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Abstract

“A mathematician is a machine for converting coffee
into theorems.”

— Alfred Rényi

The main point of interest of this thesis is to study extensions of
the Bishop-Phelps theorem and Bishop-Phelps-Bollobás theorem to dif-
ferent contexts. This thesis is divided into three chapters. In the first
one we do a summary of the state of the art about norm attaining linear
forms and we introduce the Bishop-Phelps and Bishop-Phelps-Bollobás
Theorems.

The second chapter is devoted to the study of operator versions of
Bishop-Phelps and Bishop-Phelps-Bollobás Theorems. In Section 2.2 we
will study the extension of these results to the operator case from the
point of view of attaining the numerical radius to conclude in Section
2.3.1 that the space L1 satisfy the Bishop-Phelps-Bollobás Property for
Numerical Radius. To finish, we will present the Lindenstrauss’ result
about norm attaining extensions of operator, which will be the motiva-
tion of our study from Section 3.2 to Section 3.6 in the next chapter.

In the third chapter, we extend the theory of norm attaining line-
ar forms to the non-linear case. Focusing on the line of work initia-
ted by Lindenstrauss, our main point of interest is to study whether
the extensions of multilinear maps to the bidual are norm attaining,
with special interest on multilinear forms over the space ℓ1, see Sec-



tions 3.4 and 3.5. To finish, in Section 3.6 we will study the depen-
dence of the Lindenstrauss-Bollobás Theorems introduced by Carando,
Lassalle and Mazzitelli in [CLM12], Definition 3.6.1, and the n-linear
version of Bishop-Phelps-Bollobás Theorem for spaces M -embedded or
L-embedded in the bidual.
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Resumen

“Un matemático es una máquina para convertir café en
teoremas.”

— Alfred Rényi

El principal punto de interés de esta tesis es el estudio de extensiones
de los teoremas de Bishop-Phelps y Bishop-Phelps-Bollobás a diferentes
contextos. Esta tesis se divide en tres capítulos. En el primero hacemos
un repaso de la teoría de funcionales que alcanzan la norma. En este
resumen introducimos el Teorema de Bishop-Phelps y el Teorema de
Bishop-Phelps-Bollobás.

El segundo capítulo está dedicado al estudio de extensiones de los
resultados de Bishop-Phelps y Bishop-Phelps-Bollobás al caso de ope-
radores. En la sección 2.2 estudiaremos la extensión de estos resultados
al caso de operadores desde el punto de vista de alcanzar el radio nu-
mérico, para concluir en la sección 2.3.1 que el espacio L1 satisface la
Propiedad de Bishop-Phelps-Bollobás para el Radio Numérico. Conclui-
mos esta sección presentando el resultado de Lindenstrauss que establece
que el conjunto de operadores cuya extensión al bidual alcanza la nor-
ma es denso. Este resultado es la motivación de nuestro estudio en las
secciones 3.2 - 3.6 del próximo capítulo.

En el tercer capítulo, extendemos la teoría de formas lineales que
alcanzan la norma al caso no lineal. Motivados por la línea de traba-
jo iniciada por Lindenstrauss, nuestro principal interés es estudiar el



comportamiento de las extensiones al bidual de funciones multilineales
desde el punto de vista de alcanzar la norma. En particular nos cen-
tramos en el estudio de las extensiones de formas multilineales sobre el
espacio ℓ1, véanse las secciones 3.4 y 3.5. Para finalizar, en la sección 3.6
estudiaremos la relación entre los teoremas de Lindenstrauss-Bollobás
introducidos por Carando, Lassalle y Mazzitelli en [CLM12], Definición
3.6.1, y la versión n-lineal del Teorema de Bishop-Phelps-Bollobás para
espacios M -embedded o L-embedded en su bidual.
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Resum

“Un matemàtic és una màquina per convertir cafè en
teoremes.”

— Alfred Rényi

El principal punt d’interés d’aquesta tesi és l’estudi d’extensions dels
teoremes de Bishop-Phelps i Bishop-Phelps-Bollobás a diferents contex-
tos. Aquesta tesi es divideix en tres capítols. En el primer fem un repàs
de la teoria de formes lineals que alcancen la norma. En aquest resum
introduïm el Teorema de Bishop-Phelps i el Teorema Bishop-Phelps-
Bollobás.

El segon capítol està dedicat a l’estudi d’extensions dels resultats de
Bishop-Phelps i Bishop-Phelps-Bollobás al cas d’operadors. A la secció
2.2 estudiarem l’extensió d’aquests resultats al cas d’operadors des del
punt de vista d’alcançar el radi numèric, per a concloure a la secció
2.3.1 que l’espai L1 verifica la Propietat de Bishop-Phelps-Bollobás per
al Radi Numèric. Concluïm aquesta secció presentant el resultat de
Lindenstrauss el cual estableix que el conjunt d’operadors verificant que
la seva extensió al bidual alcança la norma és dens. Aquest resultat és
la motivació del nostre estudi a les seccions 3.2 - 3.6 del pròxim capítol.

En el tercer capítol, extenem la teoria de formes lineals que alcancen
la norma al cas no lineal. Motivats per la línia de treball iniciada per
Lindenstrauss, el nostre principal interés és estudiar el comportament
de les extensions al bidual de funcions multilineals des del punt de vis-



ta d’alcançar la norma. En particular ens centrem en l’estudi de les
extensions de les formes multilineals sobre l’espai ℓ1, com podeu com-
provar a les seccions 3.4 y 3.5. Per finalitzar, a la secció 3.6 estudiarem
la relació entre els teoremes de Lindenstrauss-Bollobás introduïts per
Carando, Lassalle i Mazzitelli a [CLM12], Definició 3.6.1, i la versió n-
lineal del Teorema de Bishop-Phelps-Bollobás per a espais M -embedded
o L-embedded en el seu bidual.
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Chapter 1

Norm attaining linear forms

“Begin at the beginning," the King said gravely, “and go
on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

1.1 Introduction

This thesis is devoted to the study of norm attaining polynomials and
multilinear maps on Banach spaces.

In this section we set forth the basic definitions and present the
classical results of the norm attaining theory of functionals on Banach
spaces and some of its important consequences. Also, here we present
some of the classical results of the geometry of Banach spaces that are
relevant for our purposes.

In this context, X denotes a real or complex Banach space and BX ,
SX denote respectively the closed unit ball and the unit sphere of the
Banach space X. X∗ and X∗∗ stand for the topological dual and the
bidual space respectively. As usual we denote the sign of a real or

1



Chapter 1. Norm attaining linear forms

complex number by

sign(z) =


z

|z|
if z ̸= 0,

0 if z = 0.

First of all we recall that the definition of norm of a linear and
continuous form f defined on X is

∥f∥ = sup
x∈BX

|f(x)|. (1.1)

Naturally one can ask whether this supremum can be changed by
a maximum, or equivalently whether there exists x ∈ BX with f(x) =
∥f∥. If this is the case, we say that the linear form f attains its norm,
or f is norm attaining. From a geometric point of view, a linear and
continuous form f attains its norm means that the intersection of the
affine hyperplane {x ∈ X : f(x) = 1} and the closed unit ball of X is
non-empty.

(0, 0)

f(x) = 1

BX

x0

Figure 1.1 Norm attaining linear bounded form.

We will denote by NA(X) the set of norm attaining linear and con-
tinuous forms on X.
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1.1 Introduction

Note that for the case where X is a finite dimensional space the
Weierstrass Theorem and the Heine-Borel theorem tell us that every
linear continuous form attains its norm. Therefore, from now on, we
will consider only infinite dimensional Banach spaces, unless otherwise
specified. In general we will be dealing with real Banach spaces, but
some of the results can also be applied to complex Banach spaces. If
this is the case we will indicate that the result holds for real and complex
Banach spaces.

Definition 1.1.1 (Extreme point). An extreme point of a convex set,
C, is a point x ∈ C with the property that if x = ωy + (1 − ω)z with
y, z ∈ C and ω ∈ [0, 1], then y = x and/or z = x.

In other words, an extreme point is a point that is not an interior
point of any line segment lying entirely in C. Then, by the convexity of
the closed unit ball, if for a Banach space X the set of extreme points
of BX is non-empty and the unit ball is the convex hull of its extreme
points, we have that all the norm attaining forms of X attain their
norm at extreme points. In particular, for dual Banach spaces X∗, by
the Krein-Milman Theorem, BX∗ is the convex hull of its extreme points.
Hence the norm of the functionals is the supremum of the modulus of
the image of the functional over the extreme points.

Naturally the idea of attaining the norm can be generalized if we
consider a locally convex space and we substitute the closed unit ball
for any convex subset of the locally convex space. This leads us to the
following definition.

Definition 1.1.2. (Klee, 1958) Let C ⊂ E be a convex subset of a real
locally convex space E: A point x0 in the boundary of C is a support
point if exists f ∈ E∗ such that f(x0) = supx∈C f(x) (and then f is a
support functional).

3



Chapter 1. Norm attaining linear forms

Klee, [Kle58], asked the following question,

Question 1.1.3. Must a bounded closed convex subset C of a Banach
space necessarily have any support point?

In 1927, Hahn introduced the concept of reflexive space. Given a
Banach space X over the field of real or complex numbers K, there is
a natural embedding of the space X in its bidual X∗∗ given as follows:
for any point x ∈ X we define the bounded linear map δx from X∗ to
K by δx(f) = f(x) i.e.,

δ : X ↪→ X∗∗

x ⇝ δx : X → K
f ⇝ δx(f) = f(x).

It is easy to see that this inclusion is in fact a linear isometry and a
Banach space X is called reflexive if this isometry is an onto map. R.
C. James proved the following result.

Theorem 1.1.4 (James). A Banach space X is reflexive if and only if
every linear form attains its norm.

In terms of supporting functionals, as a consequence of the James
Theorem, every linear and continuous form on a reflexive Banach space
is a support functional of the closed unit ball of the space.

However if the space is not reflexive, as a consequence of the James
Theorem, there are bounded linear forms that do not attain their norm.
In fact, it is not hard to find specific examples of non norm attain-
ing linear forms for spaces like the spaces of real or complex absolutely
summable sequences, denoted by ℓ1.

4



1.1 Introduction

Example 1.1.5. Given the real or complex Banach space ℓ1, the linear
and continuous form

f
(
(xi)∞

i=1

)
=

∞∑
i=1

i

i + 1xi

has norm one, but for all point x ∈ Bℓ1 , |f(x)| < 1. Hence f is not
norm attaining.

The first positive result about norm attaining linear forms for gen-
eral Banach spaces is obtained as a consequence of the Hahn-Banach
Theorem.

Theorem 1.1.6 (Hahn-Banach, R-version). Let Y be a subspace of a
real linear space X, and let p be a positively homogeneous sublinear
functional on X. If f is a linear functional on Y such that f(x) ≤ p(x)
for every x ∈ Y , then there exists a linear functional f̃ on X such that
f̃ = f on Y and f̃(x) ≤ p(x) for every x ∈ X.

A function p : X 7→ R on a vector space X is called a positively
homogeneous sublinear functional if for all x, y ∈ X and for all α ∈ R
with α ≥ 0

p(αx) = αp(x) and p(x + y) ≤ p(x) + p(y).

Then, for any real Banach space X, if we fix a point x0 ∈ SX and
we consider Y = span{x0}, the function

f : span{x0} 7→ R
λx0 ⇝ λ,

is bounded by the norm function that is a positively homogeneous sub-
linear function. Therefore, there exists a linear function f̃ ∈ X∗ with
f̃(x) ≤ ∥x∥. Since the function f̃ is linear, we have −f̃(x) = f̃(−x) ≤

5



Chapter 1. Norm attaining linear forms

∥ − x∥ = ∥x∥, hence |f̃(x)| ≤ ∥x∥. Therefore ∥f̃∥ ≤ 1 = |f̃(x0)|, hence
the function f is norm attaining at the point x0.

Corollary 1.1.7 (Hahn-Banach Separation Theorem, R-version). Let
X be a real Banach space and C and D two convex sets with interior of
C, denoted by int(C), being non-empty. If int(C) ∩ D = ∅, then there
exists f ∈ X∗ and there exists a real number c such that f(y) ≥ c > f(x)
for all y in D and for all x in int(C).

C

D
f−1(c)

Figure 1.2 Hahn-Banach Separation Theorem.

An alternative proof of the existence of norm attaining functionals in
real Banach spaces can be obtained using the Hahn-Banach Separation
Theorem with the sets C = BX and S = {x}, where x is any point in
SX .

Now, we can extend this result to the complex case if we consider
seminorms instead of positively homogeneous sublinear functionals.

Definition 1.1.8 (Seminorm). Given a vector space X over the field of
complex numbers C. A seminorm is a function p : X 7→ R such that for
all x, y ∈ X and for all α ∈ C

p(αx) = |α|p(x) and p(x + y) ≤ p(x) + p(y).

6



1.2 The Bishop-Phelps Theorem

Theorem 1.1.9 (Hahn-Banach, C-version). Let Y be a subspace of a
complex linear space X, and let p be a seminorm on X. If f is a linear
functional on Y such that |f(x)| ≤ p(x) for every x ∈ Y , then there
exists a linear functional f̃ on X such that f̃ = f on Y and |f̃(x)| ≤ p(x)
for every x ∈ X.

The proof of the existence of norm attaining linear forms on complex
Banach spaces is analogous to the ones in the case of real Banach spaces.

This answers in the affirmative the question asked by Klee when we
restrict our attention to the unit ball of Banach spaces.

1.2 The Bishop-Phelps Theorem

James Theorem tells us that for a non-reflexive Banach space X the set
of norm attaining linear bounded forms is not X∗ and as a consequence
of the Hahn-Banach Separation Theorem we know that this set is non-
empty. So the following natural question araises

Question 1.2.1. How big is the set of norm attaining linear forms for
an infinite dimensional Banach space?

In 1961 Bishop and Phelps proved what is today known as the
Bishop-Phelps Theorem. Which is one of the most important results in
functional analysis. The Bishop-Phelps Theorem states that every real
or complex Banach space is subreflexive i.e. for every real or complex
Banach space the set of linear and continuous functionals that attain
their norm is norm-dense in its dual space.

Theorem 1.2.2 (Bishop-Phelps, [BP61]). In any real or complex Ba-
nach space X, the linear functionals in X∗ which attain their supremum
on the unit ball of X are norm-dense in X∗.

7



Chapter 1. Norm attaining linear forms

The proof relies on the use of Zorn’s lemma on a certain partial or-
dering, defined by means of a convex cone, to get a point on the bound-
ary of a specific set and then employing the Hahn-Banach Separation
Theorem.

The same proof shows that the result is not only true for the unit
ball of Banach spaces but also for any arbitrary bounded closed convex
subset of a real Banach space, answering in the affirmative the question
posted by Klee for real Banach spaces.

Using similar arguments Ekeland’s Variational Principle and Brønsted-
Rockafellar Principle can be proved.

Recall that if X is a Banach space and f an extended real-valued
function on X, i.e.

f : X 7→ R ∪ {−∞, +∞},

the effective domain of f is the set {x ∈ X : f(x) < +∞}. The
function is called proper if f is not identically +∞ (i.e. the effective
domain is not empty) and it never attains −∞. We say that f is lower
semicontinuous provided {x ∈ X : f(x) ≤ r} is closed in X for every
r ∈ R, and a function f is convex if for every two points x, y ∈ X and
for every t ∈ [0, 1] we have f

(
tx + (1 − t)y

)
≤ tf(x) + (1 − t)f(y).

Theorem 1.2.3 (Ekeland’s Variational Principle, [Phe93]). Let f :
X 7→ R∪ {−∞, +∞} be a proper lower semicontinuous function that is
bounded from below. Let ϵ > 0 and suppose that at a given point x0,

f(x0) ≤ inf
x∈X

f(x) + ϵ.

Then for any λ > 0, there exists z in the domain of f so that:

• λ∥z − x0∥ ≤ f(x0) − f(z),

8



1.2 The Bishop-Phelps Theorem

• ∥z − x0∥ ≤ ϵ/λ,

• λ∥x − z∥ + f(x) > f(z), whenever x ̸= z.

And as a consequence of the Ekeland’s Variational Principle we can
prove the Brønsted-Rockafellar Principle, which studies the differentia-
bility properties of convex functions.

Definition 1.2.4 (Subdifferential). Let f be a proper convex lower
semicontinuous function on X, x an element of the domain of f and
ϵ > 0. For each ϵ define the ϵ-subdifferential ∂ϵf(x) by

∂ϵf(x) = {x∗ ∈ X : x∗(y) − x∗(x) ≤ f(y) − f(x) + ϵ for all y ∈ X}.

For each ϵ > 0 and x in the domain of f , ∂ϵf(x) is non-empty, and
∂ϵf(x) is a weak-star closed set in X∗. As ϵ decreases, so does ∂ϵf(x).
The intersection over ϵ of the nets ∂ϵf(x) is the subdifferential

∂f(x) = {x∗ ∈ X : x∗(y) − x∗(x) ≤ f(y) − f(x) for all y ∈ X}.

Theorem 1.2.5 (Brønsted-Rockafellar Principle, [Phe93]). Assume that
f is a convex proper lower semicontinuous function on X. Given x0 in
the domain of f, ϵ > 0, λ > 0 and any x∗

0 ∈ ∂ϵf(x0), there exist vectors
x in the domain of f and x∗ ∈ ∂f (x) such that ∥x − x0∥ ≤ ϵ/λ and
∥x∗ − x∗

0∥ ≤ λ.

Ekeland’s Variational Principle and Brønsted-Rockafellar Principle
can be used to prove the Bishop-Phelps Theorem. See for instance
[FHH+01] for a proof of Bishop-Phelps Theorem using Ekeland’s Varia-
tional Principle and [Phe93] for a proof of the Theorem using Brønsted-
Rockafellar Principle.

Naturally one can ask about the generalization of this result to the
complex case. As Bishop and Phelps mentioned in their paper,

9



Chapter 1. Norm attaining linear forms

“The theorem mentioned in the title will be proved for
real Banach spaces; the result for complex spaces follows
from this by considering the spaces over the real field and
using the known isometry between complex functionals and
the real functionals defined by their real parts.”

Unfortunately in the complex case this argument only holds for bal-
anced sets (like the unit ball of any Banach space) i.e., sets C ⊂ X such
that αC = C for all complex number α of modulus one.

In 1975 at a conference at Kent State University, Gilles Godefroy
raised the question of whether there is a valid version of the Bishop-
Phelps Theorem in complex spaces.

Question 1.2.6. Suppose that C is a bounded closed convex subset of
a complex Banach space X. Must the functionals f ∈ X∗ which satisfy
sup{|⟨f, y⟩| : y ∈ C} = |⟨f, x⟩| for some x ∈ C be dense in X∗?

As we mentioned before, the proof of Bishop-Phelps Theorem an-
swers this question in affirmative for balanced sets and Phelps proved
in [Phe92] that this is also true for arbitrary bounded closed convex sets
in Banach spaces having the Radon-Nikodým Property, see Definition
2.1.6. But it is not true in general for arbitrary convex sets in complex
Banach spaces.

In fact, Lomonosov gave an example of a closed bounded convex
set with no support points, answering in the negative the questions
proposed by Klee and Godefroy.

For this, Lomonosov uses the algebra of analytic and bounded func-
tions on the open unit disk D, denoted by H∞(D) with the identity func-
tion E and endowed with the supremum norm, ∥f∥ = supz∈D |f(z)|, for
all f ∈ H∞(D). Notice that every point z ∈ D defines a point evaluation
function δz on H∞(D) by

10



1.2 The Bishop-Phelps Theorem

δz : H∞(D) ↪→ C
f ⇝ δz(f) = f(z).

It is known that the space H∞(D) can be identified with the dual
space of some Banach space X in such a way that every element δz is an
element in X. Let S be the convex hull of the elements {δz}z∈D. Then,
Lomonosov proved the following result

Theorem 1.2.7 ([Lom00, Theorem 1]). Suppose that the modulus of the
functional g ∈ H∞(D) attains its maximum on the set S. Then there
exists a complex number α such that g = αE.

Therefore the set of functionals attaining its maximum modulus at
S is a 1-dimensional linear space. Hence, the set of functionals attaining
its maximum modulus at S cannot be dense.

Coming back to the proof of the Bishop-Phelps Theorem, in some
specific spaces the proof of the Bishop-Phelps Theorem can be done
constructively by finding a norm dense set of norm attaining functionals.
Now we present the case of the space ℓ1 and the case of the space c0

that will be of interest for our purposes. Here c0 stands for the spaces
of real or complex sequences converging to zero.

Proposition 1.2.8. The set of norm attaining linear forms in ℓ1 is
dense in ℓ∗

1, and

NA(ℓ1) = {f ∈ ℓ∗
1 : ∃n0 ∈ N such that f(en0) = ∥f∥}.

Proof. Let denote by {ek}∞
k=1 the canonical basis of ℓ1. Given a linear

and continuous form f on ℓ1, we can identify f with a sequence of ℓ∞,
{fn}∞

n=1. Without loss of generality we can assume that f has norm one.
Then, given ϵ > 0, there exists a natural number n0 with |fn0| > 1 − ϵ.
Consider the new linear and continuous form g on ℓ1 defined by

11



Chapter 1. Norm attaining linear forms

gn =


fn, if n ̸= n0,
fn0

|fn0|
, if n = n0.

Then, ∥f − g∥ = |(f − g)(en0)| < ϵ and |g(en0)| =
∣∣∣∣ fn0

|fn0 |

∣∣∣∣ = 1 = ∥g∥,
so g is norm attaining.

