

Λ2 + (~p + ~q) 2
, (25)

with Λ ≈ 1 − 1.2 GeV. [1]
Our final form for the NN potential in momentum space is thus given by

tNN(q) = Ṽ (q)
2 6

f 2

(~q 2 + mπ
2

2
)

1 − G(−~q 2) 1
f2 (~q 2 + mπ

2

2
)
, (26)

with

Ṽ (q) = ṼN(q) + Ṽ∆(q). (27)
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Here ṼN(q) and Ṽ∆(q) are given by Eqs. (22) and (24) incorporating in the integrand
the product F (~p)F (~p+~q) of Eq. (25). The potential in coordinate space is given by

V
(S)
NN(r) =

∫
d3q

(2π)3
ei~q~rtNN (q)

=
1

2π2

1

r

∫ ∞

0
qdq sin(qr)tNN(q). (28)

We would like to compare V
(S)
NN(r) with the empirical σ exchange given by

V
(σ)
NN(r) =

∫
d3q

(2π)3
ei~q~r g2

σNN

−~q 2 − mσ
2

= −g2
σNN

4π

e−mσr

r
, (29)

with

gσNN
2

4π
= 5.69; gσNN = 8.46, (30)

from Ref. [1]. This corresponds to the empirical σ exchange when the two pion box
diagrams with the intermediate ∆ are considered in addition.

Actually, in Ref. [1] a monopole form factor per vertex with Λσ = 1.7 GeV is
also included so that

V
(σ)
NN(q) = −g2

σNN

(
Λ2

σ − m2
σ

Λ2
σ + ~q 2

)2
1

m2
σ + ~q 2

, (31)

which leads to the potential in coordinate space

V
(σ)
NN(r) =

1

4π
g2

σNN

{
1

r
e−Λσr +

Λ2
σ − m2

σ

2Λσ
e−Λσr − 1

r
e−mσr

}
, (32)

with the same asymptotic behaviour as Eq. (29) at large distances and the finite
limit −(Λσ − mσ)2/2Λσ for r → 0.
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4 Qualitative discussion of the potential

Let us go back to Eq. (14) in the physical region. We know from Ref. [16] that the
isoscalar amplitude develops a pole around 450 − i225 MeV. Let us neglect for this
study ImG(s) and rewrite Eq. (14) as

t(I=0)
ππ→ππ =

−G(s)−1(s − mπ
2

2
)

s − (mπ
2

2
− f 2G(s)−1)

, (33)

so that

mπ
2

2
− f 2G(s)−1 ≃ mσ

2; G(s)−1 =
1

f 2
(
mπ

2

2
− mσ

2). (34)

Assuming now that G(s)−1 is a smooth function of s and Ṽ (q) is a smooth function
of q, we would have

tNN(q) ≃ Ṽ (0)
2 6

f 2

(mσ
2 − mπ

2

2
)(~q 2 + mπ

2

2
)

~q 2 + mσ
2

= Ṽ (0)
2 6(mσ

2 − mπ
2

2
)

f 2

(~q 2 + mσ
2) − (mσ

2 − mπ
2

2
)

~q 2 + mσ
2

. (35)

We see that the first term in the numerator of the second fraction gives rise to
a repulsive δ function in coordinate space, while the second term gives rise to an
attractive potential due to a standard σ exchange with the equivalent coupling

gσNN ≃ Ṽ (0)
√

6
(mσ

2 − mπ
2

2
)

f
(36)

With the value Ṽ (0) ≃ 0.10 × 10−2 MeV−1 that we obtain, as we shall see, the
σNN coupling would be of the order of gσNN ≃ 5, which has the right order of
magnitude, compared with the empirical coupling used in Ref. [1] to provide the
needed intermediate range attraction, gσNN ≃ 8.5.

This qualitative study is certainly improved by the accurate results which we
give in the next section, but it serves to illustrate the features which we can expect
from such a potential. The interesting thing is that, apart from the intermediate
attraction, one gets a scalar repulsion, which is also demanded by the NN scattering
data.
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5 Results and discussion

The qualitative discussion of §4 relies on the constancy of the G(s) function of
Eq. (16). This function is rather smooth and is negative in the range of momenta
of interest. For s = 450 MeV2 it is about −0.02, and in the range of s from 0
to −500 MeV2 it varies between −0.02 and −0.015 . The function Ṽ (q) changes
slightly faster and drops by a factor of 2 as q varies from 0 to 550 MeV. Hence the
qualitative results of that section are only indicative of the actual numerical results.
We performed the calculations using a value of Λ for the monopole form factors of
Eq. (25) of 1.1 GeV.

