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Centro Mixto Universidad de Valencia CSIC; Institutos de Investigación de Paterna,

Aptdo. 22085, 46071 Valencia, Spain.

bDepartment of Physics, Aligarh Muslim University, Aligarh- 202002, India.∗

(Dated: January 9, 2014)

Abstract

The quasielastic weak production of Λ and Σ hyperons from nucleons and nuclei induced by

antineutrinos is studied in the energy region of some ongoing neutrino oscillation experiments in the

intermediate energy region. The hyperon nucleon transition form factors determined from neutrino

nucleon scattering and an analysis of high precision data on semileptonic decays of neutron and

hyperons using SU(3) symmetry have been used. The nuclear effects due to Fermi motion and final

state interaction effects due to hyperon nucleon scattering have also been studied. The numerical

results for differential and total cross sections have been presented.
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I. INTRODUCTION

The study of weak nuclear reactions induced by neutrinos and antineutrinos in the energy

region of few GeV has become quite important due to the role played by these processes

in the analysis of various neutrino oscillation experiments being done with atmospheric

and accelerator neutrinos in the intermediate energy region [1, 2, 3, 4]. In this energy

region, the theoretical cross sections for various weak processes induced by neutrinos and

antineutrinos on nucleons and nuclei are needed to model neutrino-nuclear interactions in

Monte Carlo neutrino generators like NUANCE [5], NEUGEN [6], NEUT [7] or more general

codes like FLUKA [8] which are being used by groups doing neutrino oscillation experiments.

The dominant weak process of current interest is the quasi-elastic production of leptons

induced by ∆S = 0 charged and neutral weak currents which has been extensively studied in

literature including nuclear effects using various approaches [9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22]. However, in this energy region other processes in which pions, kaons and

hyperons are produced can also be important. In particular, the inelastic processes where

single pions are produced by weak charged and neutral currents have recently attracted much

attention as they play a very important role in performing the background studies in the

analysis of neutrino oscillation experiments. Many authors [23, 24, 25, 26, 27, 28, 29, 30]

have recently studied the weak pion production from nucleons and nuclei in the energy

region relevant for the ongoing neutrino oscillation experiments by K2K[2] and MiniBooNE

collaborations[3]. In some of these studies the nuclear effects in the weak pion production

process as well as in the final state interaction (FSI) of outgoing pions with the final nucleus

have also been taken into account [25, 26, 27, 28, 29, 30].

There exist very few calculations for the neutrino production of strange baryons and

mesons from free nucleons. In these calculations the hyperon nucleon transition form factors

are determined either from the Cabibbo theory with SU(3) symmetry [31, 32] or from some

quark models used for describing the baryon structure[33]. There are no calculations to

our knowledge where nuclear effects have been included in the weak production of strange

particles from nuclei induced by neutrinos. The neutrino production of strange particles is

induced by weak charged as well as neutral currents. The weak neutral currents induce only

∆S = 0 processes due to absence of Flavour Changing Neutral Currents (in the standard

model). On the other hand, the weak charged currents induce both ∆S = 0 and ∆S = 1



processes. The production of strange particles through ∆S = 1 processes is suppressed

by a factor tan2θc where θc is the Cabibbo angle, as compared to the ∆S = 0 processes.

However, in the low energy region of Eν ∼ 1 − 3GeV, the associated production of strange

particles through ∆S = 0 processes is suppressed by phase space. Therefore, it is likely that

in this low energy region, the cross sections for the production of strange particles through

∆S = 1 and ∆S = 0 processes become comparable. In the case of the weak production of

strange particles through ∆S = 1 processes, the ∆S = ∆Q selection rule restricts the quasi

elastic hyperon production to antineutrinos rather than neutrinos. As a consequence, in the

∆S = 1 sector only antineutrino induced reactions like ν̄l+N → l++Y (Y ⋆) where Y (Y ⋆) is a

S = −1 hyperon (hyperon resonance) are allowed. Therefore, the only possible quasi-elastic