For the second part, notice that if f is such that f(en0) = ∥f∥
for some natural number n0, then f attains its norm at en0 . Hence
NA(ℓ1) ⊇ {f ∈ ℓ∗

1 : ∃n0 ∈ N such that f(en0) = ∥f∥}. On the
other hand, if f attains its norm at a point x ∈ Bℓ1 , then ∥f∥ =
| ∑∞

n=1 f(xnen)| ≤ ∑∞
n=1 |f(xnen)| ≤ ∥f∥ ∑∞

n=1 |xn| ≤ ∥f∥. Therefore,
for any n0 with xn0 ̸= 0 we have ∥f∥ = ∥f(en0)∥, which concluded the
proof.

For the case of c0 we can describe the set of norm attaining linear
and continuous forms in the following way.

Proposition 1.2.9.

NA(c0) = {f ∈ c∗
0 : ∃n0 ∈ N such that f(ek) = 0 if k > n0}.

Proof. First we check that

NA(c0) ⊆ {f ∈ c∗
0 : ∃n0 ∈ N such that f(ek) = 0 if k > n0}.

Fix f ∈ NA(c0) of norm one. Then, there exists x ∈ Bc0 such that
f(x) = 1. We will check that for every natural number k with |x(k)| < 1
then f(ek) = 0. Assume this is not the case. Then there exists k0 with
|x(k0)| < 1 and f(ek0) ̸= 0. Let

y(k) =
 x(k) if k ̸= k0

sign(f(ek0)) if k = k0.

12



1.2 The Bishop-Phelps Theorem

Then since x ∈ Bco , y ∈ Bc0 and f(y) = f(x) + (sign(f(ek0)) −
x(k0))f(ek0) > 1 contrary to ∥f∥ = 1. Therefore f(ek) = 0 for all
natural numbers k with |x(k)| < 1 and since x ∈ c0 there exists a
natural number n0 with |x(k)| < 1 for all k > n0. Hence f(ek) = 0 if
k > n0.

The other inclusion holds because the space (Rn0 , ∥ · ∥1) is finite
dimensional, hence its unit ball is compact. Therefore every element of
the dual of (Rn0 , ∥ · ∥1) is norm attaining, hence every element f of ℓ1

with all but a finite number of coordinates zero is norm attaining.

Corollary 1.2.10. The set of norm attaining linear forms in c0 is dense
in c∗

0.

Remark 1.2.11. Notice NA(c0) is an infinite dimensional non-closed
vector space.

Naturally one can ask if the set of norm attaining linear forms con-
tains always a vectorial space structure inside. For instance, does the
set of norm attaining linear forms contain a subspace of finite dimension
greater than one?

In recent years a lot of work has been done about whether the set
of norm attaining linear forms is big in the sense that has a vectorial
space structure. Special attention has been paid to study whether the
set of norm attaining linear forms is lineable or even spaceable. We will
discuss this particular scenario in Section 3.5.

Definition 1.2.12. A subset M of a topological vector space E is said
to be lineable (respectively spaceable) in E if M∪{0} contains an infinite
dimensional space (respectively infinite dimensional closed space).

Bandyopadhyay and Godefroy, [BG06], motivated by proximality
questions, have investigated the spaceability properties of the norm at-
taining functional on a Banach space X using isometric duality theory.

13



Chapter 1. Norm attaining linear forms

To be more specific they show that when a non-reflexive space X en-
joys the Radon-Nikodým Property, see Definition 2.1.6, the set of norm
attaining linear forms is not a linear space. On the other hand, they
also show that for a Banach space whose dual unit ball is weak-star-
sequentially compact, there exists an equivalent norm | · | of X such
that the set of norm attaining linear forms of (X, | · |) is spaceable if and
only if there exists an infinite dimensional quotient space of X which is
isomorphic to a dual space.

Using Definition 1.2.12 we have by Remark 1.2.11 that NA(c0) is
lineable and by the following proposition that the set of norm attaining
linear forms of any dual space is spaceable.

Proposition 1.2.13. For every infinite dimensional Banach space X

with predual X∗ the set of norm attaining linear forms is spaceable.

Proof. Since X is an infinite dimensional Banach space, the predual
X∗ is an infinite dimensional Banach space too. Then, by the Hahn-
Banach Separation Theorem for every x∗ ∈ SX∗ there exists x ∈ SX

such that x(x∗) = ∥x∥ = 1, hence the natural inclusion X∗ ⊆ X∗ give
us X∗ ⊆ NA(X).

As a consequence of Proposition 1.2.13 and Proposition 1.2.9 we get
an elementary proof of the non-existence of the predual of c0.

Corollary 1.2.14. The Banach space c0 does not have predual.

Proof. By Proposition 1.2.13 we only need to show that NA(c0) does not
contain an infinite dimensional Banach space. Assume NA(c0) contains
an infinite dimensional Banach space Y . Hence there exist a sequence
{x∗

nk
}∞

k=0 ⊂ Y such that x∗
nk

(enk
) ̸= 0, x∗

nk
(ej) = 0 for j > nk, ∥x∗

nk
∥ =

1 and {nk}∞
k=1 is a strictly increasing sequence. Define αn1 = 1

4 and
αnk

:= 1
22k min{x∗

ni
(ej) ̸= 0 : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ nk}, and consider

14



1.3 The Bishop-Phelps-Bollobás Theorem

the sequence xr = ∑r
k=1 αnk

x∗
nk

. Then, the sequence {xr}∞
r=1 converges

to the point x = ∑∞
k=1 αnk

x∗
nk

∈ c0, so if Y where closed, x would be an
element of Y . But by the construction, x does not have finite support
since |x(enr)| ≥ ( 1

22r − ∑∞
k=r+1

1
22k )|xnr(enr)| > 0 for all natural number

r. Therefore x /∈ Y which is a contradiction with Y being closed.

1.3 The Bishop-Phelps-Bollobás Theorem

In 1970, motivated by problems related to numerical radius, Bollobás
made a refinement of the Bishop-Phelps Theorem. Bollobás gave a
quantitative version of Theorem 1.2.2 as follows:

Theorem 1.3.1 (Bishop-Phelps-Bollobás, [Bol70]). Given 1
2 > ϵ > 0,

if x0 ∈ X and f ∈ X∗ with ∥x0∥ = ∥f ∗∥ = 1 are such that

|1 − f(x0)| <
ϵ2

2 ,

then there are y0 ∈ X and g ∈ X∗ such that

∥y0∥ = ∥g∥ = g(y0) = 1, ∥y0 − x0∥ < ϵ + ϵ2 and ∥f − g∥ < ϵ.

x0

y0

f(x) = 1 − ϵ2

2

g(x) = 1

0

Figure 1.3 Bishop-Phelps-Bollobás Theorem.
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Chapter 1. Norm attaining linear forms

With this result, Bollobás started the study of simultaneously ap-
proximating both operators and the points at which they almost attain
their norms.

A refinement of this result can be obtained using the Brønsted-
Rockafellar Principle for the indicator function f = δBX

defined by
δBX

(x) = 0 if x is in BX and δBX
= ∞ otherwise, and using ϵ2 instead

of ϵ and ϵ = λ in the theorem.

Theorem 1.3.2. Given 1
2 > ϵ > 0, if x0 ∈ X and f ∈ X∗ with ∥x0∥ =

∥f ∗∥ = 1 are such that

|1 − f(x0)| <
ϵ2

2
then there are y0 ∈ X and g ∈ X∗ such that

∥y0∥ = ∥g∥ = g(y0) = 1, ∥y0 − x0∥ < ϵ and ∥f − g∥ < ϵ.

See [Koz14] for the details of the proof.
Notice that these estimations are optimal in the sense that we can

not lower the bounds obtained.

Theorem 1.3.3 (Bollobás, [Bol70]). For any 0 < ϵ < 1 there exist a
Banach space X, a point x ∈ SX and a functional f ∈ SX∗ such that
f(x) = 1 − (ϵ2/2) but if y ∈ SX , g ∈ SX∗ are such that g(y) = 1 then
either ∥f − g∥ > ϵ or ∥x − y∥ > ϵ.
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Chapter 2

Norm attaining operators

“Math is like love – a simple idea but it can get
complicated.”

— R. Drabek

Once the Bishop-Phelps and Bishop-Phelps-Bollobás results have
been established, it is natural to wonder when we can get a more general
version of these theorems. Here we study the vector valued versions of
these results and the Lindenstrauss’ result.

2.1 Norm attaining operators

If X and Y are Banach spaces we will denote by L(X; Y ) the space
of all linear and continuous operators from X into Y endowed with its
natural norm ∥T∥ = supx∈BX

{∥T (x)∥}. In the particular case of Y = X

we will write L(X) for L(X; X).
At the end of their paper, Bishop and Phelps raised the question of

extending their result to the operators case;

“A possible generalization of this theorem remains open:

17



Chapter 2. Norm attaining operators

Suppose E and F are Banach spaces, and let L(E; F ) be the
Banach space of all continuous linear transformations from
E into F , with the usual norm. For which E and F are those
T such that ∥T∥ = ∥T (x)∥ (for some x in E, ∥x∥ = 1) dense
in L(E; F )?”

This question was answered in the negative two years later by Lin-
denstrauss in [Lin63], where he proved that for certain Banach spaces
X and Y the subset of norm attaining operators from X into Y is not
norm dense in the space of all continuous and linear operators L(X; Y ).
In particular he showed that for a specific renorming ||| · ||| of c0, the
identity map from (c0, ∥ · ∥∞) to (c0, ||| · |||) cannot be approximated by
norm attaining operators.

Nevertheless, there are also remarkable situations in which a Bishop-
Phelps Theorem for operators does hold, such as when the domain space
has the Radon-Nikodým Property, see Definition 2.1.6, [Bou77], or as a
particular case of Lindenstrauss’ result if the space X is reflexive, see
Theorem 2.4.1 below. For the last case, we have that the points where
the set of operators whose extension to the bidual attain their norm in
Lindenstrauss Theorem are points of X. Therefore the set of operators
whose extension attain the norm is the same as the set of norm attaining
operators. Thus a Bishop-Phelps Theorem for operators holds when the
domain space is reflexive.

Motivated by the study of these cases, Lindenstrauss introduced two
properties on a Banach space, called A and B, as follows:

Definition 2.1.1 (Property A). A Banach space X has Property A
if the set of norm attaining operators from X to Y is norm dense in
L(X; Y ) for every Banach space Y .

Some elementary examples of spaces with Property A are finite di-
mensional spaces (because of the compactness of the unit ball), reflexive

18



2.1 Norm attaining operators

spaces and spaces with the Radon-Nikodým Property. In fact by Theo-
rem 2.1.7, a Banach space has the Radon-Nikodým Property if and only
if it has the Property A for every equivalent norm. But for instance c0

and L1(µ) for µ a non-atomic measure are examples of spaces failing
Property A.

Definition 2.1.2 (Property B). A Banach space Y has Property B
if the set of norm attaining operators from X to Y is norm dense in
L(X; Y ) for every Banach space X.

The Bishop-Phelps Theorem tells us that the scalar field of the real
or complex numbers has the Property B.

Motivated by the study of Property A, Schachermayer, [Sch83a], in-
troduced the Property α as a sufficient condition for a Banach space to
have Property A and in the same way Lindenstrauss introduced Prop-
erty β a sufficient condition for a Banach space to have Property B.

Definition 2.1.3 (Property α). A Banach space Y has Property α if
there is a subset {(yi, y∗

i ) : i ∈ I} ⊂ SY × SY ∗ such that

• y∗
i (yi) = 1 for every i ∈ I,

• there is a constant 0 ≤ ρ < 1 such that |y∗
j (yi)| ≤ ρ for every

i, j ∈ I, i ̸= j,

• The set of points {yi : i ∈ I} is a 1-norming set in Y ∗ i.e. ∥y∗∥ =
sup{|y∗(yi)| : i ∈ I} for every y∗ ∈ Y ∗.

Definition 2.1.4 (Property β). A Banach space Y has Property β if
there is a subset {(yi, y∗

i ) : i ∈ I} ⊂ SY × SY ∗ such that

• y∗
i (yi) = 1 for every i ∈ I,

• there is a constant 0 ≤ ρ < 1 such that |y∗
j (yi)| ≤ ρ for every

i, j ∈ I, i ̸= j,
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Chapter 2. Norm attaining operators

• The set of functionals {y∗
i : i ∈ I} is a 1-norming set in Y i.e.

∥y∥ = sup{|y∗
i (y)| : i ∈ I} for every y ∈ Y .

Notice that the only difference between Property α and Property β

is the last condition, but also both properties are related in the sense
that a Banach space has Property α if and only if its dual has Property
β.

An example of a space having Property α is ℓ1 and some examples
of spaces having Property β are c0 and its bidual ℓ∞. For the finite
dimensional case we have that both properties are equivalent and they
are satisfied if and only if the unit ball of the space is a polyhedron i.e.
the finite intersection of closed semispaces.

Coming back to the question posted by Klee, we can try to charac-
terize the Banach spaces that can answer this question in the affirmative
i.e., the Banach spaces that have the Bishop-Phelps Property.

Definition 2.1.5 (Bishop-Phelps Property, [Bou77]). Given a Banach
space X and a subset B of X, we say that B has the Bishop-Phelps Prop-
erty if for every Banach space Y and for every operator T ∈ L(X; Y ),
there exists a sequence of operators {Tn}∞

n=1 ⊂ L(X; Y ) converging to T

in the operator norm, such that, every operator Tn attains its supremum
on B.

We say that a Banach space X has the Bishop-Phelps Property if
every absolutely convex, bounded, closed non-empty subset of X has
the Bishop-Phelps Property.

This definition was made by Bourgain, [Bou77], who used the Radon-
Nikodým Property to characterize the spaces that have the Bishop-
Phelps Property.

Definition 2.1.6 (Radon-Nikodým Property). A Banach space X has
the Radon-Nikodým Property provided for every measure space (Ω, Σ, µ)
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with µ(Ω) < ∞, and every µ-continuous measure F : Σ 7→ X of finite
variation, there exists a Bochner integrable function f : Ω 7→ X such
that F (E) =

∫
E f dµ for every E ∈ Σ.

Theorem 2.1.7 (Bourgain, [Bou77]). Given a real Banach space X,
the following are equivalent

• X has the Bishop-Phelps Property,

• X has the Radon-Nikodým Property.

2.2 The Bishop-Phelps-Bollobás Property
for Operators

Since Lindenstrauss showed that we cannot expect an operator version
of Bishop-Phelps result for all pair of Banach spaces X and Y we cannot
expect either that a generalization of the Bishop-Phelps-Bollobás result
to the operator case will hold in general.

Motivated by this idea, in 2008, Acosta, Aron, García and Maestre
introduced the following property to characterize the pairs of spaces
that satisfy the operator version of Bishop-Phelps-Bollobás Theorem.

Definition 2.2.1 (BPBp ,[AAGM08]). Let X and Y be real or complex
Banach spaces. We say that the pair (X, Y ) satisfies the Bishop-Phelps-
Bollobás Property for operators, BPBp for short, (or that the Bishop-
Phelps-Bollobás Theorem holds for all bounded operators from X to Y )
if given ϵ > 0, there are δ(ϵ) > 0 and β(ϵ) > 0 with limt→0 β(t) = 0
such that for all T ∈ SL(X,Y ), if x ∈ SX with ∥T (x)∥ > 1 − δ(ϵ), then
there exist a point y ∈ SX and an operator G ∈ SL(X,Y ) that satisfy the
following conditions:

• ∥G(y)∥ = 1,
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Chapter 2. Norm attaining operators

• ∥y − x∥ < β(ϵ),

• ∥G − T∥ < ϵ.

In [AAGM08] the authors showed that a necessary and sufficient
condition on Y for the pair (l1, Y ) to satisfy the BPBp is for Y to have
the Approximating Hyperplane Series Property (AHSP ).

Definition 2.2.2 (AHSP , [AAGM08]). A real Banach space X is said
to have the AHSP if for every ϵ > 0 there exists 0 < γ < ϵ such that
for every sequence (xk) ⊆ SX and for every convex series ∑∞

k=1 αk with

∥
∞∑

k=1
αkxk∥ > 1 − γ,

there exist a subset A ⊆ N, a subset {yk : k ∈ A} ⊆ SX , and a certain
g ∈ SX∗ satisfying:

• ∑
k∈A αk > 1 − ϵ,

• ∥xk − yk∥ < ϵ for all k ∈ A,

• g(yk) = 1 for all k ∈ A.

And more recently Aron, Choi, Kim, Lee and Martín, in [ACK+14],
study a Bishop-Phelps-Bollobás version of Lindenstrauss properties A
and B using universal Bishop-Phelps-Bollobás spaces.

Definition 2.2.3 (Universal BPB spaces, [ACK+14]). Let X and Y be
Banach spaces. We say that X is a universal BPB domain space if for
every Banach space Z, the pair (X, Z) has the BPBp with the function
β(ϵ) = ϵ for all ϵ ∈ (0, 1). We say that Y is a universal BPB range
space if for every Banach space Z, the pair (Z, Y ) has the BPBp with
the function β(ϵ) = ϵ for all ϵ ∈ (0, 1).
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For universal BPB domains X the authors show that there exists a
universal function δX(ϵ) such that for every Y , the pair (X, Y ) has the
BPBp with this function.

Theorem 2.2.4 (Aron-Choi-Kim-Lee-Martín, [ACK+14]). If X is a
universal BPB domain space, then there is a function δX : (0, 1) 7→ R+

such that for every Banach space Y , (X, Y ) has the BPBp with δX . In
other words, for every Y , δ(X, Y ) > δX .

And a similar result is obtained when working with range spaces as
can be seen in the following theorem.

Theorem 2.2.5 (Aron-Choi-Kim-Lee-Martín, [ACK+14]). If Y is a
universal BPB range space, then there is a function δY : (0, 1) 7→ R+

such that for every Banach space X, (X, Y ) has the BPBp with δY . In
other words, for every X, δ(X, Y ) > δY .

In 2012, Aron, Choi, García and Maestre, [ACGM11], showed that
an extension of the Bishop-Phelps-Bollobás Theorem holds for all bo-
unded linear operators from L1(µ) into L∞[0, 1], where µ is a σ-finite
measure. The same year Choi and Kim, [CK11], motivated by the
characterization of the BPBp in terms of the AHSP for ℓ1, tried to
extend this characterization to the space L1. They showed that if the
pair (L1(µ), Y ) has the BPBp then Y has the AHSP , and if Y has
the Radon-Nikodým Property then the AHSP is also a sufficient condi-
tion. However the AHSP on Y is not a sufficient condition for the pair
(L1(µ), Y ) to have the BPBp, as Schachermayer showed using the space
of continuous functions on the interval [0, 1], [Sch83b], and the Radon-
Nikodým Property for Y is not always necessary as can be shown by
using the space L∞ and the result of Aron, Choi, García and Maestre,
[ACGM11].
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2.3 The Bishop-Phelps-Bollobás Property
for Numerical Radius

As a particular case, we can consider the situation where the Banach
spaces X and Y are the same i.e., when we consider linear and contin-
uous operator from a Banach space X into itself.

Given an operator T ∈ L(X), the numerical radius of T is defined
by ν(T ) = sup{|f(T (x))| : (x, f) ∈ Π(X)} where Π(X) := {(x, x∗) :
x ∈ X, x∗ ∈ X∗, ∥x∥ = ∥x∗∥ = x∗(x) = 1}. The pairs of elements
(x, f) ∈ Π(X) are usually called states.

Motivated by the study of norm attaining operators initiated by Lin-
denstrauss, Sims asked in his PhD, [Sim72], whether the set of numerical
radius attaining operators is dense in the space of all continuous linear
operators on a Banach space. Twenty years later, in 1992, Payá, [Pay92]
gave a counterexample to this question using the renorming of c0 of the
example of Lindenstrauss (as suggested by Cardassi in [Car85c]). Also,
another counterexample was given the same year by Acosta, Aguirre and
Payá in [AAP92] using the space X = ℓ2 ⊕∞ G, where G is a Gowers’
space.

Nonetheless, the study of denseness of numerical radius attaining
operators has been investigated in parallel to the study of norm attain-
ing operators and many positive results have been found in this direc-
tion. Berg and Sims [BS84] gave a positive answer for uniformly convex
spaces and Cardassi showed that the answer is positive for ℓ1, co, C(K)
(where K is metrizable and compact), L1(µ) and uniformly smooth
spaces [Car85c, Car85b, Car85a].

Notice that the numerical radius of a Banach space X is a continuous
seminorm on X bounded by the natural norm on L(X). In particular
we say that the Banach space X has numerical index 1 if ∥T∥ = ν(T )
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for all operators T ∈ L(X) i.e., when the value of the norm and the
value of the numerical radius coincide for all operators T .

Some examples of Banach spaces with numerical index 1 are:

Example 2.3.1 ([KMP06]).

• Every Banach space X, with extreme points in BX , such that
|x∗(x)| = 1 for every extreme point x of BX and every extreme
point x∗ of BX∗ (in fact this is also a sufficient condition in the
finite dimensional case),

• Every Banach space with a subset C ⊆ SX such that co(C) = BX

and |x∗(c)| = 1 for every extreme point x∗ of BX∗ and every point
c ∈ C,

• Every Banach space X whose dual has a norming set C such that
|x∗∗(c∗)| = 1 for every extreme point x∗∗ of BX∗∗ and avery c∗ ∈ C.

We say that T ∈ L(X) attains its numerical radius if there exists
(x, f) ∈ Π(X) such that |f(T (x))| = ν(T ) = ∥T∥.