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

V(q) [GeV   ]
~ -1

q [MeV]

Figure 8: The vertex function Ṽ (q) as a function of momentum q.

In Fig. 8 we give the results for the vertex function, which display a moderate but
steady decrease of the vertex with q. This ensures convergence of the integral of Eq.
(28) for V (r). At this point we note already some discrepency with Ref. [9], where

15



no form factors were used in the evaluation of the vertex function. The divergences
obtained there led to singularities at short distances which were disregarded, since
only the peripheral NN partial waves were investigated there. In the present case,
both the q dependence of the form factor and the extra denominator in Eq. (26)
from the iteration of unitary loops, which produces the sigma resonance, improve
the convergence properties of the integral of Eq. (28). The function tNN(q) of Eq.

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

0 0 . 5 1 1 . 5 2 2 . 5

t    (q) [GeV   ]NN
-2

q[GeV]

Figure 9: The function tNN .

(26) is plotted in Fig. 9. It exhibits an increase from 0 to about 500 MeV and then
drops as q increases further. For q around 2 GeV, it has a value about 250 times
smaller than at the maximum.

We should caution that the unitary theory used here leads to good results in
the physical region up to about

√
s = 1.2 GeV. It is then clear that one should not

extrapolate the results of the model in the unphysical region to values of q much
larger than 1 GeV. In this sense, the form factors in the πNN vertices with lambda

16
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Figure 10: The NN potential in coordinate space

of order 1 GeV guarantee that one does not enter into this unknown region. In any
case, the uncertainties for these large values of q would revert into uncertainties at
short distances in V (r), which we certainly must admit. Technically, the function
tNN(q) of Eq. (26) develops a pole around 2060 MeV, far away from the region
of validity of the model used, and to which we do not give any physical meaning.
This is anyway a warning that we should not attempt to investigate the behaviour
of the potential at very short distances with the present model. The numerical
integrations are extended up to 2 GeV in the actual calculations. The predictions
for V (r) beyond r = 0.5 fm should be rather safe.

In Fig. 10 we show the results for V (r). We find interesting behaviour with a
moderate attraction beyond r = 0.9 fm and a repulsion at shorter distances, which
become of order 1 GeV at very short distances, with the caveat discussed above.
Around 0.5 fm it has a value of around 200 MeV. The trend of the results agrees with
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the qualitative results anticipated in §4. The first thing to note is that these results
are quite different qualitatively from those of the conventional sigma exchange, where
there is only attraction, according to Eq. (32). They also differ appreciably from
those of Ref. [9] where a very weak repulsion is obtained in the region where we
find an attraction here (the attraction of the order of eV found numerically at larger
distances in Ref.9 is not significative). This finding is relevant since it shows that
even for large distances, which is the focus of Ref. [9], one needs to go beyond
perturbation theory in the ππ interaction in order to determine the behaviour of
the potential. A study of the behaviour of V (r) around 2.5 fm reveals Yukawa
behaviour with mσ around 450 MeV and a coupling gσNN of about 8, in rough
agreement with the results of the qualitative discussion of §4, demonstrating that
the sigma pole appearing in the physical region shows up indeed in the potential
at large distances. Yet, the presence of the sigma pole is not the only element
responsible for the behaviour of the potential seen in Fig. 10. Indeed, if we replace
the denominator of Eq. (26) by unity, thus removing the sigma pole, we still find
structure of the potential similar to that in Fig. 10, with the attraction appearing
at shorter distances beyond r = 0.85 fm. The strength of the attraction is larger
and also falls off faster with increasing r, indicating that the range is now given by
other q-dependent functions. In this case, the vertex function and its q dependence
are responsible for that behaviour and for the differences with the results of Ref.
[9]. Both the vertex function and the unitary approach to the ππ interaction are
thus very important for the isoscalar potential and for determining its strength in
all ranges of distances. Note that the phenomenological form factor that we assume
modulates the structure of the vertex. It not only affects the vertex at large q,
in which case only the short range part of the interaction would be modified, but
it also modifies the strength of the vertex at finite q, and this also has influence
in the medium and long range parts of the interaction. For similar reasons, the
unitarization changes the q dependence, but more importantly it introduces a pole
in the s channel, which is reflected in the t channel by a distinct tail in r that goes
roughly as e−mσr/r.