∆S = 1 hyperon (Y ) production processes allowed in the neutrino(antineutrino) induced

reactions are

ν̄l + p → l+ + Λ (1)

ν̄l + p → l+ + Σ0 (2)

ν̄l + n → l+ + Σ− (3)

These reactions have been experimentally studied in past but the experimental information is

very scanty and comes mainly from some older experiments performed with the Gargamelle

[34, 35] and the SKAT [36] bubble chambers filled with heavy liquid like Freon and/or

Propane [37]. The number of observed events was small leading to cross sections with large

error bars due to poor statistics. However, the results for the cross sections were found to

be consistent with predictions of the Cabibbo theory with SU(3) symmetry. A suppression

of cross sections due to nuclear medium effects is clearly seen, specially in the experiments

of Erriquez et al. [35] but no attempts have been made to theoretically estimate the nuclear

medium effects on the weak production of hyperons from nuclei. An understanding of these

nuclear effects would be useful for the analysis of future experiments which are being planned

to study the weak production of strange particles in the context of neutrino oscillation and

proton decay search experiments. Such experiments are planned with the NUMI beamline in

the MINERVA experiment [38]. These reactions may also be seen at K2K and MiniBooNE

where the effective reach of neutrino energy for cross section measurement could reach about

3 GeV [2, 3]. The study of weak production of strange particles is an important subject in

itself as it helps to experimentally determine the momentum dependence of various transition



form factors and test the theoretical models proposed for SU(3) breaking in semileptonic

∆S = 1 processes.

In this paper we report on the study of antineutrino induced quasi-elastic production of Λ

and Σ hyperons from nucleons i.e. reactions (1) to (3) and also the effects of nuclear medium

and final state interactions when these reactions take place on nucleons bound in nuclei. In

section II, we describe the general formalism for calculating the differential and total cross

section for the process ν̄l + N → l+ + Y using Cabibbo theory with SU(3) symmetry where

the transition form factors for N → Y transitions are determined from a theoretical analysis

of the latest experiments on semileptonic decay of hyperons, i.e Y → N + l− + ν̄l. In

section III, we describe the nuclear medium effects when these reactions take place in nuclei

like 16O or 56Fe which are target nuclei for future detectors planned to be used in neutrino

oscillation and proton decay search experiments. In section IV, we present the numerical

results for total and differential cross sections for production of leptons and hadrons from

nucleon and nuclear targets. We also consider the pion production due to the weak decay

of the hyperons. Finally we summarize and give main conclusions of our work in the last

section.

II. FORMALISM

A. Cross section and Matrix elements

The differential cross section dσ for the process ν̄l(k) + N(p) → l+(k′) + Y (p′), with

q = p′ − p = k − k′ is given by

dσ =
1

(2π)2

1

4Eν

√
s
δ4(k + p − k′ − p′)

d3k′

2Ek′

d3p′

2Ep′
|M|2 (4)

leading to
dσ

dQ2
=

1

64πsE2
ν

|M|2 (5)

where s = (q + p)2, Eν = s−M2

2
√

s
is the CM neutrino energy, M is the nucleon mass and M

is the scattering amplitude matrix element written as

M =
G√
2
acv̄(k′)γµ(1 + γ5)v(k) < Y (p′)|Vµ − Aµ|N(p) >, (6)



where ac = sinθc for ∆S = 1 processes and ac = cosθc for ∆S = 0 processes. The matrix

elements < Y (p′)|Vµ|N(p) > and < Y (p′)|Aµ|N(p) > correspond to the transition matrix

elements of the vector and axial currents Vµ and Aµ which are defined as

< Y (p′)|Vµ|N(p) >= ūY (p′)

[

γµf1(q
2) + iσµν

qν

M + MY

f2(q
2) +

f3(q
2)

MY

qµ

]

uN(p) (7)

< Y (p′)|Aµ|N(p) >= ūY (p′)

[

γµg1(q
2) + iσµν

qν

M + MY

g2(q
2) +

g3(q
2)

MY

qµ

]

γ5 uN(p) (8)

where fi(q
2), and gi(q

2), (i = 1, 2, 3) are the vector and axial vector transition form factors.