Using this notation, we can reformulate the Bishop-Phelps-Bollobás
Theorem, roughly speaking, asserting that any ordered pair that “almost
belongs” to Π(X) can be approximated in the product norm by elements
of Π(X). And we can define the Bishop-Phelps-Bollobás Property for
numerical radius as follows.

Definition 2.3.2 (BPBp-ν, [GK13]). A Banach space X is said to have
the Bishop-Phelps-Bollobás Property for numerical radius, BPBp-ν for
short, if given ϵ > 0, there is δ(ϵ) > 0 such that for all T ∈ L(X) of
norm one, if (x, x∗) ∈ Π(X) is such that |x∗(T (x))| > 1 − δ(ϵ), then
there exist G ∈ L(X), with ν(G) = 1 and a pair (y, y∗) ∈ Π(X) such
that

∥T − G∥ ≤ ϵ, ∥x − y∥ ≤ ϵ, ∥x∗ − y∗∥ ≤ ϵ and |y∗(G(y))| = 1.
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In [GK13] Guirao and Kozhushkina study the Bishop-Phelps-Bollobás
Property for numerical radius, which has as its main point of interest
the natural extension of Bishop-Phelps-Bollobás’ result to the numerical
radius on Banach spaces of numerical index 1. The authors use construc-
tive versions of Bollobás Theorem to prove that the space ℓ1(C) has the
BPBp-ν and dualizing the constructions they also get the same result
for c0(C). Our aim now is to show that the Banach space of Lebesgue
real-valued integrable functions over the real line, that we will denote
by L1, has the Bishop-Phelps-Bollobás Property for numerical radius.

2.3.1 The Bishop-Phelps-Bollobás Property for Nu-
merical Radius on L1

In [AAGM08], Acosta, Aron, García and Maestre proved that L1 has
the AHSP . But, we know that L1 does not have the Radon-Nikodým
Property, and so we can not apply the results of Choi and Kim to obtain
that the pair (L1, L1) has the BPBp. However in [CKLM14], Choi, Kim,
Lee and Martín have proved that the pair (L1, L1) has the BPBp. An
alternative proof of this result for L1(R) can be done by modifying the
proof presented in Theorem 2.3.7.

Even though Choi, Kim, Lee and Martín have shown that the pair
(L1, L1) has the BPBp, there is no known relation between the pair
(X, X) having the BPBp and the space X having the BPBp-ν.

Our main point of interest in this section is to prove that the space
L1 has the BPBp-ν, Theorem 2.3.7. But, before we give the proof of
the Theorem we need some necessary technical lemmas.

Lemma 2.3.3. Let A ⊆ R be a measurable set and Ac its complement.
The operator R from L(L1) to L(L1) defined, for every element T ∈
L(L1), by R(T )(f) = T (fχA − fχAc)χA − T (fχA − fχAc)χAc is an
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isometry, i.e. ∥T∥ = ∥R(T )∥ for all operators T ∈ L(L1).

Also for every point x ∈ L1 and every linear form f ∈ L∞, if we
denote by r(f) = fχA − fχAc and by r(x) = xχA − xχAc, then

< r(x), r(f) >=< x, f >=
∫
R

x(t)f(t)dt

and

< R(T )(r(x)), r(f) >=< T (x), f >=
∫
R
(T (x)(t))f(t)dt.

Proof. First of all notice that for every x ∈ L1, ∥x∥ = ∥r(x)∥ and
r(r(x)) = x, and for every f ∈ L∞, ∥f∥ = ∥r(f)∥ and r(r(f)) = f

hence the operators x 7→ r(x) on L1 and f 7→ r(f) on L∞ are onto
isometries. Also

R(T )(x) = T (xχA − xχAc)χA − T (xχA − xχAc)χAc .

Moreover,

T (r(x)) = T (xχA − xχAc) = T (xχA − xχAc)χA + T (xχA − xχAc)χAc .

Therefore ∥R(T )(x)∥ = ∥T (r(x))∥, and so R is an isometry.

For the second part, notice that

< r(x), r(f) > = < xχA − xχAc , fχA − fχAc >

= < xχA, fχA > − < xχAc , fχA > − < xχA, fχAc > + < xχAc , fχAc >

= < xχA, fχA > + < xχAc , fχAc >

= < x, f > .

Since R(T )(r(x)) = R(T )(xχA − xχAc) = T (xχA + xχAc)χA − T (xχA +
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xχAc)χAc = T (x)χA − T (x)χAc , we get that

< R(T )(r(x)), r(f) > = < R(T )(r(x)), fχA > − < R(T )(r(x)), fχAc >

= < T (x)χA − T (x)χAc , fχA > − < T (x)χA − T (x)χAc , fχAc >

= < T (x)χA, fχA > − < −T (x)χAc , fχAc >

= < T (x), f > .

The next lemma can be easily proved for ℓ1 using the fact that ℓ1

has an atomic measure. Now we want to prove this result for the space
L1 that has a strictly non-atomic measure.

Lemma 2.3.4. Given a pair (x, f) ∈ Π(L1) with f(t) ≥ 0 for all t ∈ R,
let A = {t ∈ R : x(t) > 0}. Then µ({t ∈ R : x(t) < 0}) = 0 and
µ({t ∈ A : f(t) < 1}) = 0. Also, for every point y ∈ L1 if {t ∈ R :
y(t) > 0} ⊆ A and µ({t ∈ R : y(t) < 0}) = 0, then < y, f >= ∥y∥.

Proof. Consider x, f and A as in the lemma. If µ({t ∈ R : x(t) < 0}) > 0
we have

1 =< x, f >

=
∫
R

x(t)f(t)dt ≤
∫

A
x(t)dt +

∫
Ac

x(t)f(t)dt

≤
∫

A
x(t)dt < ∥x∥ = 1,

which is a contradiction. Hence µ({t ∈ R : x(t) < 0}) = 0.
Now, if µ({t ∈ A : f(t) < 1}) > 0, then there exists 1 > ϵ > 0 with

Aϵ = {t ∈ A : f(t) < 1 − ϵ} and ∥xχAϵ∥ > 0. Then
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1 =< x, f >

=
∫
R

x(t)f(t)dt

≤
∫

Ac
ϵ

x(t)dt +
∫

Aϵ

x(t)(1 − ϵ)dt

< ∥x∥ = 1

which is again a contradiction. So µ({t ∈ A : f(t) < 1}) = 0.
To finish assume y ∈ L1 with {t ∈ R : y(t) > 0} ⊆ A and µ({t ∈ R :

y(t) < 0}) = 0. Then since f(t) = 1 for almost all t in A,

< y, f >=
∫
R

y(t)f(t)dt =
∫

A
y(t)f(t)dt =

∫
A

y(t)dt = ∥y∥.

Before presenting our main result of this section we need to prove
the last technical lemma that will be used to modify the operator in
Theorem 2.3.7.

Lemma 2.3.5. Given two measurable sets I and S and an operator
T ∈ L(L1), for any finite number of pairwise disjoint measurable sets
I1, . . . , Ij of finite measure, with I = ∪j

i=1Ii

(T (χI)χ{t∈R:T (χI)(t)>0}∩S)(t) ≤
j∑

i=1
(T (χIi

)χ{t∈R:T (χIi
)(t)>0}∩S)(t)

almost everywhere. Also ∥ ∑j
i=1 T (χIi

)χ{t∈R:T (χIi
)(t)>0}∩S∥ ≤ ∥T∥∥χI∥.

Proof. Since T (χI) = ∑j
i=1 T (χIi

) there is no loss of generality in assum-
ing that equality also holds for the measurable functions after taking
representatives of the equivalence class, i.e., we assume that T (χI)(t) =∑j

i=1T (χIi
)(t) for all real numbers t in S.
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Notice that for i = 1, . . . , j

(T (χIi
)χS)(t) ≤ T (χIi

)χ{t∈R:T (χIi
)(t)>0}∩S(t).

Hence, if T (χI)(t) ≤ 0, by the linearity of T the required inequality
holds and if T (χI)(t) > 0,

T (χI)χ{t∈R:T (χI)(t)>0}∩S)(t) =
j∑

i=1
(T (χIi

)χS)(t)

≤
j∑

i=1
T (χIi

)χ{t∈R:T (χIi
)(t)>0}∩S(t).

Notice that

∥
j∑

i=1
T (χIi

)χ{t∈R:T (χIi
)(t)>0}∩S∥ =

j∑
i=1

∫
{t ∈ R : T (χIi

)(t) > 0} ∩ S

T (χIi
)(t)dt

≤
j∑

i=1

( ∫
{t ∈ R : T (χIi

)(t) > 0} ∩ S

T (χIi
)(t)dt +

∫
{t ∈ R : T (χIi

)(t) < 0} ∩ S

|T (χIi
)(t)|dt

)

=
j∑

i=1
∥T (χIi

)χS∥ ≤
j∑

i=1
∥T (χIi

)∥ ≤
j∑

i=1
∥T∥∥χIi

∥ = ∥T∥∥χI∥.

Therefore, ∥ ∑j
i=1 T (χIi

)χ{t∈R:T (χIi
)(t)>0}∩S∥ ≤ ∥T∥∥χI∥.

Remark 2.3.6. Let us call by
{
∆n := {[ z

2n , z+1
2n ) : z ∈ Z}

}
n

the dyadic
partitions of the real line into segments of length 1

2n . Notice that the set
of simple functions whose measurable sets are dyadic sets is dense in the
set of simple functions. Hence they are norm dense in the Banach space
of Lebesgue integrable functions. In particular, for every measurable
set B and any integrable function x ∈ L1 there exists a sequence of
simple integrable functions {xk}∞

k=1 approximating xχB in norm with
xk = ∑N

i=1 αiχDi∩B and Di dyadic segments.
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Theorem 2.3.7. The Banach space L1 satisfies the BPBp-ν.

Proof. Consider x ∈ BL1 , f ∈ BL∗
1

= BL∞ with ∥x∥ = ∥f∥ = 1 and
⟨x, f⟩ = 1. Consider also an operator T ∈ L(L1), ∥T∥ = 1 and assume

⟨T (x), f⟩ > 1 − δ/2 (2.1)

with 0 < δ < 1/4.
From now on, we fix a representant of the equivalence classes of x ∈

L1 and f ∈ L∞. That is, two measurable functions in the equivalence
classes and we denote these representants in the same way as x and f .

First we do the proof assuming f(t) ≥ 0 for all real number t.
Since the norm of f is ∥f∥ = esssupt∈R|f(t)|, we can assume that

0 ≤ f(t) ≤ 1 for all real number t. Let

B = {t ∈ R : f(t) ≥ 1 − δ1/4}. (2.2)

Consider the measurable set S := {t ∈ R : x(t) > 0}. Then by
Lemma 2.3.4 and the fact that ⟨f, x⟩ = 1 we have that µ(S) > 0.
Also, by Remark 2.3.6 there exists a function z ∈ L1 of norm one with
∥x − z∥ ≤ δ/2, where z = ∑N

i=1 αiχDi∩S with Di being mutually disjoint
dyadic segments such that µ(Di ∩ S) > 0 and αi > 0 for i = 1, . . . , N .
Therefore

⟨T (z), f⟩ ≥ ⟨T (x), f⟩ − ∥x − z∥ > 1 − δ.

By Lemma 2.3.4 f attains its norm at z, i.e., (z, f) ∈ Π(L1). Let

D0 = ∪N
i=1Di ∩ S and g = χB + fχBc . (2.3)

It is easy to see that
∥f − g∥ ≤ δ1/4. (2.4)
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Now, for every natural number i = 1, . . . , N and for n ∈ N, consider

Fn,i := {I ∈ ∆n : ⟨T (χI∩Di∩S), f⟩ ≤ (1 −
√

δ)∥χI∩Di∩S∥}. (2.5)

Put Di = (Di ∩ S) \
(

∪n∈N ∪I∈Fn,i
I

)
which is measurable. Let

D = ∪N
i=1D

i. Then, by the construction of D, D0 \ D is a union of
a sequence of disjoint measurable sets {Ik}∞

k=1 where Ik is of the form
R ∩ Di ∩ S with R a dyadic set in some ∆n and Di one of the sets
that appear in the definition of z. By (2.5) the set Ik is such that
⟨T (χIk

), f⟩ ≤ (1 −
√

δ)∥χIk
∥. Hence using the Monotone Convergence

Theorem we obtain

1 − δ < ⟨T (z), f⟩ = ⟨T (
N∑

i=1
αi

∞∑
k=1

χIk
+ zχD), f⟩

=
N∑

i=1
αi

∞∑
k=1

⟨T (χIk
), f⟩ + ⟨T (zχD), f⟩ by linearity of T and f ,

≤ (1 −
√

δ)
N∑

i=1
αi

∞∑
k=1

∥χIk
∥ + ⟨T (zχD), f⟩

= (1 −
√

δ)∥zχD0\D∥ + ⟨T (zχD), f⟩ by definition of z,
≤ (1 −

√
δ)∥zχD0\D∥ + ∥zχD∥ because T and f are of norm one,

= 1 −
√

δ∥zχD0\D∥.

Therefore ∥zχD0\D∥ <
√

δ. Hence

∥zχD∥ = ∥z∥ − ∥zχD0\D∥ > 1 −
√

δ > 0.

Since ∥zχD∥ > 0 define

y = zχD

∥zχD∥
. (2.6)

Then y has norm one, {t ∈ R : y(t) > 0} ⊆ D0 and y(t) ≥ 0
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for all real number t. By Lemma 2.3.4, considering the set D0 and
the state (z, f) ∈ Π(L1) we obtain that (y, f) ∈ Π(L1). Also, by
Lemma 2.3.4, µ({t ∈ D0 : f(t) < 1}) = 0 so we have f(t) = 1 for
almost all t in D0, hence f(t) = 1 for almost all t in D. Therefore
1 =< y, f >=

∫
R y(t)f(t)dt =

∫
D y(t)f(t)dt =

∫
D y(t) =

∫
D y(t)g(t)dt =∫

R y(t)g(t)dt =< y, g > hence (y, g) ∈ Π(L1).

Let us see that z and y are close.

∥z − y∥ = ∥z − zχD

∥zχD∥
∥

≤ ∥z − zχD∥ + ∥zχD − zχD

∥zχD∥
∥

= ∥z − zχD∥ + 1 − ∥zχD∥

< 2
√

δ.

Hence ∥x − y∥ < δ + 2
√

δ.

Now we modify the operator T on the set D.

For simplicity denote by WI = {t ∈ R : T (χI ∩ D)(t) > 0} for every
dyadic set I in ∆n for some natural number n. For each such dyadic set
I in ∆n, define the sequence of integrable functions {hI

k}k by

hI
k =

2k−1∑
i=1

T (χIi∩D)χWIi
∩B (2.7)

where the sets {I1, . . . , I2k−1} are the disjoint dyadic sets of ∆n+k−1

whose union is I.

Then by Lemma 2.3.5 we have a sequence of positive increasing func-
tions almost everywhere, so as a consequence of the Monotone Conver-
gence Theorem the integrable sequence of functions {hI

k}∞
k=1 converges

to an integrable function hI . Notice that for every natural number k,
∥hI

k∥ ≤ ∥χI∥ hence ∥hI∥ ≤ ∥χI∥, and ∥hI
k∥ =

∫
R hI

k(t)dt =
∫

B hI
k(t)dt =
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∫
B hI

k(t)g(t)dt = ⟨hI
k, g⟩. Therefore

∥hI
k∥ = ⟨hI

k, g⟩ and ∥hI∥ = ⟨hI , g⟩. (2.8)

Also, since the sequence of functions {hI
k}∞

k=1 is positive and increas-
ing almost everywhere, by (2.8) we have, for all k ∈ N,

∥hI − hI
k∥ =

∫
R

|(hI − hI
k)(t)|dt

=
∫
R
(hI − hI

k)(t)dt

=
∫
R

hI(t)dt −
∫
R

hI
k(t)dt

=
∫
R

|hI(t)|dt −
∫
R

|hI
k(t)|dt

= ∥hI∥ − ∥hI
k∥

= ⟨hI , g⟩ − ⟨hI
k, g⟩

= ⟨hI − hI
k, g⟩.

That is
∥hI − hI

k∥ = ⟨hI − hI
k, g⟩. (2.9)

By (2.5) we have that if µ(I ∩ D) > 0 then ⟨T (χI∩D), f⟩ > (1 −√
δ)∥χI∩D∥, but

⟨T (χI∩D), f⟩ =
∫
R

T (χI∩D)(t)f(t)dt ≤
∫

WI

T (χI∩D)(t)f(t)dt

= ⟨T (χI∩D)χWI
, f⟩

so
⟨T (χI∩D)χWI

, f⟩ > (1 −
√

δ)∥χI∩D∥. (2.10)

Therefore

(1−
√

δ)∥χI∩D∥ ≤ ⟨T (χI∩D)χWI
, f⟩

34



2.3 The Bishop-Phelps-Bollobás Property for Numerical Radius

=
∫

WI∩B
T (χI∩D)(t)f(t)dt +

∫
WI∩Bc

T (χI∩D)(t)χWI
(t)f(t)dt

=
∫

WI∩B
T (χI∩D)(t)f(t)dt +

∫(
WI∩B

)c T (χI∩D)(t)f(t)dt

≤
∫

WI∩B
T (χI∩D)(t)dt +

∫(
WI∩B

)c(1 − δ1/4)|T (χI∩D)(t)|dt (by (2.2))

= ∥T (χI∩D)χWI∩B∥ + (1 − δ1/4)∥T (χI∩D)χ(
WI∩B

)c∥

= ∥T (χI∩D)∥ − δ1/4∥T (χI∩D)χ(
WI∩B

)c∥

≤ ∥χI∩D∥ − δ1/4∥T (χI∩D)χ(
WI∩B

)c∥.

Therefore δ1/4∥T (χI∩D)χ(
WI∩B

)c∥ ≤
√

δ∥χI∩D∥, and for any dyadic in-

terval I

∥T (χI∩D)χ(
WI∩B

)c∥ ≤ δ1/4∥χI∩D∥. (2.11)

Define now the operator G on the simple functions whose measurable
sets are dyadic as follows:

G(
j∑

i=1
βiχIi

) =
j∑

i=1
βi

(
T (χIi∩Dc) + hIi + (∥χIi∩D∥ − ∥hIi∥)y

)
. (2.12)

Notice that ∑j
i=1 βiT (χIi∩Dc) is well defined because T is linear. Also,

for every dyadic set I ∈ ∆n, if R, Q are two disjoint dyadic sets in ∆n+1

whose union is I, by the construction of the sequences {hI
k}∞

k=1, {hR
k }∞

k=1

and {hQ
k }∞

k=1 we have for all k > 1, hI
k = hR

k−1+hQ
k−1. Hence hI = hR+hQ

and since ∥hI∥ = ⟨hI , g⟩, ∥hR∥ = ⟨hR, g⟩ and ∥hQ∥ = ⟨hQ, g⟩,

∥χI∩D∥ − ∥hI∥ = (∥χR∩D∥ + ∥χQ∩D∥) − ⟨hI , g⟩ (by (2.8))
= (∥χR∩D∥ + ∥χQ∩D∥) − ⟨hR + hQ, g⟩

= (∥χR∩D∥ + ∥χQ∩D∥) − (⟨hR, g⟩ + ⟨hQ, g⟩)
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= (∥χR∩D∥ + ∥χQ∩D∥) − (∥hR∥ + ∥hQ∥) (by (2.8))
= (∥χR∩D∥ − ∥hR∥) + (∥χQ∩D∥ − ∥hQ∥).

By using induction, ∑N
i=1 βi

(
hIi + (∥χIi∩D∥ − ∥hIi∥)y

)
is well defined.

Hence G is well defined and linear. To finish, by density of the simple
functions whose measurable sets are dyadic we can extend the operator
G to L1.

Now let us compute the norm of G and the distance between T and
G. For this, it enough to compute the norm and the distance over dyadic
sets I.

∥G(χI)∥ ≤ ∥T (χI∩Dc)∥ + ∥hI∥ +
∥∥∥(∥χI∩D∥ − ∥hI∥)y

∥∥∥
≤ ∥χI∩Dc∥ + ∥χI∩D∥ = ∥χI∥.

Therefore ∥G∥ ≤ 1. On the other hand, it is easy to check that for any
function s in L1,

⟨G(s), g⟩ = ⟨T (sχDc), g⟩ +
∫

D
s(t)dt.

For this, by Remark 2.3.6 let’s consider a sequence of simple functions
sk = ∑Nk

i=1 βiχIi
were Nk is a natural number and Ii are some dyadic

segments, with ∥s − sk∥ → 0 when k goes to infinity. Then,

⟨G(s), g⟩ = lim
k→∞

⟨G(sk), g⟩

= lim
k→∞

⟨G(
Nk∑
i=1

βiχIi
), g⟩

= lim
k→∞

⟨
Nk∑
i=1

βi

(
T (χIi∩Dc) + hIi + (∥χIi∩D∥ − ∥hIi∥)y

)
, g⟩

= lim
k→∞

⟨
Nk∑
i=1

βiT (χIi∩Dc), g⟩ + ⟨
Nk∑
i=1

βi

(
hIi + (∥χIi∩D∥ − ∥hIi∥)y

)
, g⟩
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= lim
k→∞

⟨T (
Nk∑
i=1

βiχIi∩Dc), g⟩ +
Nk∑
i=1

βi∥χIi∩D∥

= lim
k→∞

⟨T (
Nk∑
i=1

βiχIi∩Dc), g⟩ +
Nk∑
i=1

βi

∫
R

χIi∩D(t)dt

= lim
k→∞

⟨T (
Nk∑
i=1

βiχIi∩Dc), g⟩ +
∫
R

Nk∑
i=1

βiχIi∩D(t)dt

= ⟨T (sχDc), g⟩ +
∫

D
s(t)dt

Therefore for any dyadic set I with µ(I ∩D) > 0, we have ⟨G(χI∩D),
g⟩ = ∥χI∩D∥, hence G has norm one.