The evaluation of the vertex function here has been done using elements of phe-
nomenology, beyond the chiral approach otherwise used. In this sense the monopole
form factors were used and the space of intermediate baryon states was truncated
in the delta. Other more realistic options could be used, maybe even using form
factors obtained within the chiral approach in some self-consistent way. For the time
being we should admit uncertainties from this source.These uncertainties should not
be minimized since the results depend appreciably on the choice of the range pa-
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rameters. For instance a change of lambda from 1.1 GeV to 1.2 GeV changes the
attraction from 10 to 15 MeV. A different vertex evaluation, in which an explicit
contribution of states beyond the delta in the intermediate states is allowed, as in
Ref. [22] would also lead to different q behaviour of the vertex function, with imme-
diate results in the potential in coordinate space. The regularization procedure can
be done in many ways. In chiral perturbation, it requires a regularization scheme by
means of a regularization scale or a cut-off, but at the same time one has to intro-
duce counter-terms of higher order. In the case of the meson-meson interactions, it
is proved in Ref. [17] and [20] that a cut-off, or equivalently dimensional regulariza-
tion at a certain scale, effectively generates the counter-terms in the meson-meson
s-wave channel. For the vertex functions, which we generate here, such a procedure
is not yet available. In Ref. [8] and [9], infinities in the vertex function are removed
with the claim that this removal affects only the short range part of the interaction.
In our case we have resorted to phenomenology using an empirical πNN form factor
which makes the loop function convergent. The fact that with this procedure we
find an assymptotic behavior for the potential similar to the empirical σ potential
gives us confidence that this “empirical” regularization in the baryon sector is a
reasonable procedure.

In any case, given all the limitations which have been discussed above, we can
not make strong claims about the strength of this σ potential, but we certainly
can stress the qualitative features, which are rather different from the conventional
results for sigma exchange and from results obtained in the perturbative approach
to the problem.

6 Conclusions

We have evaluated the contribution to the NN potential from the exchange of an
interacting pion pair in the scalar-isoscalar channel, the sigma channel. We have
used a unitary model based upon the lowest order chiral Lagrangian and the Bethe-
Salpeter equation. This model is supported by a more elaborate approach using
the inverse amplitude method and the lowest and second order chiral Lagrangians,
but technically simpler. Both approaches generate a sigma pole around 450 MeV,
although with a large width. The ππ amplitude extrapolated to negative values of s,
retains memory of the sigma pole and leads to a tail of the NN potential reflecting
a Yukawa behaviour with the range of the sigma mass. We obtain some moderate
attraction beyond 0.9 fm and a stronger repulsion before that. This behaviour is
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quite different from that of the conventional sigma exchange, which always leads to
an attractive force, even in the presence of form factors for the σNN vertices.

We have also found that the procedure chosen to regularize the σNN vertex
function also has important consequences for the potential. We have chosen to
introduce phenomenological form factors for the πNN vertices and to restrict the
space of baryon intermediate states in the loop to the nucleon and the delta, a
procedure which has been often used in related problems in connection with chiral
quark models. The results are sensitive to the form factors and the manner in
which the vertex is constructed. This is one of the problems that requires further
thought. For the moment, we should accept one degree of freedom due to the
divergence of the vertex loop, which must be cured with some regularization mass,
a counterterm, the use of a form factor, etc. We can hope to reduce the freedom
by using some empirical information, as in the present case . Hence we believe our
results are qualitatively acceptable in the range of distance beyond 0.5 fm, and more
quantitatively accurate results. The findings of this paper are important because
they reveal behaviour that is quite different from that which one gets from the
conventional sigma exchange picture. On the other hand, it is also known that a
nonperturbative approach to the ππ interaction is needed, and such an approach
should be important for obtaining proper results in the whole range of distances in
the NN interaction. These findings should thus have important consequences in the
chiral approach to the NN interaction, which is now the subject of much theoretical
investigation.
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