In defining these matrix elements, we follow the Bjorken Drell [39] conventions for the

Dirac matrices. The determination of these form factors is done using Cabibbo theory

with SU(3) symmetry which describes the recent precision data on semileptonic decays of

hyperons [40, 41] quite well. The corrections due to SU(3) breaking effects on semileptonic

decays have been discussed in literature and are found to be small [42].

In the following, we briefly outline the procedure for determination of various vector and

axial vector transition form factors fi(q
2) and gi(q

2) defined in equations 7 and 8.

B. Form Factors

In the standard model, the vector and axial vector currents Vµ and Aµ are defined as

V i
µ = q̄

λi

2
γµq (9)

Ai
µ = q̄

λi

2
γµγ5q (10)

where λi

2
are the generators of flavour SU(3). Assuming that, V i

µ and Ai
µ belong to the octet

representation of flavour SU(3), and neglecting any SU(3) breaking effects, vector and axial

vector transition form factors for all the N→ Y transitions can be expressed in terms of two

functions for vector(axial vector) current which could be determined from the experimental

data on semileptonic decays of nucleons and hyperons. This is because, the coupling of initial

and final baryon states belonging to an octet representation of SU(3), through an octet of

vector ( axial vector ) currents is described in terms of two reduced matrix elements F and D

corresponding to the antisymmetric and symmetric coupling of two octets of baryons in the

initial and final state to the octet of vector (axial vector) currents, through SU(3) Clebsch

Gordan coefficients. More precisely, the vector and axial vector form factors fi(q
2) and



gi(q
2) defined above are given in terms of the functions F V

i (q2) and DV
i (q2) corresponding

to vector couplings and F A
i (q2) and DA

i (q2) corresponding to axial vector couplings as

fi(q
2) = aF V

i (q2) + bDV
i (q2), (i=1,2,3) (11)

gi(q
2) = aF A

i (q2) + bDA
i (q2), (i=1,2,3) (12)

The constants a and b are the SU(3) Clebsch Gordan coefficients given in Table I for the

reactions of our present interest. We see that all the form factors for p → Σ0 are 1√
2

times the form factors n → Σ− transitions, leading to the prediction that dσ
dq2 (ν̄ + n →

µ+ + Σ−)/ dσ
dq2 (ν̄ + p → µ+ + Σ0) = 1

2
. This is reflection of the ∆I=1

2
rule, inherent in the

Cabibbo theory of ∆S = 1 weak processes.

Transitions a b

p → n 1 1

p → Λ −
√

3
2 −

√

1
6

n → Σ− -1 1

p → Σ0 − 1√
2

1√
2

TABLE I: Values of the Form Factors coefficients a, b of Eqs. 11-12.

Furthermore, the assumption that Vµ and Aµ belong to the octet representation of flavour

SU(3), implies that the symmetry properties of the ∆S=0 currents which are well verified

in the study of n → p + e− + ν̄e decays are also obeyed by the the ∆S = ±1 currents.

Accordingly, we assume

(a) G invariance and SU(3) symmetry leading to prediction that f3(q
2) = g2(q

2) = 0.

(b) Conserved Vector Current and SU(3) symmetry leading to f3(q
2) = 0 and determina-

tion of other vector transition form factors in terms of the electromagnetic form factors of

protons and neutrons. The electromagnetic form factors of protons and neutrons in terms of

nucleons (N = p, n) are defined through the matrix element of the electromagnetic current

Vµ taken between the nucleon states (N = p, n) as < N(p′)|V em
µ |N(p) > and is written as

< N(p′)|V em
µ |N(p) >= ū(p′)

[

γµf
N=p,n
1 (q2) + iσµν

qν

2M
fN=p,n

2 (q2)