Also,

∥T (χi) − G(χI)∥ ≤ ∥T (χI∩D) − hI − (∥χI∩D∥ − ∥hI∥)y∥

≤ ∥T (χI∩D) − hI
1∥ + ∥hI − hI

1∥ + (∥χI∩D∥ − ∥hI∥)
≤ δ1/4∥χI∩D∥ + ∥hI − hI

1∥ + (∥χI∩D∥ − ∥hI∥) (by (2.11))
= δ1/4∥χI∩D∥ + ⟨hI − hI

1, g⟩ + (∥χI∩D∥ − ∥hI∥) (by (2.9))
= δ1/4∥χI∩D∥ + ⟨hI , g⟩ − ⟨hI

1, g⟩ + (∥χI∩D∥ − ∥hI∥)
= δ1/4∥χI∩D∥ + ∥hI∥ − ∥hI

1∥ + ∥χI∩D∥ − ∥hI∥ (by (2.8))

= δ1/4∥χI∩D∥ + ∥χI∩D∥ − ∥hI
1∥

= δ1/4∥χI∩D∥ + ∥χI∩D∥ − ∥T (χI∩D)∥ + ∥T (χI∩D)χ(
WI∩B

)c∥

≤ 2δ1/4∥χI∩D∥ + ∥χI∩D∥ − ∥T (χI∩D)∥
≤ 2δ1/4∥χI∩D∥ + ∥χI∩D∥ − ⟨T (χI∩D), f⟩

≤ 2δ1/4∥χI∩D∥ +
√

δ∥χI∩D∥, (by (2.5))

so ∥T − G∥ ≤ 3δ1/4.
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To conclude it is easy to check that

⟨G(y), g⟩ = 1
∥zχD∥

⟨G(
N∑

i=1
αiχDi∩D), g⟩

= 1
∥zχD∥

N∑
i=1

αi⟨G(χDi∩D), g⟩

= 1
∥zχD∥

N∑
i=1

αi(∥hDi∥ + ∥χDi∩D∥ − ∥hDi∥)

= 1
∥zχD∥

N∑
i=1

αi∥χDi∩D∥ = ∥zχD∥
∥zχD∥

= 1.

which proves the theorem in the case f(t) ≥ 0 for all real numbers t.
For the general case, consider the measurable set A = {t ∈ R : f(t) >

0}. Then by Lemma 2.3.3 applied to the set A, we have r(f)(t) ≥ 0
for all real number t, and r(f), r(x) and R(T ) satisfy the conditions
of ⟨r(x), r(f)⟩ ∈ Π(L1), ∥R(T )∥ = 1 and ⟨R(T )(r(x)), r(f)⟩ > 1 − δ/2.
By the previous case we can find (y, g) ∈ Π(L1) and G ∈ L(L1) such
that ∥y − r(x)∥ ≤ δ + 2

√
δ, ∥g − r(f)∥ ≤ δ1/4, ∥G − R(T )∥ ≤ 3δ1/4

and ∥G∥ = ⟨G(y), g⟩ = 1. Now by Lemma 2.3.3 again we obtain that
(r(y), R(G)) ∈ Π(L1) and R(G) ∈ L(L1) are such that ∥r(y) − x∥ ≤
δ + 2

√
δ, ∥R(G) − f∥ ≤ δ1/4, ∥R(G) − T∥ ≤ 3δ1/4 and ∥R(G)∥ =

⟨R(G)(r(y)), R(G)⟩ = 1 which concludes the proof.

Remark 2.3.8. These results can be extended to operators in L(L1(Rn)),
by using the dyadic partitions of the space Rn on cubes defined by ∆n :=
{∏n

i=1[ zi

2n , zi+1
2n ) : zi ∈ Z, i = 1, . . . , n}. In general, for every finite

dimensional real Banach space Rn, the space L1(Rn) has the Bishop-
Phelps-Bollobás Property for numerical radius. Clearly the same kind
of argument proves that the space L1[0, 1] and actually L1(R) for any
n-interval R = Πn

i=1[ai, bi] (of positive measure) in Rn has the BPBp-ν.
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2.4 Norm attaining extension to the bidual

2.4 Norm attaining extension to the bidual

With the counterexample provided by Lindenstrauss the hope of a gen-
eralization of the Bishop-Phelps result to the operator case vanishes.
However, the author proved a general result for denseness of norm at-
taining operators using the adjoint operator. Given an operator T be-
tween two Banach spaces X and Y , the adjoint of T is defined from Y ∗

into X∗ by T ∗(y∗)(x) = y∗(T (x)), for all x ∈ X, y∗ ∈ Y ∗.

Theorem 2.4.1 (Lindenstrauss, [Lin63]). Given two Banach spaces X

and Y , the set of operators whose second adjoint attain their norm is
norm-dense in L(X; Y ).

After this celebrated theorem several authors have tried to extend
this result in many directions. For example in [CLM12], Carando, Las-
salle, and Mazzitelli have studied the existence of the polynomial version
of Lindenstrauss result under certain conditions and the possible exis-
tence of a quantitative version based on Bollobás result, as we will see
in Section 3.6. Also, a multilinear approach to Lindenstrauss result,
by using Arens extensions, has been studied during the last years, as
we will see in Section 3.2. In particular, Acosta, García, and Maestre,
[AGM06], extend this result to the multilinear case proving that the
multilinear forms whose Arens extensions are norm attaining are norm
dense, see Theorem 3.2.4.
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Chapter 3

Norm attaining multilinear
forms

“When you have mastered numbers, you will in fact no
longer be reading numbers, any more than you read
words when reading books. You will be reading
meanings.”

— W. E. B. Du Bois

In this chapter we extend the theory of norm attaining linear forms
to the non-linear case. Our main point of interest is to study when the
extensions of multilinear maps to the bidual are norm attaining, with
special interest on multilinear forms on the space ℓ1. To finish we will
study the relation of the Lindenstrauss-Bollobás Theorems introduced
by Carando, Lassalle and Mazzitelli in [CLM12], see Definition 3.6.1,
and the n-linear version of Bishop-Phelps-Bollobás Theorem for spaces
M -embedded or L-embedded in the bidual.
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Chapter 3. Norm attaining multilinear forms

3.1 Norm attaining multilinear forms

Recall that the space of continuous linear operators L(X; Y ∗) can be iso-
metrically identified with the space of continuous bilinear forms L(X, Y )
by the relation T ∈ L(X; Y ∗) if and only if AT ∈ L(X, Y ) where
AT (x, y) :=

(
T (x)

)
(y), for all x ∈ X and all y ∈ Y .

This naturally leads us to think about bilinear versions of Bishop-
Phelps, Bishop-Phelps-Bollobás and Lindenstrauss’ results and in a more
general framework about multilinear versions of these results.

In general we say that a multilinear form A ∈ L(X1, . . . , Xn; Y )
attains its norm if there exists an n-tuple (x0

1, . . . , x0
n) ∈ BX1 ×· · ·×BXn

such that

∥A(x0
1, . . . , x0

n)∥Y = sup
xi∈BXi
i=1,...,n

∥A(x1, . . . , xn)∥Y = ∥A∥Y .

Therefore we can naturally set the questions:

Question 3.1.1. For what spaces X1, . . . , Xn is the set of norm attain-
ing n-linear forms of L(X1, . . . , Xn) dense in L(X1, . . . , Xn)?

We say that the spaces X1, . . . , Xn satisfy the n-linear version of
Bollobás result if given ϵ > 0 there are η(ϵ) > 0 and β(ϵ) > 0 with
limϵ→0 β(ϵ) = 0 such that for all A ∈ SL(X1,...,Xn), if (x1, . . . , xn) ∈
SX1 × · · · × SXn is such that |A(x1, . . . , xn)| > 1 − η(ϵ), then there exist
an n-tuple (y1, . . . , yn) ∈ SX1 × · · · × SXn and the exist B ∈ SL(X1,...,Xn)

that satisfy the following conditions:

∥B(y1, . . . , yn)∥ = 1, ∥xi−yi∥ < β(ϵ) for i = 1, . . . , n and ∥A−B∥ < ϵ.

Question 3.1.2. For what spaces X1, . . . , Xn does there exist an n-
linear version of Bollobás result?

42



3.1 Norm attaining multilinear forms

The first positive result in this direction appeared in [AFW95] where
Aron, Finet and Werner showed that the Radon-Nikodým Property is
a sufficient condition for the denseness of norm attaining multilinear
forms. To be more specific.

Theorem 3.1.3. If X is a Banach space with the Radon-Nikodým Prop-
erty, then the set of norm attaining forms of L(nX) is norm dense in
L(nX), for every natural number n ≥ 2.

In the particular case of X = ℓ1, we provide a simpler and construc-
tive proof, generalizing Proposition 1.2.8.

Theorem 3.1.4. For every natural number n ≥ 2 the set of norm
attaining forms of L(nℓ1) is norm dense in L(nℓ1).

Proof. Fix A ∈ L(nℓ1), ∥A∥ = 1.

∥A∥ = sup
∥xi∥=1
i=1,...,n

|A(x1, . . . , xn)|

= sup
∥xi∥=1
i=1,...,n

∣∣∣∣ ∑
t1,...,tn∈N

( n∏
i=1

xi

(
ti

))
A(et1 , . . . , etn)

∣∣∣∣
≤ sup

∥xi∥=1
i=1,...,n

{ ∑
t1,...,tn∈N

∣∣∣∣( n∏
i=1

xi

(
ti

))
A(et1 , . . . , etn)

∣∣∣∣}

≤ sup
∥xi∥=1
i=1,...,n

{
sup

k1,...,kn∈N

{
|A(ek1 , . . . , ekn)|

} ∑
t1,...,tn∈N

∣∣∣∣ n∏
i=1

xi

(
ti

)∣∣∣∣}

= sup
∥xi∥=1
i=1,...,n

{
sup

k1,...,kn∈N

{
|A(ek1 , . . . , ekn)|

} n∏
i=1

∥xi∥
}

= sup
k1,...,kn∈N

{
|A(ek1 , . . . , ekn)|

}
≤ ∥A∥.

Hence ∥A∥ = supk1,...,kn∈N

{
|A(ek1 , . . . , ekn)|

}
.
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Chapter 3. Norm attaining multilinear forms

Fix 1 > ϵ > 0 and consider k′
1, . . . , k′

n such that |A(ek′
1
, . . . , ek′

n
)| >

1 − ϵ. Then define

B(ek1 , . . . , ekn) =
 sign(A(ek1 , . . . , ekn)) if (k1, . . . , kn) = (k′

1, . . . , k′
n),

A(ek1 , . . . , ekn) otherwise.

Note that

∥A − B∥ = sup
k1,...,kn∈N

|(A − B)(ek1 , . . . , ekn)|

=|(A − B)(ek′
1
, . . . , ek′

n
)|

=|A(ek′
1
, . . . , ek′

n
) − sign

(
A(ek′

1
, . . . , ek′

n
)
)
|

=1 − |A(ek′
1
, . . . , ek′

n
)| < ϵ.

To finish, we are going to show that B is norm attaining.

∥B∥ = sup
k1,...,kn∈N

{
|B(ek1 , . . . , ekn)|

}
= max

{
|B(ek′

1
, . . . , ek′

n
)|, sup

(k1,...,kn) ̸=(k′
1,··· ,k′

n)
|B(ek1 , . . . , ekn)|

}
= max

{∣∣∣(sign(A(ek′
1
, . . . , ek′

n
))

)∣∣∣, sup
(k1,...,kn )̸=(k′

1,··· ,k′
n)

|A(ek1 , . . . , ekn)|
}

= max
{
1, sup

(k1,...,kn )̸=(k′
1,··· ,k′

n)
|A(ek1 , . . . , ekn)|

}
= 1 = |B(ek′

1
, . . . , ek′

n
)|.

Hence B is norm attaining at the point (ek′
1
, · · · , ek′

n
).

However, a general result for multilinear mappings cannot be ex-
pected. A first counterexample was given in [AAP96] for bilinear forms.
To be more specific they show that the same Gowers’ space G used to
show that there is no Bishop-Phelps Theorem for numerical radius in
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3.1 Norm attaining multilinear forms

[AAP92] can be used to exhibit an example of a Banach space whose
set of norm attaining bilinear forms is not dense. A few years later,
Jiménez Sevilla and Payá in [JP98] showed a stronger result. For every
natural number n, using the canonical predual of a suitable Lorentz se-
quence space, the authors gave an example of a Banach space X such
that X satisfies the n-linear version of Bishop-Phelps result but X does
not satisfy the n + 1-linear version of Bishop-Phelps result.

Definition 3.1.5 (Lorentz sequence space). By admissible sequence we
shall mean a decreasing sequence ω = {ωn}∞

n=1 of positive numbers such
that ω1 = 1 and ω ∈ c0 \ ℓ1. For 1 ≤ p < ∞, we define the Lorentz
sequence space as the Banach space of all sequences of (real or complex)
scalars x = {xn}∞

n=1 for which

∥x∥ =: sup
π

( ∑
n

|xπ(n)|pωn

) 1
p

< ∞,

where π ranges over all possible permutations of the integers.
Lorentz sequence space is denoted by d(ω, p).

Recall that for p > 1 the Lorentz sequence space is reflexive, and
hence it has the Radon-Nikodým Property, so we will be interested in
the case of p = 1. Also, for this case we know that the predual of d(ω, 1)
is denoted by d∗(ω, 1) and it is defined by

d∗(ω, 1) =
{

a ∈ c0 : lim
n→∞

∑n
k=1 x̄k∑n
k=1 ωk

= 0
}

,

where (x̄n)n is the decreasing rearrangement of {|an|}. The norm of
x ∈ d∗(ω, 1) is defined by

∥x∥ = sup
n

∑n
k=1 x̄k∑n
k=1 ωk

.
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Chapter 3. Norm attaining multilinear forms

The second question was studied by Choi and Song in [CS09] where
they show that the Bishop-Phelps-Bollobás Theorem fails for n-linear
forms on ℓ1 × · · · × ℓ1. In particular, for the bilinear case, they show
that given the bilinear form A defined over the canonical basis of ℓ1 by
A(ei, ej) = 1 − δij, for every η > 0 there exists a point xη ∈ Sℓ1 such
that A(xη, xη) > 1 − η, but if 0 < ϵ < 1 and B is a norm attaining
bilinear form at (y1, y2) with ∥A − B∥ < 1 then ∥xη − y1∥ ≥ 1/2 or
∥xη − y2∥ ≥ 1/2. Therefore the Banach space ℓ1 does not satisfy the
n-linear version of the Bishop-Phelps-Bollobás Theorem even though ℓ1

has the Radon-Nikodým Property and it satisfies the n-linear version
of Bishop-Phelps Theorem for every natural number n bigger or equal
than two.

Notice also that the Banach space ℓ∞ has the AHSP. Hence the
pair (l1, Y ) satisfies the Bishop-Phelps-Bollobás Property for operators.
One way of seeing that ℓ∞ has the AHSP is to use that ℓ∞ satisfies
Property β and the fact that Property β is a sufficient condition for
the AHSP. However, as Choi and Song proved, [CS09], the pair ℓ1 × ℓ1

does not satisfy the Bishop-Phelps-Bollobas Property for bilinear maps.
Therefore, even though we have an isometric isomorphism between the
space L(X, Y ) and the space L(X; Y ∗), it is not enough to know that
the Bishop-Phelps-Bollobás Property for operators holds for the pair
(X; Y ∗) in order to ensure that the pair (X, Y ) satisfies the Bishop-
Phelps-Bollobás Property for bilinear forms. However if the Bishop-
Phelps-Bollobás Property for bilinear forms holds for the pair (X, Y ),
then the Bishop-Phelps-Bollobás Property for operators holds for the
pair (X; Y ∗).

Therefore in general we can not expect to get multilinear versions
of Bollobás result using multilinear versions of Bishop-Phelps result or
operator versions of Bollobás result.
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3.2 Arens extensions and norm attaining multilinear forms

3.2 Arens extensions and norm attaining
multilinear forms

Now, it is clear that the multilinear version of Bishop-Phelps and Bishop-
Phelps-Bollobás Theorems do not hold in general, but since Linden-
strauss result is true for any pair of Banach spaces X, Y , we can ask
whether or not this result still works for bilinear maps defined on X ×Y

or more generally for n-linear maps. For this we need first a tool to
extend multilinear maps.

In 1951, Arens [Are51] found a natural way to extend a continuous
bilinear mapping A : X1 × X2 7→ Y to a continuous bilinear mapping
from X∗∗

1 × X∗∗
2 into Y ∗∗. His method consists in applying three times

the operation defined as

At : Y ∗ × X1 7→ X∗
2

(y∗, x1) ⇝ At(y∗, x1)(x2) = y∗(A(x1, x2)),

for x1 ∈ X1, x2 ∈ X2 and y∗ ∈ Y ∗. The first extension is defined as
Attt : X∗∗ ×Y ∗∗ 7→ Z∗∗ and the second one is AT tttT , where BT (x1, x2) =
B(x2, x1) for any bilinear mapping B. These extensions, that are in gen-
eral different, are known as Arens products. This procedure was gener-
alized by Aron and Berner [AB78] to arbitrary multilinear mappings.

For our purposes we will use an alternative approach due to Davie
and Gamelin [DG89]. The key of this approach is Goldstine’s the-
orem as it is based on limits in the weak-star topology, denoted by
w(X∗∗, X∗). Consider Σn the group of all permutations of the set
{1, . . . , n}. Given σ ∈ Σn they defined the extension Aσ associated
to σ of an n-linear form A defined on X1 × · · · × Xn, by

Aσ(x∗∗
1 , . . . , x∗∗

n ) = lim
dσ(1)

· · · lim
dσ(n)

A(xd1 , . . . , xdn),
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Chapter 3. Norm attaining multilinear forms

where {xdi
}di

is a bounded net in Xi (∥xdi
∥ ≤ ∥x∗∗

i ∥, for all di) w(X∗, X)
convergent to x∗∗

i ∈ X∗∗
i , for i = 1, . . . , n. The mapping Aσ is called

an Arens extension of A and there are n! Arens extensions that may
be different from each other. In fact, in Proposition 3.2.3 we will see a
specific example of an n-linear form whose Arens extensions are pairwise
different. When convenient, we shall write Aσ(1),...,σ(n) instead of Aσ. In
particular, for n = 2, AId = A1,2 = Attt and A2,1 = AT tttT , where Id is
the identity permutation of the set {1, 2}.

Note that the use of the w(X∗, X) topology does not generally allow
the use of sequences in the above limits. However we will show in
Theorem 3.3.2 that in the study of norm attaining multilinear forms
one can reduce such iterated limits to sequential ones.

Even though all the Arens extensions of a multilinear form A have
the same norm as A, it is worth mentioning that in [AGM03] the fol-
lowing example is given of a bilinear mapping such that only one of its
Arens extensions attains its norm.

Example 3.2.1 ([AGM03, Example 2]). The bilinear form A ∈ L(2ℓ1)
defined by

A(x1, x2) :=
∞∑

t1=1
x1

(
t1

)( t1∑
t2=1

t2

t2 + 1x2
(
t2

))
,

is such that neither A nor AId = A1,2 is norm attaining, but A2,1 is norm
attaining.

This example leads us to believe that the extensions of a bilinear
form may have different behaviors from the point of view of attaining
their norms, and it is the core of our study in this section.

To start, we can consider the natural generalization of the Exam-
ple 3.2.1.
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3.2 Arens extensions and norm attaining multilinear forms

Example 3.2.2. Let A ∈ L(nℓ1) be defined by

A(x1, . . . , xn) =
∞∑

k1=1
x1

(
k1

)( k1∑
k2=1

k2
k2 + 1x2

(
k2

)(
· · ·

( kn−1∑
kn=1

kn

kn + 1xn
(
kn

))
· · ·

))
.

Then An,n−1,...,1 is norm attaining but neither A nor any other Arens
extension of A is norm attaining.

Proof. Clearly ∥A∥ ≤ 1 and since

A(ek1 , . . . , ekn) =
n∏

i=2

ki

ki + 1 if k1 ≥ k2 ≥ . . . ≥ kn, (3.1)

we have that A has norm one. It is also easy to see that A does not
attain its norm.

We first prove that the extension An,n−1,...,1 is norm attaining.
By (3.1), limk1 . . . limkn A(ek1 , . . . , ekn) = 1. Therefore, if x∗∗ ∈ ℓ∗∗

1 is
a ω∗-cluster point of the sequence {ek}∞

k=1, then

An,n−1,...,1(x∗∗, . . . , x∗∗) = lim
dn

· · · lim
d1

A(ed1 , . . . , edn)

= lim
k1

. . . lim
kn

A(ek1 , . . . , ekn) = 1

for a suitable subnet {ed}d of the sequence {ek}∞
k=1. So the extension

An,n−1,...,1 attains its norm at (x∗∗, . . . , x∗∗).
Now, we are going to show that the other extensions do not attain

their norms. Consider σ ∈ Σn, σ ̸= Id. Assume that Aσ attains its
norm. Then, there exists an n-tuple (x∗∗

1 , . . . , x∗∗
n ) in the closed unit

ball of ℓ∗∗
1 × · · · × ℓ∗∗

1 such that Aσ(x∗∗
1 , . . . , x∗∗

n ) = 1. As σ ̸= Id there
exist 1 ≤ r < s ≤ n with σ(r) > σ(s).

We may assume without loss of generality xdi
(k) ≥ 0, for all i, di, k.

Indeed, for each i = 1, . . . , n, consider a net {xdi
}di

in the closed unit
ball of ℓ1, ω∗-convergent to x∗∗

i . Let x̂∗∗
i be a ω∗-cluster point of the
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Chapter 3. Norm attaining multilinear forms

net
{
{|xdi

(k)|}∞
k=1

}
di

. Hence there exists a subnet, that we denote in
the same way, ω∗-convergent to x̂∗∗

i . In this case, limdσ(i) xdσ(i) = x∗∗
σ(i),

i = 1, . . . , n, also. Therefore,

1 = Aσ(x∗∗
1 , . . . , x∗∗

n ) = lim
dσ(1)

· · · lim
dσ(n)

A(xd1 , . . . , xdn)

= lim
dσ(1)

· · · lim
dσ(n)

∞∑
t1=1

xd1

(
t1

) · · ·
( tn−1∑

tn=1

tn

tn + 1xdn

(
tn

))
· · ·


≤ lim

dσ(1)
· · · lim

dσ(n)

∞∑
t1=1

∣∣∣xd1

(
t1

)∣∣∣
 · · ·

( tn−1∑
tn=1

tn

tn + 1

∣∣∣∣xdn

(
tn

)∣∣∣∣) · · ·


≤ lim

dσ(1)
· · · lim

dσ(n)

∞∑
tσ(s)=1

∣∣∣xdσ(s)

(
tσ(s)

)∣∣∣×
( tσ(s)∑

tσ(r)=1

tσ(r)

tσ(r) + 1
∣∣∣xdσ(r)

(
tσ(r)

)∣∣∣) ∏
k ̸=i,j

∥xdσ(k))∥

≤ lim
dσ(r)

lim
dσ(s)

∞∑
tσ(s)=1

∣∣∣xdσ(s)(tσ(s))
∣∣∣( tσ(s)∑

tσ(r)=1

tσ(r)

tσ(r) + 1
∣∣∣xdσ(r)

(
tσ(r)

)∣∣∣)

= A1,2(x̂∗∗
d(σ(r)), x̂∗∗

d(σ(s))).

But this is a contradiction because x̂∗∗
d(σ(r)), x̂∗∗

d(σ(s)) belongs to the
unit ball of ℓ∗∗

1 and the extension A2,1 of the Example 3.2.1 is not norm
attaining.

Using the idea of Example 3.2.1, we can produce an example of an
n-linear map such that all the Arens extensions of this map are pairwise
different. For r ̸= s, define the affine subspace of ℓ1 × · · · × ℓ1

Xr,s :=
(x1, . . . , xn) ∈ ℓ1 × · · · × ℓ1 : xi = e1 if i ̸= r, s

xr(1) = xs(1) = 0

 .
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3.2 Arens extensions and norm attaining multilinear forms

Then, for two fixed different permutations σ, η ∈ Σn we can define
i0 := max{i : σ(i) ̸= η(i), 1 ≤ i ≤ n} and consider the affine subspace
Xσ(i0),η(i0).

Proposition 3.2.3. Let B ∈ L(nℓ1) defined by

B(x1, x2, . . . , xn) :=
n∑

r=2

r−1∑
j=1

(
n∏

i=1
i ̸=r,j

xi(1))A({xj(t)}∞
t=2, {xr(t)}∞

t=2)

where A is the bilinear form of the Example 3.2.1. If we consider two
different permutations σ, η ∈ Σn, with σ(i0) > η(i0) where i0 := max{i :
σ(i) ̸= η(i), 1 ≤ i ≤ n}, then the Arens extension Bσ attains its supre-
mum on the ω∗-closure of the set Xσ(i0),η(i0) defined as above, whereas
Bη does not attain its supremum on the ω∗-closure of the set Xσ(i0),η(i0).

Furthermore, the Arens extensions of B associated to these permuta-
tions are different, hence all the extensions of B are pairwise different.

Proof. Fix two permutations σ, η ∈ Σn such that σ(i0) > η(i0). First
we show that |Bσ| does not attain the supremum at a w∗-cluster point
of Xσ(i0),η(i0).

Notice that xσ(i0)(1) = xη(i0)(1) = 0 and xd(1) = 1 for all d different
from σ(i0), η(i0) whenever (x1, . . . , xn) belongs to Xσ(i0),η(i0). Then, on
the subset Xσ(i0),η(i0), B(x1, . . . , xn) = A

(
{xη(i0)(t)}∞

t=2, {xσ(i0)(t)}∞
t=2

)
so

sup
(x1,...,xn)∈Xσ(i0),η(i0)

|B(x1, . . . , xn)| = 1.

Let (x∗∗
1 , . . . , x∗∗

n ) be an element in the ω∗-closure of Xσ(i0),η(i0) and
consider nets {xdi

}di∈Di
, i = 1, . . . , n, ω∗-convergent to x∗∗

i respec-
tively, such that (xd1 , . . . , xdn) ∈ Xσ(i0),η(i0) for all d1, . . . , dn. Then
B(xd1 , . . . , xdn) = A({xdη(i0)(t)}∞

t=2, {xdσ(i0)(t)}∞
t=2) in Xσ(i0),η(i0).
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Therefore,

Bσ(x∗∗
1 , . . . , x∗∗

n ) = lim
dσ(1)

· · · lim
dσ(n)

B(xd1 , . . . , xdn)

= lim
dσ(1)

· · · lim
dσ(n)

A
(
{xdη(i0)(t)}

∞
t=2, {xdσ(i0)(t)}

∞
t=2

)
= lim

dη(i0)
lim

dσ(i0)
A

(
{xdη(i0)(t)}

∞
t=2, {xdσ(i0)(t)}

∞
t=2

)
= A1,2

(
x̂∗∗

η(i0), x̂∗∗
σ(i0)

)
where x̂∗∗

η(i0), x̂∗∗
σ(i0) are the ω∗-limit of the nets

{
{xdη(i0)(t)}∞

t=2

}
dη(i0)

,{
{xdσ(i0)(t)}∞

t=2

}
dσ(i0)

respectively. This happens since the backward
shift defined from ℓ1 into ℓ1 as L({x(t)}∞

t=1) = {x(t)}∞
t=2 is ∥ · ∥-∥ · ∥-

continuous, so L is ω-ω-continuous and the canonical extension L̂ defined
from ℓ∗∗

1 into ℓ∗∗
1 is ω∗-ω∗-continuous. As {xdη(i0)}dη(i0) and {xdσ(i0)}dσ(i0)

are ω∗-convergent to x∗∗
dη(i0)

and x∗∗
dσ(i0)

respectively, then L({xdη(i0)}dη(i0))
and L({xdσ(i0)}dσ(i0)) are ω∗-convergent to some points x̂∗∗

η(i0) and x̂∗∗
σ(i0)

respectively.
By Example 3.2.1, A1,2 does not attain its norm, hence |Bσ| does

not attains its supremum on the ω∗-closure of Xσ(i0),η(i0).
Similar calculations show that Bη(x∗∗

1 , . . . , x∗∗
n ) = A2,1(x̂∗∗

η(i0), x̂∗∗
σ(i0)).

By Example 3.2.1, A2,1 attains its norm, hence |Bη| attains its supremum
on the ω∗-closure of Xσ(i0),η(i0).

Based on Lindenstrauss’ result and making use of the Arens exten-
sions to the second duals, Acosta [Aco98] proved a Lindenstrauss type
result for bilinear forms whose third Arens transpose attains its norm.
Afterwards, in [AGM03] the denseness of bilinear forms whose Arens
extensions to the biduals attain their norms at the same point was es-
tablished.
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The generalization of Lindenstrauss’ result to n-linear vector-valued
mappings was finally obtained in [AGM06] in its strongest form.

Theorem 3.2.4 ([AGM06, Theorem 2.1]). Let Xi be Banach spaces
(1 ≤ i ≤ n). Then the set of n-linear forms on X1 × · · · × Xn such that
all their Arens extensions to X∗∗

1 × · · · × X∗∗
n attain their norms at the

same n-tuple is dense in the space L(X1, . . . , Xn).

The asymmetry between the Arens extensions of Proposition 3.2.3
reveals the importance of the stronger condition of attaining their norms
simultaneously in Theorem 3.2.4.

3.3 Sequences characterization of norm
attaining Arens extensions

We now present some general results on norm attaining Arens extensions
of multilinear forms on general Banach spaces.

It is well known that, under the first axiom of separability, nets can
be replaced with sequences, which turns out to be an advantage when
dealing with limits. Our first result is just a lemma that will clarify how
to pass from nets to sequences in the context of several indices that will
be helpful in the context of multilinear mappings.

Lemma 3.3.1. Let n ∈ N. For each j = 1, . . . , n let Dj be an infinite
directed set. Consider a family {aα1,...,αn}(α1,...,αn)∈D1×···×Dn of real or
complex numbers. If the iterated limit a := limα1∈D1 · · · limαn∈Dn aα1,...,αn

is finite then there exist strictly increasing sequences {αj(m)}∞
m=1 in Dj,

1 ≤ j ≤ n, such that

lim
m1→∞

· · · lim
mn→∞

aα1(m1),...,αn(mn) = a.
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Proof. We proceed by induction on n. For n = 1, since limα1∈D1 aα1 = a,
for each k ∈ N there exists α1(k) ∈ D1 such that |aα1 − a| < 1

k
for all

α1 ≥ α1(k). Besides, by the condition on D1, we can choose the sequence
{α1(k)}k∈N strictly increasing.

Assume that the result is true for n − 1 and let us prove it for n. So,
if we assume that a = limα1∈D1 · · · limαn∈Dn aα1,...,αn is finite, define

bα1,...,αn−1 := lim
αn∈Dn

aα1,...,αn−1,αn .

By the assumption before applied to the family of numbers

{bα1,...,αn−1}(α1,...,αn−1)∈D1×···×Dn−1 ,

for each j = 1, . . . , n − 1 there exists a strictly increasing sequence
{αj(mj)}mj∈N such that

a = lim
m1→∞

· · · lim
mn−1→∞

bα1(m1),...,αn−1(mn−1).

Let us construct the sequence {αn(k)}k∈N by induction on k.
Since bα1(1),...,αn−1(1) = limαn∈Dn aα1(1),...,αn−1(1),αn , there exists αn(1) ∈

Dn such that

|bα1(1),...,αn−1(1) − aα1(1),...,αn−1(1),αn| < 1

for all αn ≥ αn(1). Assume that we have found αn(1), . . . , αn(k − 1) ∈
Dn with αn(1) < . . . < αn(k − 1) and such that |bα1(m1),...,αn−1(mn−1) −
aα1(m1),...,αn−1(mn−1),αn| < 1

l
for all αn ≥ αn(l), all 1 ≤ m1, . . . , mn−1 ≤ l

and all l = 1, . . . , k − 1.
Fix 1 ≤ m1, . . . , mn−1 ≤ k. Since

bα1(m1),...,αn−1(mn−1) = lim
αn∈Dn

aα1(m1),...,αn−1(mn−1),αn ,
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3.3 Sequences characterization of norm attaining Arens extensions

there exists αn(m1, . . . , mn−1) ∈ Dn, with αn(m1, . . . , mn−1) ≥ αn(k −
1), such that

|bα1(m1),...,αn−1(mn−1) − aα1(m1),...,αn−1(mn−1),αn| <
1
k

for all αn ≥ αn(m1, . . . , mn−1). Take αn(k) > αn(m1, . . . , mn−1) for all
1 ≤ m1, . . . , mn−1 ≤ k. Then

|bα1(m1),...,αn−1(mn−1) − aα1(m1),...,αn−1(mn−1),αn| <
1
k

whenever αn ≥ αn(k). Hence the limit limk→∞ aα1(m1),...,αn−1(mn−1),αn(k)

exists and is equal to bα1(m1),...,αn−1(mn−1). Now,

a = lim
m1→∞

· · · lim
mn−1→∞

bα1(m1),...,αn−1(mn−1)

= lim
m1→∞

· · · lim
mn−1→∞

lim
mn→∞

aα1(m1),...,αn−1(mn−1),αn(mn)

and the proof is complete.

Theorem 3.3.2. Let X1, . . . , Xn be infinite dimensional Banach spaces,
C ∈ L(X1, . . . , Xn) and σ ∈ Σn. If the extension Cσ attains its norm,
then there exist sequences {x1

m1}∞
m1=1, . . . , {xn

mn
}∞

mn=1 with each xk
mk

∈
BXk

, mk ∈ N and k = 1, . . . , n, such that

lim
mσ(1)→∞

. . . lim
mσ(n)→∞

|C(x1
m1 , . . . , xn

mn
)| = ∥C∥.

Proof. For simplicity we assume that σ = Id. Let (x∗∗
1 , . . . , x∗∗

n ) be a
point in BX∗∗

1
× · · · × BX∗∗

n
where Cσ attains its norm. Let K = {k :

x∗∗
k ∈ X∗∗ \ X}. By density, each x∗∗

k is the weak-star limit of a net
{xk

αk
}αk∈Dk

in BXk
, k ∈ K. For k /∈ K, set Dk = N and xk

αk
:= x∗∗

k ∈ X

for all αk ∈ Dk. Then
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∥C∥ = ∥Cσ∥ = |Cσ(x∗∗
1 , . . . , x∗∗

n )| = lim
α1∈D1

· · · lim
αn∈Dn

|C(x1
α1 , . . . , xn

αn
)|.

By Lemma 3.3.1 applied to aα1,...,αn := |C(x1
α1 , . . . , xn

αn
)|, we obtain the

desired sequences {xk
mk

}∞
mk=1, for every 1 ≤ k ≤ n.

Given a Banach space X, a sequence {xn}∞
n=1 in X such that {xn}∞

n=1

is a basis for its closed linear span is called a basic sequence in X. It is
easy to show that every infinite-dimensional Banach space has a basic
sequence; that is, every Banach space X contains a closed, infinite-
dimensional subspace Y with a basis. For this we need the definition
of cofinal set. A subset D of A is said to be cofinal if for every a ∈ A,
there exists some d ∈ D such that a ≤ d.

Proposition 3.3.3. Let X be a non reflexive infinite dimensional Ba-
nach space, and let {xn}∞

n=1 be a basic sequence. Then, any non zero
weak-star cluster point of {xn}∞

n=1 belongs to X∗∗ \ {xi}∞
i=1.

Proof. Let Z be the closed linear span of {xn}∞
n=1 and let {x∗

n}∞
n=1 be

the orthogonal functionals in Z∗ associated to {xn}∞
n=1. By the Hahn-

Banach Extension Theorem, we can consider each x∗
n in X∗.

Let x∗∗ ∈ X∗∗ be a non zero cluster point of {xn}∞
n=1, and let {xd}d∈D

be a subnet of {xn}∞
n=1 weak-star converging to x∗∗.

We first prove that x∗∗ is none of the vectors xn. Assume this is
not the case, that is x∗∗ = xn0 for some n0. Since {xd}d∈D weak-star
converges to x∗∗, the net {⟨xd, x∗

n0⟩}d∈D converges to ⟨x∗∗, x∗
n0⟩ = 1.

Then, there is d̃ ∈ D such that

|⟨xd, x∗
n0⟩| >

1
2 (3.2)

for all d ≥ d̃. Since D is cofinal, there is d1 ∈ D such that d1 ≥ d̃ and
d1 ≥ n0 + 1 > n0. By the biorthogonality of {x∗

n}∞
n=1 it follows that

⟨xd1 , x∗
n0⟩ = 0, which contradicts (3.2).
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3.3 Sequences characterization of norm attaining Arens extensions

We prove now that x∗∗ /∈ Z. Let us assume that x∗∗ ∈ Z. Then there
is a unique sequence of scalars {an}∞

n=1 so that x∗∗ = ∑∞
n=1 anxn. Let

ϵ > 0 and take n1 := 1. Since {⟨xd, x∗
1⟩}d∈D converges to ⟨x∗∗, x∗

1⟩ = a1,
there is ˜̃d ∈ D so that |⟨xd, x∗

1⟩ − a1| < ϵ for all d ≥ ˜̃d. Since D

is cofinal, there is d̃1 ∈ D such that d̃1 ≥ 2. Let d̃2 ≥ d̃1,
˜̃d. Then

n2 := d̃2 ≥ d̃1 > 1 = n1. Therefore ⟨xd̃2
, x∗

1⟩ = ⟨xn2 , x∗
1⟩ = 0 and

|⟨xd̃2
, x∗

1⟩−a1| < ϵ. Hence, |a1| < ϵ. This shows that a1 = 0. Reiterating
this process we can prove that an = 0 for all n ∈ N, which contradicts
that x∗∗ ̸= 0.

Now, we can use Proposition 3.3.3 to characterize the multilinear
forms that attain their norm at points strictly in the bidual, in the
case that the spaces X1, . . . , Xn admit a normalized Schauder basis.
Recall that a Schauder basis of a Banach space X is a sequence {xn}∞

n=1

of elements of X such that for every element x ∈ X there exists a
unique sequence {αn}∞

n=1 of scalars in K so that x = ∑∞
n=0 αnxn, where

the convergence is understood with respect to the norm topology, i.e.,
limm→∞ ∥x − ∑m

n=0 αnxn∥X = 0.

Theorem 3.3.4. Let n ∈ N. For each 1 ≤ j ≤ n let Xj be a Banach
space with a normalized Schauder basis {xj

n}∞
n=1. Let C ∈ L(X1, . . . , Xn)

and σ ∈ Σn. If there exist strictly increasing sequences of natural num-
bers {k(j, mj)}∞

mj=1, j = 1, . . . , n, such that

lim
mσ(1)→∞

. . . lim
mσ(n)→∞

|C(x1
k(1,m1), . . . , xn

k(n,mn))| = ∥C∥

then Cσ attains its norm at a point in (BX∗∗
1

\ X1) × · · · × (BX∗∗
n

\ Xn).

Proof. Consider any 1 ≤ j ≤ n. Let x∗∗
j be a cluster point of the

subsequence {xj
k(j,mj)}∞

mj=1 and hence of the sequence {xj
n}∞

n=1. As the
Schauder basis is normalized, x∗∗

j ∈ BX∗∗
j

and by Proposition 3.3.3 x∗∗
j /∈
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Xj. Let {xk(j,dj)}dj∈Dj
be a subnet of {xk(j,mj)}∞

mj=1 that weak-star
converges to x∗∗

j . Then

∥Cσ∥ = ∥C∥ = lim
mσ(1)→∞

· · · lim
mσ(n)→∞

|C(x1
k(1,m1), . . . , xn

k(n,mn))|

= lim
dσ(1)∈Dσ(1)

· · · lim
dσ(n)∈Dσ(n)

|C(x1
k(1,d1), . . . , xn

k(n,dn))|

= |Cσ(x∗∗
1 , . . . , x∗∗

n )|.

3.4 Norm attaining extensions of multilin-
ear forms on ℓ1

Our aim now is to show that, when working with the space ℓ1, one can
strengthen the results in Section 3.3. But before, let us recall some well
known facts about ℓ1 that we need to use later. The first is that, since
ℓ∗∗

1 is the third dual of c0, then ℓ1 is a complemented subspace of ℓ∗∗
1 .

Actually, ℓ∗∗
1 = c∗

0 ⊕ c⊥
0 = ℓ1 ⊕ c⊥

0 , where a linear form belongs to c⊥
0 if

and only if it vanishes on c0. Moreover, ℓ∗∗
1 is an 1-sum of ℓ1 and c⊥

0

([HWW93, p.158]) i.e. if we denote by π : ℓ∗∗
1 → ℓ1 the projection of

ℓ∗∗
1 onto ℓ1, we have that ∥x∗∗∥ = ∥π(x∗∗)∥ + ∥x⊥∥ for every x∗∗ in ℓ∗∗

1 ,
where x⊥ = x∗∗ −π(x∗∗). If A is in L(nℓ1), since the unit ball of ℓ1 is the
convex hull of its extremal points, we have, as in the linear case, that

∥A∥ = sup
k1,...,kn∈N

|A(ek1 , . . . , ekn)|.

In particular, it is easy to see that

NA(nℓ1) = {f ∈ L(nℓ1) : ∃(k1, . . . , kn) ∈ Nn such that f(ek1 , . . . , ekn) = ∥f∥},

where NA(nℓ1) stands for the set of norm attaining n-linear form on
ℓ1 × · · ·(n) × ℓ1.
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We have seen that, even if the norm of an extension of a multilinear
functional is attained in points of the bidual, we can deal with sequential
limits of points in the unit ball of the space, Theorem 3.3.2. We now
prove that, when dealing with bilinear forms defined on ℓ1×ℓ1, sequences
in the unit ball of ℓ1 can be replaced by subsequences of the canonical
basis of ℓ1, and so a full characterization works.

To get this characterization we need to first prove a few lemmas.
The first one asserts that if a multilinear form A on ℓ1 attains its norm
at a point of Bℓ∗∗

1
\ ℓ1 × · · · × Bℓ∗∗

1
\ ℓ1, then this point can be chosen in

c⊥
0 × · · · × c⊥

0 .

Lemma 3.4.1. Let A ∈ L(nℓ∗∗
1 ) with ∥A∥ = 1, x∗∗

1 , . . . , x∗∗
n ∈ Bℓ∗∗

1
\

ℓ1 and x⊥
i = x∗∗

i − π(x∗∗
i ), i = 1, . . . , n. If A attains its norms at

(x∗∗
1 , . . . , x∗∗

n ) then A attains its norm at ( x⊥
1

∥x⊥
1 ∥ , . . . , x⊥

n

∥x⊥
n ∥) too.