]

u(p) (13)

where fN=p,n
1 (q2) are the electromagnetic form factors for nucleons. V em

µ is the electromag-



netic current given by

V em
µ = V 3

µ +
1√
3
V 8

µ (14)

where the superscripts 3 and 8 show SU(3) indices. Evaluating Eqn. 13 between the nucleon

states using their SU(3) indices we get

fn
i (q2) = −2

3
DV

i (q2), i=1,2

f p
i (q2) = F V

i (q2) +
1

3
DV

i (q2), i=1,2 (15)

Eqns. 15, determine F V
i (q2) and DV

i (q2) in terms of the electromagnetic form factors for

neutrons and protons fn
i (q2) and f p

i (q2) as

F V
i (q2) = f p

i (q2) +
1

2
fn

i (q2)

DV
i (q2) = −3

2
fn

i (q2) (16)

Once F V
i (q2) and DV

i (q2) are determined, the transition vector form factors f1(q
2) and f2(q

2)

defined in Eqn. 7 are determined for all transitions, in terms of f p,n
i (q2) and are presented

in table II. For f p,n
i (q2) we take [43, 44]:

f p,n
1 (q2) =

1

(1 − q2

4M2 )

[

Gp,n
E (q2) − q2

4M2
Gp,n

M (q2)

]

f p,n
2 (q2) =

1

(1 − q2

4M2 )
[Gp,n

M (q2) − Gp,n
E (q2)]

where

Gp
E(q2) =

(

1 − q2

M2
V

)−2

(17)

Gp
M(q2) = (1 + µp)G

p
E(q2), Gn

M(q2) = µnG
p
E(q2);

Gn
E(q2) = (

q2

4M2
)µnGp

E(q2)ξn; ξn =
1

1 − λn
q2

4M2

µp = 1.792847, µn = −1.913043, MV = 0.84GeV, and λn = 5.6.

The numerical value of the vector dipole mass MV = 0.84 GeV is taken from experimental

data on electron proton scattering. However, in the ∆S = 1 sector with SU(3) symmetry a

scaled value of MV = 0.97 GeV has also been used in the analysis of semileptonic decays [40].



(c) The Partial Conservation of Axial Current (PCAC) hypothesis and SU(3) symmetry

leads to the determination of the pseudo vector transition form factor g3(q
2) in terms of

the axial vector form factor g1(q
2) which predicts g3(q

2) = 2M2

m2
π−q2 g1(q

2). These form factors

are determined from the experimental data on ∆S=0 neutrino scattering on nucleon and

semileptonic hyperon decays. In these processes, the contribution of g3(q
2), being propor-

tional to ml

M
, is small and is generally neglected in the analysis of neutrino scattering and

semileptonic decays. Therefore, the q2 dependence of g3(q
2) specially at higher q2 is not de-

termined experimentally. Some experimental information on g3(q
2) is available from studies

on muon capture in nucleon and nuclei, which is consistent with the predictions of PCAC .

However, the numerical contribution of g3(q
2) to the cross sections in the present reactions

is also small and is neglected. With these assumptions the only undetermined form factor

needed for the calculation of the matrix element defined in equations 7 and 8 is g1(q
2).

In order to determine q2 dependence of transition form factors g1(q
2) for all transitions

under present consideration one needs the q2 dependence of F A
1 (q2) and DA

1 (q2) separately

which is not available due to lack of high q2 data from semileptonic processes in the∆S = 1

sector. We therefore, assume that F A
1 (q2) and DA

1 (q2) have the same q2 dependence. From

table I the axial vector form factor g1(q
2) is given by g1(q

2) = F A
1 (q2) + DA

1 (q2) for the

νµ+n → µ−+p reaction. The determination of q2 dependence of the axial vector form factor

in νµ +n → µ− +p reaction yields information about the q2 dependence of F A
1 (q2)+DA

1 (q2).