Proof. Let us prove it first for n = 1, that is, for A being linear. If we
assume that |A(x⊥

1 )| < ∥x⊥
1 ∥ then for some ε ∈ K with |ε| = 1

1 = A(εx∗∗
1 ) = A(εx⊥

1 ) + A(επ(x∗∗
1 )) < ∥x⊥

1 ∥ + ∥π(x∗∗
1 )∥ = ∥x∗∗

1 ∥ = 1

which is a contradiction.
Assume now that A is bilinear. The associated linear mapping

A1(y) := A(y, x∗∗
2 ), y ∈ ℓ∗∗

1 , attains its norm at x∗∗
1 ∈ Bℓ∗∗

1
\ ℓ1 and

so, by the linear case, A1 attains its norm at x⊥
1

∥x⊥
1 ∥ . Now, if we consider

the other associated linear mapping A2(y) := A( x⊥
1

∥x⊥
1 ∥ , y), y ∈ ℓ∗∗

1 , attains

its norm at x∗∗
2 and so at x⊥

2
∥x⊥

2 ∥ , that is, |A( x⊥
1

∥x⊥
1 ∥ ,

x⊥
2

∥x⊥
2 ∥)| = 1.

An easy induction yields the general case.

Lemma 3.4.2. Let M and N be subsets of N, 0 < β < 1 and for each
n ∈ N let an ≥ 0 be such that ∑∞

n=1 an = 1. If ∑
t∈M at +

∑
t∈N at > 2−β

then ∑
t∈M∩N at > 1 − β.
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Proof. Since

1 =
∞∑

n=1
an ≥

∑
t∈M\N

at +
∑

t∈N\M

at +
∑

t∈M∩N

at

it follows that

∑
t∈M\N

at +
∑

t∈N\M

at ≤ 1 −
∑

t∈M∩N

at.

Combining this with the hypothesis we finally get that

2 − β <
∑

t∈M\N

at +
∑

t∈M∩N

at +
∑

t∈N\M

at +
∑

t∈M∩N

at

≤ 2
∑

t∈M∩N

at −
∑

t∈M∩N

at + 1 =
∑

t∈M∩N

at + 1.

Theorem 3.4.3. Given a bilinear form A ∈ L(2ℓ1) of norm one, the
following are equivalent,

(a) lim
i

lim
j

|A(emi
, enj

)| = 1 for some strictly increasing sequences of
natural numbers {mi}∞

i=1 and {nj}∞
j=1,

(b) There exist x∗∗
1 , x∗∗

2 ∈ ℓ∗∗
1 \ℓ1 of norm one such that |AId(x∗∗

1 , x∗∗
2 )| =

1.

Proof. (a) ⇒ (b) is a consequence of Theorem 3.3.4.
(b) ⇒ (a): Let {xd1}d1∈D1 and {xd2}d2∈D2 be nets in the unit ball of ℓ1

weak-star-convergent to the points x∗∗
1 and x∗∗

2 respectively. Notice that
ℓ1 is an L-summand space in its bidual so ∥x∗∗

s ∥ = ∥π(x∗∗
s )∥ + ∥x∗∗

s −
π(x∗∗

s )∥, for s = 1, 2, where π is the projection from ℓ∗∗
1 onto ℓ1. For

each n ∈ N let πn denote the projection from ℓ∗∗
1 onto ℓ1 × · · ·(n) × ℓ1. Note

that πn is weak-star continuous.
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By Lemma 3.4.1 we can assume that π(x∗∗
1 ) = π(x∗∗

2 ) = 0. Consider
the linear form AId(·, x∗∗

2 ) on ℓ1 with norm one defined by AId(x, x∗∗
2 ) =

limd2 A(x, xd2) for all x in ℓ1, whenever {xd2}d2∈D2 is a net in the unit
ball of ℓ1 weak-star convergent to x∗∗

2 .
Let us see that there exists a strictly increasing sequence of nat-

ural numbers {mi}∞
i=1 with lim

i
|AId(emi

, x∗∗
2 )| = 1. If this is not the

case, then there exists ϵ > 0 and there exists a natural number r with
|AId(ek, x∗∗

2 )| ≤ 1 − ϵ for all k > r. Let {xd1}d1∈D1 be a net in the unit
ball of ℓ1 weak-star convergent to x∗∗

1 . Since π(x∗∗
1 ) = 0 and πr(xd1)

converges to πr(x∗∗
1 ) = 0 then {xd1 − πr(xd1)}d1∈D1 weak-star converges

to x∗∗
1 . Moreover, ∥xd1 − πr(xd1)∥ ≤ ∥xd1∥ ≤ 1 and so, by replacing xd1

with xd1 − πr(xd1), we can assume that πr(xd1) = 0, i.e. xd1(t) = 0 for
all t = 1, . . . , r.

Therefore for all d1 ∈ D1

|AId(xd1 , x∗∗
2 )| = |

∞∑
t=1

xd1(t)AId(et, x∗∗
2 )|

≤
∞∑

t=1
|xd1(t)| |AId(et, x∗∗

2 )|

≤
∞∑

t=r+1
|xd1(t)| |AId(et, x∗∗

2 )|

≤ 1 − ϵ,

contradicting that | limd1 AId(xd1 , x∗∗
2 )| = |AId(x∗∗

1 , x∗∗
2 )| = 1.

Without loss of generality assume that for all i ∈ N

1 − |AId(emi
, x∗∗

2 )| ≤ 2−(2i+2). (3.3)

By using induction, let us find a strictly increasing sequence of nat-
ural numbers {nj}∞

j=1 such that |A(emi
, enj

)| ≥ 1 − 2−i for all 1 ≤ i ≤ j.
Let {xd2}d2∈D2 be a net in the unit ball of ℓ1 weak-star convergent to
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x∗∗
2 . Since | limd2 AId(em1 , xd2)| = |AId(em1 , x∗∗

2 )| > 1 − 2−4, there exists
do in D2 with |A(em1 , xd0)| > 2−1. Then

2−1 < |A(em1 , xd0)| ≤
∑
t∈N

|xd0(t)| |A(em1 , et)|

≤ sup
t∈N

{|A(em1 , et)|}
∑
t∈N

|xd0(t)|

≤ sup
t∈N

{|A(em1 , et)|}.

Let n1 be a natural number with |AId(em1 , en1)| > 2−1. Now, assume
we have found n1 < · · · < nr with |A(emi

, enj
)| > 1 − 2−i for 1 ≤ i ≤

j ≤ r and let us find nr+1. Considering that π(x∗∗
2 ) = 0, by replacing

xd2 with xd2 −πnr(xd2), we can assume that πnr(xd2) = 0, i.e. xd2(t) = 0
for all t = 1, . . . , nr and all d2 ∈ D2.

By (3.3), consider x0 an element of the net {xd2}d2∈D2 such that

|A(emi
, x0)| ≥ 1 − 2−2i for i = 1, . . . , r + 1. (3.4)

For each i = 1, . . . , r + 1 define the set

Ti := {t ∈ N : t > nr, |AId(emi
, et)| ≥ 1 − 2−i}. (3.5)

Therefore, for every i = 1, . . . , r + 1,

1 − 2−2i ≤ |A(emi), x0)|
≤

∑
t∈Ti

|x0(t)||A(emi
, et)| +

∑
t/∈Ti

|x0(t)||A(emi
, et)|

≤
∑
t∈Ti

|x0(t)| + (1 − 2−i)
∑
t/∈Ti

|x0(t)|

≤
∑
t∈Ti

|x0(t)| + (1 − 2−i)
(

1 −
∑
t∈Ti

|x0(t)|
)

= (1 − 2−i) + 2−i
∑
t∈Ti

|x0(t)|,
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where in the first inequality we have used (3.4). Thus 2−i ∑
t∈Ti

|x0(t)| ≥
2−i − 2−2i and so ∑

t∈Ti

|x0(t)| ≥ 1 − 2−i. (3.6)

We use now finite induction and Lemma 3.4.2 to see that ⋂r+1
i=1 Ti ̸= ∅.

Indeed, by (3.6)

∑
t∈T1

|x0(t)| +
∑
t∈T2

|x0(t)| > 2 −
(1

2 + 1
22

)
,

and Lemma 3.4.2 yields that ∑
t∈T1∩T2 |x0(t)| > 1−

(
1
2 + 1

22

)
. If for some

1 ≤ l < r + 1 we assume that

∑
t∈∩l

j=1Tj

|x0(t)| > 1 −
(1

2 + 1
22 + · · · + 1

2l

)
,

then

∑
t∈∩l

j=1Tj

|x0(t)| +
∑

t∈Tl+1

|x0(t)| > 2 −
(1

2 + 1
22 + · · · + 1

2l
+ 1

2l+1

)
.

Once more, Lemma 3.4.2 yields that

∑
t∈∩l+1

j=1Tj

|x0(t)| > 1 −
(1

2 + 1
22 + · · · + 1

2l+1

)
.

Therefore, we can conclude that

∑
t∈∩r+1

j=1Tj

|x0(t)| > 1 −
(1

2 + 1
22 + · · · + 1

2r+1

)
,

and so ∩r+1
j=1Tj ̸= ∅. Let nr+1 := min

(
∩r+1

j=1 Tj

)
. Note that nr+1 > nr.
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From (3.5) it follows that

|A(emi
, enr+1)| ≥ 1 − 2−i (3.7)

for all i = 1, . . . , r + 1.

By Equation (3.7)

1 ≥ lim inf
j

|A(emi
, enj

)| ≥ 1 − 2−i .

Then
lim

i
lim inf

j
|A(emi

, enj
)| = 1. (3.8)

To finish the proof, we show that the lim inf can be replaced with lim
just by choosing a suitable subsequence of {enj

}∞
j=1.

Let us proceed once more by induction. By (3.7), |A(em1 , enj
)| ≥

1 − 1
2 for all j ≥ 1. Then, there exists a subsequence {enj k

}∞
k=1 of

{enj
}∞

j=1 such that limk |A(em1 , enj k
)| exists and is great than or equal

to 1 − 1
2 . To make the notation clear, we write n(1, k) := njk and so,

lim
k

|A(em1 , en(1,k))| ≥ 1 − 1
2 .

Assume that we have a chain of sequences {en(1,j)}∞
j=1, . . . , {en(p,j)}∞

j=1

each of them being a subsequence of the previous one, such that

lim
j

|A(emi
, en(i,j))| ≥ 1 − 1

2i
,

for all i = 1, . . . , p. Let us construct a subsequence {en(p+1,j)}∞
j=1 of

{en(p,j)}∞
j=1 such that |A(emp+1 , en(p+1,j))| ≥ 1− 1

2p+1 for all j ∈ N. Indeed,
since |A(emp+1 , en(p,j)| ≥ 1 − 1

2p+1 for all j ≥ p + 1, there exists a subse-
quence {en(p,j)l

}∞
l=1 of {en(p,j)}∞

j=1 such that liml |A(emp+1 , en(p,j)l
)| exists

and is great than or equal to 1 − 1
2p+1 . We write n(p + 1, l) := n(p, j)l
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and so
lim

l
|A(emp+1 , en(p+1,l))| ≥ 1 − 1

2p+1 .

So, we have countably many sequences {en(1,j)}∞
j=1, {en(2,j)}∞

j=1, . . ., each
of them being a subsequence of the previous one, such that

lim
j

|A(emi
, en(i,j))| ≥ 1 − 1

2i
,

for all i = 1, 2, . . .. The diagonal sequence {en(j,j)}∞
j=1 is the one we are

looking for. Note that {en(j,j)}∞
j=i is a subsequence of {en(i,j)}∞

j=1 and
then limj |A(emi

, en(j,j))| exists and

lim
j

|A(emi
, en(j,j))| ≥ 1 − 1

2i
,

for all i ∈ N.

Therefore, we have found sequences {emi
}∞

i=1 and {en(j,j)}∞
j=1, with

{mi}∞
i=1 and {n(j, j)}∞

j=1 strictly increasing, for which there exists

lim
i

lim
j

|A(emi
, en(j,j))| = 1.

This concludes the case with π(x∗∗
1 ) = π(x∗∗

2 ) = 0.
If π(x∗∗

1 ) ̸= 0 or π(x∗∗
2 ) ̸= 0, then y∗∗

1 = x∗∗
1 − π(x∗∗

1 ) and y∗∗
2 =

x∗∗
2 − π(x∗∗

2 ) are non zero points of ℓ∗∗
1 \ ℓ1 with |A( y∗∗

1
∥y∗∗

1 ∥ ,
y∗∗

2
∥y∗∗

2 ∥)| = 1, and
the former case gives us the desired result.

Corollary 3.4.4. Given a bilinear form A ∈ L(2ℓ1) of norm one and
σ ∈ Σ2, the following are equivalent,

(a) lim
(i,σ(1),σ)

lim
(j,σ(2),σ)

|A(em(i,1,σ), em(j,2,σ))| = 1 for some strictly increas-

ing sequences of natural numbers
(
m(i, 1, σ)

)∞

i=1
and

(
m(j, 2, σ)

)∞

j=1
,
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(b) There exist x∗∗
1,σ, x∗∗

2,σ ∈ ℓ∗∗
1 \ℓ1 of norm one such that |Aσ(x∗∗

1,σ, x∗∗
2,σ)| =

1.

Remark 3.4.5. We do not know if Theorem 3.4.3 is valid for n-linear
mappings with n > 2. Our conjecture is the following: Let n ∈ N,
A ∈ L(nℓ1) and σ ∈ Σn. If Aσ attains its norm on ℓ∗∗

1 but only in
n-tuples that belong to (Bℓ∗∗

1
\ ℓ1)n, then there exist increasing sequences

of natural numbers {k(j, mj)}∞
mj=1, j = 1, . . . , n, such that

lim
mσ(1)→∞

. . . lim
mσ(n)→∞

|A(ek(1,m1), . . . , ek(n,mn))| = ∥A∥

Next we give the following lemma.

Lemma 3.4.6. Given a sequence of n-tuples {(k1(h), . . . , kn(h))}∞
h=1 in

Nn such that each {kj(h)}∞
h=1 is strictly increasing, j = 1, . . . , n, define

the n-linear mapping A : ℓn
1 −→ R by

A(ek1 , . . . , ekn) =


(

k1(h)
k1(h)+1

)n
if ki = ki(h), i = 1, . . . , n for some h ∈ N,

0 otherwise.

Then we have that ∥A∥ = 1 and there is no permutation σ such that
Aσ attains its norm (at any n-tuple of Bℓ∗∗

1
× · · · × Bℓ∗∗

1
).

Proof. Note first that, for arbitrary xi := ∑∞
k=1 ak,iek ∈ Bℓ1 , i = 1, . . . , n,

if we fix 1 ≤ j ≤ n then

|A(x1, · · · , xn)| ≤ ∥x1∥ . . . ∥xj−1∥ · ∥xj+1∥ · · · ∥xn∥
∞∑

h=1

k1(h)
k1(h) + 1 |akj(h),j|

≤
∞∑

h=1

k1(h)
k1(h) + 1 |akj(h),j|.

Thus, for any σ ∈ Σn, Aσ, any x∗∗
1 , . . . , x∗∗

k−j, x∗∗
j+1, . . . , x∗∗

n ∈ Bℓ∗∗
1

and
any xj ∈ Bℓ1 , by taking nets in Bℓ1 weak-star convergent if necessary,
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3.4 Norm attaining extensions of multilinear forms on ℓ1

we get

|Aσ(x∗∗
1 , . . . , x∗∗

j−1, xj, x∗∗
j+1, . . . , x∗∗

n )| ≤
∞∑

h=1

k1(h)
k1(h) + 1 |akj(h),j| < 1. (3.9)

Hence if there exist a permutation σ ∈ Σn and x∗∗
1 , . . . , x∗∗

n in Bℓ∗∗
1

such
that ∥x∗∗

j ∥ = 1 for every j and

|Aσ(x∗∗
1 , . . . , x∗∗

n )| = 1,

we have that x∗∗
1 , . . . , x∗∗

n ∈ Bℓ∗∗
1

\ Bℓ1 . Moreover, by Lemma 3.4.1 it
can also be assumed that x∗∗

j belongs to c⊥
0 for j = 1, . . . , n. Finally,

by making a rearrangement of coordinates, if necessary, we can assume
that σ is the identity permutation.

We define B : ℓ1 × ℓ1 → R by B(x, y) = AId(x, y, x∗∗
3 , . . . , x∗∗

n ).
Clearly

|BId(x∗∗
1 , x∗∗

2 )| = |AId(x∗∗
1 , . . . , x∗∗

n )| = 1.

By Theorem 3.4.3, there exist two sequences (enj
) and (eml

) such that

lim
j→∞

lim
l→∞

|B(enj
, eml

)| = 1.

Thus there exist j, l such that

|B(enj
, eml

)| >
1
2 .

But, there exists h0 such that nj < k1(h) and ml < k2(h) for every
h ≥ h0 and we get that

(nj, ml, k3, . . . , kn) ̸∈ {(k1(h), . . . , kn(h)) : h ≥ h0},

for every k3, . . . , kn ∈ N with k3 > k3(h0), . . . , kn > kn(h0). Now con-
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sider a net {xdj
}dj∈Dj

in Bℓ1 weak-star convergent to x∗∗
j for j = 3, . . . , n.

Since x∗∗
j belongs to c⊥

0 , as in the proof of Theorem 3.4.3, we can assume
additionally that for every dj ∈ Dj, the first kj(h0)-components of xdj

are 0. Hence
A(enj

, eml
, ek3 , . . . , ekn−1 , xdn) = 0,

for every dn ∈ Dn. Hence

AId(enj
, eml

, ek3 , . . . , ekn−1 , x∗∗
n ) = 0,

for every k3 > k3(h0), . . . , kn > kn(h0). By induction we obtain the
contradiction

B(enj
, eml

) = AId(enj
, eml

, x∗∗
3 , . . . , x∗∗

n ) = 0.

Theorem 3.4.7. Given a subset P ⊆ Σn, there exists an n-linear form
A(P ) ∈ L(nℓ1) with ∥A(P )∥ = 1 such that A(P )σ is norm attaining if
and only if σ ∈ P .

Proof. The proof will be divided into two cases.
If P is the empty set, consider A(P ) ∈ L(nℓ1)

A(P )(ek1 , ek2 , . . . , ekn) =


(

k1
k1+1

)n

if k1 = k2 = · · · = kn,

0 otherwise.

By Lemma 3.4.6, A(P ) does not attain its norm at any point of the unit
ball of ℓ∗∗

1 .
If P is not empty, consider

A(P )(ek1 , ek2 , . . . , ekn) =


∏n
i=1

ki

ki+1 if ∃σ ∈ P, kσ(1) ≤ · · · ≤ kσ(n),

0 otherwise.
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Clearly, ∥A(P )∥ = 1. A similar argument to the one given in (3.9)
shows that for any σ ∈ Σn, Aσ does not attain its norm at any n-tuple
in Bℓ∗∗

1
× · · · × Bℓ∗∗

1
with at least a coordinate j belonging to Bℓ1 . If

σ ∈ P then

lim
kσ(1)→∞

. . . lim
kσ(n)→∞

A(P )(ek1 , . . . , ekn) = 1.

Hence, considering x∗∗ a weak-star cluster point of the sequence {ek}∞
k=1

we obtain
A(P )σ(x∗∗, . . . , x∗∗) = 1.

Thus, A(P )σ is norm attaining.

Now we see that A(P )σ does not attain its norm whenever σ is not
in P . For simplicity we will assume that σ is the identity permutation.
Let us assume that A(P )Id does attain its norm at (x∗∗

1 , . . . , x∗∗
n ) ∈

Bℓ∗∗
1

× · · · × Bℓ∗∗
1

. By the above observation, x∗∗
i is a point in Bℓ∗∗

1
\ ℓ1

for i = 1 . . . , n. By Lemma 3.4.1 we can assume that π(x∗∗
i ) = 0 for

i = 1, . . . , n. Let {xdi
}di∈Di

be nets in the unit sphere of ℓ1 weak-star
convergent to x∗∗

i , for i = 1, . . . , n.

Let l0 = 0. Since |A(P )Id(x∗∗
1 , . . . , x∗∗

n )| = 1 there exists d0
1 ∈ D1

with
|A(P )Id(xd0

1
, x∗∗

2 , . . . , x∗∗
n )| > 1 − 2−n. (3.10)

Let l1 be such that ∥πl1(xd0
1
)∥ > 1/2. Now, using (3.10) and since

π(x∗∗
2 ) = 0 we can find d2 ∈ D2 and a natural number l2 with

|A(P )Id(xd0
1
, xd0

2
, x∗∗

3 , . . . , x∗∗
n )| > 1 − 2−n

and ∥πl2(xd0
2
)∥ − ∥πl1(xd0

2
)∥ > 1/2. In general, by using finite induction

over i, we can find d0
i ∈ Di and a natural number li such that, for i =

2, . . . , n, |A(P )Id(xd0
1
, . . . , xd0

i
, x∗∗

i+1, . . . , x∗∗
n )| > 1 − 2−n and ∥πli(xd0

i
)∥ −
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∥πli−1(xd0
i
)∥ > 1/2.

But then, if we let C := {(t1, . . . , tn) ∈ Nn : li−1 < ti ≤ li for i =
1, . . . n}, since Id is not in P , we have A(P )(et1 , . . . , etn) = 0 for all
(t1, . . . , tn) ∈ C. Therefore,

1 − 2−n < |A(P )(xd0
1
, . . . , xd0

n
)|

≤
∑

(t1,...,tn)

n∏
i=1

|xd0
i
(ti)|A(P )(et1 , . . . , etn)

=
∑

(t1,...,tn)/∈C

n∏
i=1

|xd0
i
(ti)|A(P )(et1 , . . . , etn)

<
∑

(t1,...,tn)/∈C

n∏
i=1

|xd0
i
(ti)|

≤ 1 −
∑

(t1,...,tn)∈C

n∏
i=1

|xd0
i
(ti)|

= 1 −
n∏

i=1

(
∥πki

(xd0
i
)∥ − ∥πki−1(xd0

i
)∥

)
< 1 − 2−n

which is a contradiction. Hence A(P )Id does not attain its norm.

Theorem 3.4.8. Let A ∈ L(nℓ1) of norm one such that, for every ϵ > 0
and every σ ∈ Σn, there exist subsequences {ek(i,mi,σ)}∞

mi=1 (that depend
on σ and ϵ) of the sequence {ek}∞

k=1 so that

lim
mσ(1)→∞

. . . lim
mσ(n)→∞

|A(ek(1,m1,σ), . . . , ek(n,mn,σ))| > 1 − ϵ.

Then for every ϵ > 0 and each subset P ⊆ Σn, there exists A(P, ϵ) ∈
L(nℓ1) with ∥A(P, ϵ)∥ = 1 such that ∥A(P, ϵ) − A∥ ≤ ϵ, and A(P, ϵ)σ is
norm attaining if and only if σ ∈ P .
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3.4 Norm attaining extensions of multilinear forms on ℓ1

Proof. Consider the n-linear form

B(x1, . . . , xn) =
∑

k1,...,kn∈N
B(ek1 , . . . , ekn)

n∏
i=1

xi

(
ki

)

for x1, . . . , xn ∈ ℓ1, where

B(ek1 , . . . , ekn) =

A(ek1 , . . . , ekn) if 1 − ϵ
2 ≥ |A(ek1 , . . . , ekn)|,

(1 − ϵ
2)sign(A(ek1 , . . . , ekn)), if |A(ek1 , . . . , ekn)| > 1 − ϵ

2 .

We have ∥B∥ ≤ 1 − ϵ
2 .

For a fixed a non empty subset of permutations P , consider the
n-linear form A(P ) from Theorem 3.4.7 and define the n-linear form
A(P, ϵ) as follows.

A(P, ϵ)(ek1 , . . . , ekn) := B(ek1 , . . . , ekn)

+ sign
(
B(ek1 , . . . , ekn)

) ϵ

2A(P )(ek1 , . . . , ekn)

if k1 = k(1, m1, σ), . . . , kn = k(n, mn, σ), for some σ ∈ P , with mσ(1) ≤
· · · ≤ mσ(n) and B(ek1 , . . . , ekn) otherwise.

Clearly,

∥A(P, ϵ)∥ ≤ ∥B∥ + ϵ

2∥A(P )∥ ≤ 1 − ϵ

2 + ϵ

2 = 1.

Hence ∥A(P, ϵ)∥ ≤ 1.

By hypothesis, for each σ ∈ Σn, there exist sequences {ek(i,mi,σ)}∞
mi=1,

with the property that {k(i, mi, σ)}∞
mi=1 is strictly increasing, such that

lim
mσ(1)→∞

. . . lim
mσ(n)→∞

|A(ek(1,m1,σ), . . . , ek(n,mn,σ))| > 1 − ϵ

2 . (3.11)
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From (3.11) there exists m0
σ(1) such that for every mσ(1) ≥ m0

σ(1)

lim
mσ(2)→∞

. . . lim
mσ(n)→∞

|A(ek(1,m1,σ), . . . , ek(n,mn,σ))| > 1 − ϵ

2 .

Taking mσ(1) ≥ m0
σ(1), there is m0

σ(2) that depends on mσ(1), such that
for every mσ(2) ≥ m0

σ(2)

lim
mσ(3)→∞

. . . lim
mσ(n)→∞

|A(ek(1,m1,σ), . . . , ek(n,mn,σ))| > 1 − ϵ

2 .

Repeating this process and assuming that we have fixed natural num-
bers mσ(1), mσ(1), . . . , mσ(n−1) with mσ(1) ≥ m0

σ(1), mσ(2) ≥ m0
σ(2), . . . ,

mσ(n−1) ≥ m0
σ(n−1), where m0

σ(n−1) depends on mσ(1), mσ(2), . . . , mσ(n−2),
so that limmσ(n) |A(ek(1,m1,σ), . . . , ek(n,mn,σ))| > 1 − ϵ

2 , we can find m0
σ(n)

that depends on mσ(1), mσ(2), . . . , mσ(n−1), such that for every mσ(n) ≥
m0

σ(n)

|A(ek(1,m1,σ), . . . , ek(n,mn,σ))| > 1 − ϵ

2 .

Then,

|B(ek(1,m1,σ), . . . , ek(n,mn,σ))| = 1 − ϵ

2 , (3.12)

and then, ∥B∥ = 1 − ϵ
2 . Moreover, given σ ∈ P and δ > 0 we can take

mσ(1) ≤ · · · ≤ mσ(n) big enough so that A(P )(ek(1,m1,σ), . . . , ek(n,mn,σ)) ≥
1 − δ. Hence,

|A(P, ϵ)(ek(1,m1,σ), . . . , ek(n,mn,σ))| ≥ 1 − ϵ

2 + ϵ

2(1 − δ)

and so, ∥A(P, ϵ)∥ ≥ 1 − ϵ
2 + ϵ

2(1 − δ). Thus, ∥A(P, ϵ)∥ = 1.

Notice that |A(P, ϵ)(x1, . . . , xn)−B(x1, . . . , xn)| ≤ ϵ
2 , for all x1, . . . , xn

in ℓ1, hence

∥A(P, ϵ) − A∥ ≤ ∥A(P, ϵ) − B∥ + ∥B − A∥ ≤ ϵ.

72



3.4 Norm attaining extensions of multilinear forms on ℓ1

Now we show that A(P, ϵ)σ is norm attaining if and only if σ ∈ P .

Let σ /∈ P and assume that there is (x∗∗
1 , . . . , x∗∗

n ) ∈ Bℓ∗∗
1

× · · · × Bℓ∗∗
1

such that A(P, ϵ)σ(x∗∗
1 , . . . , x∗∗

n ) = 1. Since A(P )σ(x∗∗
1 , . . . , x∗∗

n ) < 1 we
have 1 < |Bσ(x∗∗

1 , . . . , x∗∗
n )| + ϵ

2 . Hence |Bσ(x∗∗
1 , . . . , x∗∗

n )| > 1 − ϵ
2 , which

is impossible.

Take now σ ∈ P . From (3.12) we have for mσ(1) ≤ · · · ≤ mσ(n)

|A(P, ϵ)(ek(1,m1,σ), . . . , ek(n,mn,σ))| = 1 − ϵ

2 + ϵ

2

n∏
i=1

mi

mi + 1 .

Hence

lim
mσ(1)→∞

· · · lim
mσ(n)→∞

|A(P, ϵ)(ek(1,m1,σ), . . . , ek(n,mn,σ))|

= lim
mσ(1)→∞

· · · lim
mσ(n)→∞

1 − ϵ

2 + ϵ

2

n∏
i=1

mi

mi + 1 = 1,

so A(P, ϵ)σ is norm attaining at a point (x∗∗
1 , . . . , x∗∗

n ), where each x∗∗
j is

a weak-star cluster point of the sequence {ek(j,mj ,σ)}∞
mj=1, j = 1, . . . , n.

If P = ∅, for every h, by taking ε = 1
h
, the process above gives the

existence of a sequence of n-tuples {(k1(h), . . . , kn(h))}∞
h=1 in Nn such

that each {kj(h)}∞
h=1 is strictly increasing, j = 1, . . . , n, and

|A(ek1(h), . . . , ekn(h)))| > 1 − 1
h

.

We let

C(ek1 , . . . , ekn) =


(

k1(h)
k1(h)+1

)n

if ki = ki(h), i = 1, . . . , n some h ∈ N,

0 otherwise,
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and define A(P, ϵ) at (ek1 , . . . , ekn) as

A(P, ϵ)(ek1 , . . . , ekn) := B(ek1 , . . . , ekn)

+ sign
(
B(ek1 , . . . , ekn)

) ϵ

2C(ek1 , . . . , ekn).

Notice that as before ∥A(P, ϵ)∥ ≤ ∥B∥ + ϵ
2∥C∥ = 1, and

|A(P, ϵ)(ek1(h), . . . , ekn(h))| = |B(ek1(h), . . . , ekn(h))| + ε

2

(
k1(h)

k1(h) + 1

)n

= 1 − ε

2 + ε

2

(
k1(h)

k1(h) + 1

)n

.

Then, for every h such that 1
h

< ε
2 , we obtain that ∥A(P, ϵ)∥ = 1. On

the other hand, since C does not attain the norm at any point of Bℓ∗∗
1

,
by Lemma 3.4.6, neither can A(P, ϵ). To conclude the proof, notice
∥A(P, ϵ) − A∥ ≤ ∥A(P, ϵ) − B∥ + ∥B − A∥ ≤ ϵ/2 + ϵ/2 = ϵ.

Remark 3.4.9. If the conjecture in Remark 3.4.5 were true, we could
get the following result. Let A ∈ L(nℓ1) of norm one. The following are
equivalent:

1. For every ϵ > 0 and every σ ∈ Σn, there exist subsequences
{ek(i,mi)}∞

mi=1 (that depend on σ and ϵ) of the sequence {ek}∞
k=1

so that

lim
mσ(1)→∞

. . . lim
mσ(n)→∞

|A(ek(1,m1), . . . , ek(n,mn))| > 1 − ϵ.

2. For every ϵ > 0 and each subset P ⊆ Σn, there exists A(P, ϵ) ∈
L(nℓ1) with ∥A(P, ϵ)∥ = 1 such that ∥A(P, ϵ) − A∥ ≤ ϵ, and
A(P, ϵ)σ is norm attaining on ℓ∗∗

1 × · · ·(n) × ℓ∗∗
1 if and only if σ ∈ P .
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3.5 Spaceability of multilinear norm
attaining Arens extensions

Even though we have seen in Proposition 3.2.3 that the Arens extensions
of a multilinear form can be pairwise different, we could think that the
examples used in Example 3.2.2 and Theorem 3.4.7 are only extremal
cases and in most of the situations there is no need in differentiating
between attaining the norm only some of the extensions or all of them,
for multilinear forms on ℓ1. However as we will see now, this is not the
case.

Lemma 3.5.1. For every natural number n, consider n sequences of
non-negative numbers {xi(t)}∞

t=1, i = 1, . . . , n with ∑∞
t=1 xi(t) ≤ 1. If

∞∑
t=1

x1(t) · · · xn(t) > δ

for some 1 > δ > 3/4, then there exists only one natural number m0

with x1(m0), . . . , xn(m0) > δ.

Proof. First we will prove that there exists m1 such that x1(m1) > δ.
Assume this is not the case. Then x1(t) ≤ δ for all t ∈ N. Then,

δ <
∞∑

t=1
x1(t) · · · xn(t)

≤ δ
∞∑

t=1
x2(t) · · · xn(t)

≤ δ
∞∑

t2,...,tn=1
x2(t2) · · · xn(tn)

= δ
( ∞∑

t2=1
x2(t2)

)
· · ·

( ∞∑
tn=1

xn(tn)
)

≤ δ,
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which is a contradiction. Therefore there exists m1 with x1(m1) > δ.
We can repeat the same proof to see that, for i = 1, . . . n, there exists

mi such that xi(mi) > δ. It only remains to see that m1 = . . . = mn

and take m0 = m1.
Assume that mi ̸= mj for some 1 ≤ i, j ≤ n, i ̸= j. Then,

δ <
∞∑

t=1
x1(t) · · · xn(t)

≤
∞∑

t=1
xi(t)xj(t)

= xi(mi)xj(mi) + xi(mj)xj(mj) +
∑

t∈N,t̸=mi,mj

xi(t)xj(t)

≤ xi(mi)1/4 + 1/4xj(mj) +
∑

ti,tj∈N,ti,tj ̸=mi,mj

xi(ti)xj(tj)

≤ 1/2 +
( ∑

ti∈N,ti ̸=mi,mj

xi(ti)
)( ∑

tj∈N,tj ̸=mi,mj

xj(tj)
)

< 1/2 + 1/16 < 3/4 < δ

which is a contradiction.
Notice that since x1(m0), . . . , xn(m0) > δ > 3/4 and ∑∞

t=1 xi(t) ≤
1, i = 1, . . . , n, we have that m0 is unique.

Theorem 3.5.2. For every set P ⊆ Σn, there exists an infinite dimen-
sional Banach space Y ⊂ L(nℓ1) such that for all B ∈ Y \ {0}, Bσ is
norm attaining if and only if σ ∈ P .

Proof. Let’s fix a set P ⊆ Σn, and consider a disjoint partition of the
natural numbers into an infinite number of infinite sets {Nm}∞

m=1 i.e.⋃
m Nm = N and Nm

⋂Nm′ = ∅ iff m ̸= m′, with Nm being infinite for
m = 1, 2, . . ..

The sets Nm are naturally ordered by the order defined on the natural
numbers, so we can assume that Nm = {(m, t)}∞

t=1 with (m, t) < (m, k)
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iff t < k.

Let

A(m)(ek1 , . . . , ekn) =

A(P )(et1 , . . . , etn) if ki = (m, ti) ∈ Nm, i = 1, . . . , n,

0 otherwise,

where A(P ) is the n-linear form of Theorem 3.4.7.

Let Y be the vector space defined by

Y := {
∑

m∈N
λmA(m) : λm ∈ K, lim

m 7→∞
λm = 0}.

For every B in Y we have

∥B∥ = sup
x1,...,xn∈Bℓ1

|B(x1, . . . , xn)|

= sup
k1,...,kn

|B(ek1 , . . . , ekn)|

= sup
m∈N

sup
k1,...,kn∈N

|λmA(m)(ek1 , . . . , ekn)|

= sup
m∈N

|λm|∥A(P )∥ = sup
m∈N

|λm|

= max
m∈N

|λm|.

Now, we prove that for all B in Y \ {0}, Bσ is norm attaining if and
only if σ ∈ P . Let fix B ∈ Y \ {0} of norm one.

First we prove that Bσ is norm attaining for σ ∈ P . Let fix σ in P .
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Since B has norm one, there exists m0 with ∥B∥ = |λm0|. Then

lim
(m0,kσ(1))→∞

. . . lim
(m0,kσ(n))→∞

B(e(m0,k1), . . . , e(m0,kn)) =

lim
kσ(1)→∞

. . . lim
kσ(n)→∞

A(P )(ek1 , . . . , ekn) = 1,

since σ ∈ P .

Hence, considering a weak-star cluster point x∗∗ of the sequence
{e(m0,k)}∞

k=1, we obtain

Bσ(x∗∗, . . . , x∗∗) = 1.

Thus, Bσ is norm attaining.

Now we see that if σ /∈ P , then Bσ is not norm attaining. Fix σ /∈ P

and assume that Bσ attains its norm. Then, there exists (x∗∗
1 , . . . , x∗∗

n ) ∈
Bℓ∗∗

1
× · · · × Bℓ∗∗

1
with Bσ(x∗∗

1 , . . . , x∗∗
n ) = 1. Let {xdi

}di∈Di
be nets in

Bℓ1 weak-star convergent to x∗∗
i for i = 1, . . . , n. Therefore

lim
dσ(1)

. . . lim
dσ(n)

B(xd1 , . . . , xdn) = Bσ(x∗∗
1 , . . . , x∗∗

n ) = 1.

Fix 1 > δ > 3/4. Then, there exists α1 ∈ D1 with

lim
dσ(2)

. . . lim
dσ(n)

B(xd1 , xd2 , . . . , xdn) > δ

for all dσ(1) > α1. For fixed dσ(1) > α1, there exists α1,2 ∈ D2 with

lim
dσ(3)

. . . lim
dσ(n)

B(xd1 , xd2 , xd3 , . . . , xdn) > δ

for all dσ(2) > α1,2. Fix dσ(2) with dσ(2) > α1,2.

In this way, for fixed dσ(1), . . . , dσ(i), for 1 ≤ i < n − 1, there exists
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α1,...,i+1 with
lim

dσ(i+1)
. . . lim

dσ(n)
B(xd1 , xd2 , . . . , xdn) > δ

for all dσ(i+1) > α1,...,i+1. Fix dσ(i+1) with dσ(i+1) > α1,...,i+1. After n − 1
steps, for fixed dσ(1), . . . , dσ(n−1) there exists α1,...,n with

B(xd1 , xd2 , . . . , xdn) > δ

for all dσ(n) > α1,...,n. Fix dσ(n) with dσ(n) > α1,...,n.
Then,

B(xd1 , . . . , xdn) > δ.

For every m ∈ N define πm : ℓ1 7→ ℓ1 by
(
πm(x)

)
(t) = x(t) if t ∈ Nm

and
(
πm(x)

)
(t) = 0 if t /∈ Nm.

Notice

δ < B(xd1 , . . . , xdn) = B
( ∑

m1∈N
πm1(xd1), . . . ,

∑
mn∈N

πmn(xdn)
)

=
∑

m1,...,mn∈N
B

(
πm1(xd1), . . . , πmn(xdn)

)
=

∑
m∈N

B
(
πm(xd1), . . . , πm(xdn)

)
=

∑
m∈N

A(m)
(
πm(xd1), . . . , πm(xdn)

)
≤

∑
m∈N

∥πm(xd1)∥ · · · ∥πm(xdn)∥

Therefore, by Lemma 3.5.1, there exists m0 with ∥πm0(xd1)∥, . . . ,

∥πm0(xdn)∥ > δ.
Now, if we consider another d̃σ(n) > α1,...,n, by the same argument,

there exists m̃0 with ∥πm̃0(xd1)∥, . . . , ∥πm̃0(xd̃n
)∥ > δ. But, since 1 ≥

∥xdσ(1)∥ = ∑
m∈N ∥πm(xdσ(1))∥, and ∥πm0(xdσ(1))∥, ∥πm̃0(xdσ(1))∥ > δ >

3/4 we have that m̃0 = m0.
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Therefore, for fixed dσ(1), . . . , dσ(n−1), there exists m0 with

∥πm0(xdσ(1))∥, . . . , ∥πm0(xdσ(n))∥ > δ

for all dσ(n) ∈ Dσ(n) with dσ(n) > α1,...,n.

Now, fix dσ(1), . . . , dσ(n−2), and consider d̃σ(n−1) ∈ Dσ(n−1) with d̃σ(n−1) >

α1,...,n−1. Then, there exists α̃1,...,n with

B(xd1 , . . . , xd̃σ(n−1)
, . . . , xdn) > δ

for all dσ(n) > α̃1,...,n, α1,...,n.

Fix dσ(n) > α1,...,n, α̃1,...,n. Arguing as before, we find m̃0 with

∥πm̃0(xdσ(1))∥, . . . , ∥πm̃0(xd̃σ(n−1)
)∥, ∥πm̃0(xdσ(n)))∥ > δ

for all dσ(n) ∈ Dσ(n) with dσ(n) > α̃1,...,n, α1,...,n. But, as before 1 ≥
∥xdσ(n)∥ = ∑

m∈N ∥πm(xdσ(n))∥, and ∥πm0(xdσ(n))∥, ∥πm̃0(xdσ(n))∥ > δ >

3/4 hence m̃0 = m0.

We will do one more case for the sake of completeness. Fix dσ(1), . . . ,

dσ(n−3), and consider d̃σ(n−2) ∈ Dσ(n−2) with d̃σ(n−2) > α1,...,n−2. Then,
there exists α̃1,...,n−1 with

lim
dσ(n)

B(xd1 , . . . , xd̃σ(n−2)
, . . . , xd̃σ(n−1)

, . . . , xdn) > δ

for all d̃σ(n−1) > α̃1,...,n−1, α1,...,n−1. Then, for fixed d̃σ(n−1) there exists
α̃1,...,n with

B(xd1 , . . . , xd̃σ(n−2)
, . . . , xd̃σ(n−1)

, . . . , xd̃σ(n)
, . . . , xdn) > δ

for all d̃σ(n) > α̃1,...,n, α1,...,n.
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Fix d̃σ(n) > α1,...,n, α̃1,...,n. Arguing as before, we find m̃0 with

∥πm̃0(xdσ(1))∥, . . . , ∥πm̃0(xd̃σ(n−2)
)∥, ∥πm̃0(xd̃σ(n−1)

)∥, ∥πm̃0(xdσ(n)))∥ > δ

for all dσ(n) ∈ Dσ(n) with dσ(n) > α̃1,...,n. But, as before 1 ≥ ∥xdσ(n)∥ =∑
m∈N ∥πm(xdσ(n))∥, and ∥πm(xdσ(n))∥, ∥πm0(xd̃σ(n)

)∥ > δ > 3/4, and
hence m̃0 = m0.

Therefore, if dσ(1), . . . , dσ(n−2) are fixed,

∥πm0(xd1)∥, . . . , ∥πm0(xdn)∥ > δ

for every dσ(n−1) ∈ Dσ(n−1) with dσ(n−1) > α1,...,n−1, and every dn ∈ Dn

with dσ(n) > α1,...,n, where α1,...,n depends of dσ(1), . . . , dσ(n−1).

Notice that the same argument can be repeated to get that

∥πm0(xd1)∥, . . . , ∥πm0(xdn)∥ > δ

for every dσ(1) ∈ Dσ(1) with dσ(1) > α1, dσ(2) ∈ Dσ(2) with dσ(2) >

α1,2, . . ., dσ(n) ∈ Dσ(n) with dσ(n) > α1,...,n, where α1,...,i depends of
dσ(1), . . . , dσ(i−1) for i = 2, . . . , n.

Since this holds for every δ with 3/4 < δ < 1, we have that

lim
di

∥πm0(xdi
) − xdi

∥ = 0,

and hence {πm0(xdi
)}di∈Di

converges weak-star to x∗∗
i , i = 1, . . . , n.

Now, consider the map π : ℓ1 7→ ℓ1 defined by
(
π(x)

)
(t) = x(m0, t).

Since π is ∥ · ∥-∥ · ∥-continuous, π is ω-ω-continuous and the canonical
extension π̂ defined from ℓ∗∗

1 into ℓ∗∗
1 is ω∗-ω∗-continuous. Therefore,

as {xdi
}di∈Di

is ω∗-convergent to x∗∗
i we have that {π(xdi

)}di∈Di
is ω∗-

convergent to π̂(x∗∗
i ) and since π has norm one, π̂(x∗∗

i ) ∈ Bℓ∗∗
1

.
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Therefore

Aσ(π̂(x∗∗
1 ), . . . , π̂(x∗∗

n )) = lim
dσ(1)

. . . lim
dσ(n)

A(π(xd1), . . . , π(xdn))

= lim
dσ(1)

. . . lim
dσ(n)

A(m0)(xd1 , . . . , xdn)

= lim
dσ(1)

. . . lim
dσ(n)

B(xd1 , . . . , xdn)

= Bσ(x∗∗
1 , . . . , x∗∗

n ) = 1,

which is a contradiction, since Aσ is not norm attaining for σ /∈ P.

Therefore Bσ is not norm attaining for σ /∈ P .
It only remains to see that Y is a Banach space. It is obvious that

Y is an infinite dimensional vector space, so we only need to prove that
Y is closed. Consider {Br = ∑∞

m=1 λm,rA(m)}∞
r=1, a Cauchy sequence.

Then, we have ∥Br1 − Br2∥ = supm∈N |λm,r1 − λm,r2|, hence {λm,r}∞
r=1

is a Cauchy sequence too, when we fix m. Therefore we can define
λm = limr 7→∞ λm,r. If we let B = ∑

m∈N λmA(m) it is easy to check that
limr Br = B ∈ Y .

In fact Y is isometrically isomorphic to c0.

3.6 The Lindenstrauss-Bollobás Theorems

Motivated by the scalar-valued 2-homogeneous polynomial Lindenstrauss
Theorem and the BPB Property for operators Carando, Lassalle and
Mazzitelli, [CLM12], introduced the Lindenstrauss-Bollobás Theorems.

Definition 3.6.1 (Lindenstrauss-Bollobás Theorems). We say that the
Lindenstrauss-Bollobas Theorem holds for L(X1, ..., Xn; Y ), if given ϵ >

0, there are δ(ϵ) > 0 and β(ϵ) > 0 with limt→0 β(t) = 0 such that for
all A ∈ L(X1, ..., Xn; Y ) of norm 1, and xj ∈ SXj

, j = 1, ..., n, with
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A(x1, ..., xn) > 1 − δ(ϵ), there exist B ∈ SL(X1,...,Xn;Y ) and yj ∈ SX∗∗
j

,

j = 1, ..., n, satisfying that all the Arens extensions of B attain their
norm at (y1, ..., yn),

∥yj − xj∥ < β(ϵ) for j = 1, ..., n, and ∥A − B∥ < ϵ.

The authors gave several examples of Banach spaces not satisfy-
ing the Lindenstrauss-Bollobás Theorem, using preduals of Lorentz se-
quence spaces. Here we show that M -embedded and L-embedded spaces
in its bidual satisfy the Lindenstrauss-Bollobás Theorem for n-linear
forms if and only if the Banach space satisfy the n-linear version of
Bishop-Phelps-Bollobás Theorem.

Definition 3.6.2. Let X be a real or complex Banach space.

• A linear projection P is called an M -projection if

∥x∥ = max{∥P (x)∥, ∥x − P (x)∥} for all x ∈ X.

A linear projection P is called an L-projection if ∥x∥ = ∥P (x)∥ +
∥x − P (x)∥ for all x ∈ X.

• A closed subspace J ⊂ X is called an M -summand if it is the
range of an M -projection. A closed subspace J ⊂ X is called an
L-summand if it is the range of an L-projection.

• A closed subspace J ⊂ X is called an M -ideal if J⊥ is an L-
summand in X∗.

Definition 3.6.3 (M -embedded). A Banach space X is called an M -
embedded space if X is an M -ideal in X∗∗.
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Example 3.6.4. Some examples of M -embedded spaces are:

• c0 (more generally c0(Γ)).

• The canonical predual d(ω, 1)∗ of the Lorentz sequence space d(ω, 1),

• The canonical predual (Lp,1)∗ of the Lorentz function space Lp,1,

• K(H) if H is a Hilbert space (the set of compact operators acting
on H).

Theorem 3.6.5. Given a Banach space X which is M-embedded in
its bidual, X satisfies the Lindenstrauss-Bollobás Theorem for n-linear
forms if and only if X satisfies the n-linear version of the Bishop-Phelps-
Bollobás Theorem.

Proof. The if condition is obvious. For the other implication consider
1/2 > β(ϵ) > 0. By the hypothesis there exist β(ϵ) and δ(ϵ) satisfying
the Lindenstrauss-Bollobás Theorem.

Fix an n-linear form A ∈ L(nX), ∥A∥ = 1, and consider an n-tuple
(x1, . . . , xn) ∈ BX × · · · × BX , such that |A(x1, . . . , xn)| > δ(ϵ). By the
hypothesis there exists B ∈ L(nX) and there exist points x∗∗

i ∈ BX∗∗ ,
i = 1, . . . , n, such that:

• ∥(x1, . . . , xn) − (x∗∗
1 , . . . , x∗∗

n )∥X∗∗ ≤ β(ϵ),

• ∥B∥ = ∥B∗∗
σ ∥ = |B∗∗

σ (x∗∗
1 , . . . , x∗∗

n )| = 1 for all σ ∈ Σn,

• ∥B − A∥ ≤ ϵ.

For every i = 1, . . . , n,

1 = ∥x∗∗
i ∥ = max{∥x∗∗

i − π(x∗∗
i )∥X∗∗ , ∥π(x∗∗

i )∥X}.
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Therefore, since the projection map from X∗∗
i to Xi is a non-expansive

map, we have

∥x∗∗
i − π(x∗∗

i )∥X∗∗ = ∥x∗∗
i − π(x∗∗

i )∥
≤ ∥x∗∗

i − xi∥ + ∥xi − π(x∗∗
i )∥

≤ β(ϵ) + β(ϵ) < 1.

Hence 1 = ∥x∗∗
i ∥ = ∥π(x∗∗

i )∥.
For every 1 ≤ i ≤ n define yi ∈ BX as yi = π(x∗∗

i ). Since ∥yi∥ =
∥π(x∗∗

i )∥ = 1 we have yi ∈ SX and ∥yi − xi∥ = ∥π(x∗∗
i ) − xi∥ ≤ ∥x∗∗

i −
xi∥ ≤ β(ϵ). To finish, we only need to verify that B attains its norm
at (y1, . . . , yn). To prove this we will show that B(x∗∗

1 , . . . , x∗∗
i−1, x∗∗

i −
π(x∗∗

i ), x∗∗
i+1, . . . , x∗∗

n ) = 0 for all i = 1, . . . , n. If this were not the case,
we would have |B(x∗∗

1 , . . . , x∗∗
i−1, x∗∗

i − π(x∗∗
i ), x∗∗

i+1, . . . , x∗∗
n )| > 0 and

β(ϵ) ≥ ∥xi − x∗∗
i ∥ ≥ ∥x∗∗

i − π(x∗∗
i )∥ for some i ∈ {1, . . . , n}. Let β be a

complex number of modulus one such that sign
(
βB(x∗∗

1 , . . . , x∗∗
i−1, x∗∗

i −
π(x∗∗

i ), x∗∗
i+1, . . . , x∗∗

n )
)

= signB(x∗∗
1 , . . . , x∗∗

n ) and denote by α = β(1 −
∥x∗∗

i − π(x∗∗
i )∥

)
. Then |α| > 0.

If we consider
zi = x∗∗

i + α(x∗∗
i − π(x∗∗

i )),

zi has norm one because X is M -embedded in its bidual and

|B(x∗∗
1 , . . . ,x∗∗

i−1, zi, x∗∗
i+1, . . . , x∗∗

n )| = |B(x∗∗
1 , . . . , x∗∗

i−1, x∗∗
i , x∗∗

i+1, . . . , x∗∗
n )

+ αB(x∗∗
1 , . . . , x∗∗

i − π(x∗∗
i ), . . . , x∗∗

n )|
= |B(x∗∗

1 , . . . , x∗∗
n )| + |αB(x∗∗

1 , . . . , x∗∗
i − π(x∗∗

i ), . . . , x∗∗
n )|

> |B(x∗∗
1 , . . . , x∗∗

n )| = 1.

But this is a contradiction since B has norm one. Hence the proof is
complete.
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As a particular case, since the canonical predual d(ω, 1)∗ of the
Lorentz sequence space d(ω, 1) is an M -embedded space, we can use
Theorem 3.6.5 and the result of Jiménez Sevilla and Payá, [JP98][The-
orem 2.6], to prove the following result of [CLM12]

Proposition 3.6.6. Let ω be an admissible sequence in ℓr, for some 1 <

r < ∞. There is no Lindenstrauss-Bollobás theorem for L(nd∗(ω, 1)), if
n ≥ r.

Definition 3.6.7 (L-summand). An Banach space X is called an L-
embedded space if X is an L-summand in X∗∗.

The following is a well known proposition about the relation between
M -embedded and L-embedded spaces

Proposition 3.6.8 ([HWW93, Corollary 1.3, page 102]). If X is an
M-embedded space, then X∗ is an L-embedded space.

Therefore the duals of the spaces showed in Example 3.6.4 are ex-
amples of L-embedded spaces.

Theorem 3.6.9. Given a Banach space X which is L-embedded in
its bidual, X satisfies the Lindenstrauss-Bollobás Theorem for n-linear
forms if and only if X satisfies the n-linear version of the Bishop-Phelps-
Bollobás Theorem.

Proof. The if condition is obvious. As before, for the other implication
consider 1/2 > ϵ > 0. By the hypothesis there exist β(ϵ) and δ(ϵ)
satisfying the Lindenstrauss-Bollobás Theorem.

Fix an n-linear form A ∈ L(nX), ∥A∥ = 1, and consider an n-tuple
(x1, . . . , xn) ∈ BX×· · ·×BX , such that |A(x1, . . . , xn)| > 1−δ(ϵ). By the
hypothesis there exists B ∈ L(nX) and there exist points x∗∗

i ∈ BX∗∗ ,
i = 1, . . . , n, such that:
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• ∥(x1, . . . , xn) − (x∗∗
1 , . . . , x∗∗

n )∥X∗∗ ≤ β(ϵ),

• ∥B∥ = ∥B∗∗
σ ∥ = |B∗∗

σ (x∗∗
1 , . . . , x∗∗

n )| = 1 for all σ ∈ Σn,

• ∥B − A∥ ≤ ϵ.

For every i = 1, . . . , n,

1 = ∥x∗∗
i ∥ = ∥(x∗∗

i ) − π(x∗∗
i )∥X∗∗ + ∥π(x∗∗

i )∥X

so π(x∗∗
i ) ̸= 0 and |B( π(x∗∗

1 )
∥π(x∗∗

1 )∥ , . . . , π(x∗∗
n )

∥π(x∗∗
n )∥)| = 1.

Now we only have to check that ∥π(x∗∗
i ) − xi∥X ≤ 2ϵ, but

ϵ ≥ ∥x∗∗
i − xi∥X∗∗

= ∥(x∗∗
i − xi) − π(x∗∗

i − xi)∥X∗∗ + ∥π(x∗∗
i − xi)∥X

≥ ∥π(x∗∗
i − xi)∥X = ∥π(x∗∗

i ) − xi∥X

≥ ∥xi∥ − ∥π(x∗∗
i )∥

= 1 − ∥π(x∗∗
i )∥

so ∥π(x∗∗
i )∥ ≥ 1 − ϵ.

Therefore

∥ π(x∗∗
i )

∥π(x∗∗
i )∥ − xi∥ ≤ ∥ π(x∗∗

i )
∥π(x∗∗

i )∥ − π(x∗∗
i )∥ + ∥π(x∗∗

i ) − xi∥

≤ ϵ + ∥x∗∗
i − xi∥

≤ 2ϵ.

As a consequence of Theorem 3.6.9 and the fact that L(nℓ1) does not
satisfy the multilinear Bishop-Phelps Theorem, we get that L(nℓ1) does
not satisfy the Lindenstrauss-Bollobás Theorem for any natural number
n.

87





Derived Works

“A writer is a person for whom writing is more difficult
than it is for other people.”

— Thomas Mann

Some of the results included in this dissertation have been submitted
and accepted for publication.

The first paper,

J. Falcó. The Bishop-Phelps-Bollobás Property for numerical radius
on L1. J. Math. Anal. Appl., 414(1):125–133, 2014,

contains the results showed in Section 2.3.1. After the publication of
this work some recent developments have been done in this area. In
particular, Kim, Lee, and Martín, [KLM14a] have studied the Bishop-
Phelps-Bollobás Property for numerical radius finding sufficient condi-
tions for Banach spaces to ensure the BPBp-ν. Among other results,
they show that L1(µ)-spaces have this property for every measure µ and
that every infinite-dimensional separable Banach space can be renormed
to fail the BPBp-ν, showing that the Radon-Nikodým Property or even
reflexivity is not a sufficient condition on X to get BPBp-ν.
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The second paper,

J. Falcó, D. García, M. Maestre, and P. Rueda. Norm Attaining
Arens Extensions on ℓ1. Abstr. Appl. Anal., pages Art. ID 315641,
10, 2014,

contains some of the results presented in Chapter 3. To be more specific
this publication covers the results presented in Section 3.3 and Section
3.4 with special emphasis on the behavior of the norm attaining multi-
linear Arens extensions on ℓ1.
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“Nothing in life is to be feared, it is only to be
understood. Now is the time to understand more, so
that we may fear less.”

— Marie Curie

Even though the area of study of norm attaining has been deeply
studied since Bishop and Phelps proved their theorem, there are still
many open questions. One elementary question whose answer is still
not known is

Question. Does R2 have the Property B?

We know that R2 has properties B for some specific norms. For
instance if the unit ball of R2 is a polyhedron, we have that the space
has Property β and as a consequence Property B. But the situation is
not clear for other norms like the Euclidean norm.

Acosta, Aron, García, and Maestre, [AAGM08], used the AHSP to
characterize the Banach spaces Y such that the pair (ℓ1, Y ) has the
BPBp. In the same paper, the authors initiated the study of the BPBp

when the domain space is c0. They were able to get estimations of the
constants appearing in the BPBp for the pairs (ℓn

∞, Y ) when Y is a
uniformly convex Banach space.

Theorem. Let Y be a uniformly convex Banach space with modulus
of convexity δ(ϵ). Let n ∈ N, 0 < ϵ < 1, 0 < ϵ < ϵ′ with ϵ + ϵ′

ϵ1/3 <
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min{δ(ϵ), 2/3(ϵ + ϵ2/3)}. For any x0 ∈ Bℓn
∞ and T ∈ SL(ℓn

∞,Y ) such that
T (x0) > 1 − ϵ, there exist z0 ∈ Bℓn

∞ and V ∈ SL(ℓn
∞,Y ) such that

V (z0) = 1, ∥z0−x0∥ < ϵ1/4+ϵ1/3, ∥V −T∥ ≤ ϵ+6n(
√

ϵ+ϵ1/6)+(ϵ′+ ϵ′

ϵ1/3 ).

However, these estimations depend on the dimension n, and hence
they cannot be used to get a general result about c0 or ℓ∞.

More recently, Kim [Kim13] removed the dependence of the dimen-
sions in this situations and proved that if Y is a uniformly convex Banach
space, the the pair (c0, Y ) has the Bishop-Phelps-Bollobás Property,
[Kim13, Corollary 2.6]. Also, Kim proved the following result:

Theorem ([Kim13, Theorem 2.7]). Let X be the real Banach space c0

and let Y be a real strictly convex space. Then (X, Y ) has the BPBp if
and only if Y is uniformly convex. In particular, if the pair (ℓ∞, Y ) has
the BPBP,then Y is uniformly convex.

And as a consequence

Corollary ([Kim13, Corollary 2.9]). The Bishop-Phelps-Bollobás theo-
rem holds for bilinear forms on c0 × ℓp for 1 < p < ∞.

But, the first natural question when studying extensions of Bollobás
result on the space c0 is still open,

Question. Does c0×c0 satisfies a version of the Bishop-Phelps-Bollobás
Theorem?

And a full characterization is still not known,

Question. Does there exists a geometric property like the AHSP such
that the couple (c0, Y ) has the BPBp if and only if Y satisfies this
property?
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Or more generally,

Question. Can we find a characterization of the pairs of spaces (X, Y )
with the BPBp?

Even though the BPBp-ν is a more recent topic than the BPBp

lots of attention have been paid to its study, see for instance [GK13,
KLM14b, AGR14]. However we are far away from a full characteriza-
tion of the spaces with the BPBp-ν. Therefore it would be useful to
find more spaces that satisfy BPBp-ν in order to look for a full charac-
terization

Question. What spaces of numerical index one have the BPBp-ν?

In the non-linear case, following the line of research started by Lin-
denstrauss, we have presented in Chapter 3 several new results, but
some of them have only been proved for bilinear maps. Are they true
in general? The key point to extend the theory to higher dimension is
the validity of Theorem 3.4.3 for n-linear maps, but the techniques we
used to prove the result do not work for n-linear maps with n ≥ 3.

Question. Is Theorem 3.4.3 valid for n-linear mappings with n ≥ 3?

If we could answer this question in the affirmative, this would allow
us to extend the results obtained in Section 3.4 in the way we explained
in Remark 3.4.9.

Proposition 3.2.3, Corollary 3.4.4, Theorem 3.4.7 and Theorem 3.5.2
show the pathological behavior of the norm attaining Arens extensions
on ℓ1. Naturally, we can wonder about whether this is a specific property
of the geometry of the space ℓ1 or if we can consider different spaces.
The proof of these results rely on the geometric properties of the space ℓ1

so a natural candidate to consider is the Lorentz sequence space because
of the similarity of the geometry of this space and the space ℓ1.
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Question. Do the results of Section 3.4 and Section 3.5 hold if we
consider the Lorentz sequence space d(ω, 1) with ω ∈ c0 \ ℓ1 in place of
ℓ1?

In Section 3.6 we have seen that in many situations the Lindenstrauss-
Bollobás Theorem is equivalent to the n-linear version of the Bishop-
Phelps-Bollobás Theorem but we don’t know whether or not this is
always true.

Question. For every Banach space, X, does the Lindenstrauss-Bollobás
Theorem for n-linear forms hold if and only if the space X satisfy the
n-linear version of Bishop-Phelps-Bollobás Theorem?

Looking at a different direction of research, the topic of attaining the
norm has been extended to different areas like symmetric bilinear forms
or polynomials. For instance it is known that under certain conditions
the set of norm attaining symmetric n-linear form is dense in the set
of symmetric n-linear forms, see [CK96]. And the same result holds for
n-homogeneous polynomials if we assume that the space has the Radon-
Nikodým Property, see [AFW95]. Also, for 2-homogeneous polynomials
Aron, García, and Maestre, [AGM03], proved a version of Lindenstrauss
Theorem as follows:

Theorem (Aron-García-Maestre, [AGM03]). For every Banach space
X, the set of all 2-homogeneous polynomials on X whose extension to
X∗∗ is norm attaining is dense in the set of 2-homogeneous polynomials.

And for n-linear polynomials, we have the general result if the Ba-
nach space X is separable and has the Approximation Property i.e, if
X is separable and every compact operator is a limit of finite rank op-
erators.
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Theorem (Carando-Lassalle-Mazzitelli, [CLM12]). Let X, Y be Banach
spaces. Suppose that X is separable and has the Approximation Prop-
erty. Then, the set of all polynomials from X to Y whose Aron-Berner
extension attain their norm is dense in the set of all polynomials from
X to Y .

However, the questions about whether there is a general Linden-
strauss Theorem for symmetric bilinear forms and/or n-homogeneous
polynomials like Theorem 3.2.4 remains open.

Question.

• Is the set of symmetric n-linear forms, whose extension to X∗∗ ×
· · · × X∗∗ is norm attaining, dense in the space of symmetric n-
linear forms on X? Or, in particular, is the set of symmetric
bilinear forms, whose extension to X∗∗ × X∗∗ is norm attaining,
dense in the space symmetric bilinear forms on X?

• Is the set of n-homogeneous polynomials whose canonical exten-
sion to X∗∗ is norm attaining dense in the set of n-homogeneous
polynomials on X for n ≥ 3?

To finish, Choi and Song in [CS09] show that the Bishop-Phelps-
Bollobás Theorem fails for n-linear forms on ℓ1 ×· · ·× ℓ1. However, it is
not know if the same situation happens for n-homogeneous polynomials,

Question. Does the Bishop-Phelps-Bollobás Theorem hold for n-ho-
mogeneous polynomials on ℓ1?
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