We now assume that F A
1 (q2) and DA

1 (q2) separately have the q2 dependence which is

given by the the q2 dependence of gn→p
A (q2), i.e. gn→p

1 (q2) = gn→p
1 (0)

(

1 − q2

M2
A

)−2

. We thus

take

F A
1 (q2) = F

(

1 − q2

M2
A

)−2

, with F = F A
1 (0)

and

DA
1 (q2) = D

(

1 − q2

M2
A

)−2

, with D = DA
1 (0).

The numerical value of the axial vector dipole mass MA is taken from the analysis of world

data on quasielastic neutrino nucleon scattering to be 1.03 GeV [44, 45]. However, the recent

high statistics K2K experiment on quasielastic scattering at low energies suggests a higher

value of MA = 1.20 ± 0.12 GeV [46]. On the other hand, the analysis of very low q2 data

on semileptonic decays of hyperons uses an axial dipole mass of MA=1.25 GeV in ∆S=1

sector [40].



With this parametrization of F A
1 (q2) and DA

1 (q2), the constants F and D are deter-

mined from the analysis of present experimental data on semileptonic decays of nucleons

and hyperons corresponding to very low q2 which gives F + D = 1.2670 ± 0.0030 and

F − D = −0.341 ± 0.016 [41]. Using these values of F A
1 (q2) and DA

1 (q2), we present

in table II, the values of g1(q
2) for various transitions of our present interest in terms of

x =
F A

1
(q2)

F A
1

(q2)+DA
1

(q2)
= F

F+D
and gA(q2) = (F + D)

(

1 − q2

M2
A

)−2

.

Transitions f1(q
2) f2(q

2) g1(q
2)

n → p fp
1 (q2) − fn

1 (q2) fp
2 (q2) − fn

2 (q2) gA(q2)

p → Λ −
√

3
2fp

1 (q2) −
√

3
2fp

2 (q2) −
√

3
2

(1+2x)
3 gA(q2)

n → Σ− -(fp
1 (q2) + 2fn

1 (q2)) -(fp
2 (q2) + 2fn

2 (q2)) (1 − 2x)gA(q2)

TABLE II: Form Factors of Eqs. 7-8.

III. NUCLEAR MEDIUM AND FINAL STATE INTERACTIONS

A. Nuclear Effects

When the reactions shown in equations (1-3) take place on nucleons which are bound in

the nucleus, certain constraints on their dynamics arising due to the Fermi motion and Pauli

blocking effects of initial nucleons have to be considered. In the final state the produced hy-

perons are not subjected to any Pauli Blocking but are affected by the final state interactions

with the nucleus through the hyperon nucleon quasi-elastic and charge exchange scattering

processes. Moreover, the charged lepton in the final state moves in the Coulomb field of the

final nucleus. However, in the energy region of 1- 3 GeV, the effect of Coulomb distortion of

the charged lepton wave function is small and is neglected in the present calculations. The

Fermi motion effects are calculated in a local Fermi Gas model where the the differential

cross section for the process ν̄l + N → l+ + Y is now written as

dσ =
1

(2π)2
2

∫

d3~r
d3~p

(2π)3
n(p, r)δ4(k + p − k′ − p′)

d3~k ′

2Ek′

d3~p ′

2Ep′

1

4ECM
ν

√
s
|M|2 (18)

where n(p, r) is the local occupation number of the initial nucleon of momentum p localized

at a radius r in the nucleus, and is determined in the local density approximation. Here, ECM
ν

and s are the neutrino energy in the nucleon-neutrino CM system and the nucleon neutrino



invariant mass squared respectively. Solving the δ function of momentum conservation , we

do the integration over the hyperon momentum ~p ′, and we use the δ function of energies to

integrate the cosinus of the angle of the initial nucleon momentum ~p. Then, the differential

cross section for the quasielastic hyperon production from nuclei can be written as

dσ =
1

64π4

∫

r2drdφp

∫ kF (r)

0

dp d3~k ′ p

ECM
ν

√
sEµ|~k − ~k ′|

|M|2 (19)

with kF (r) = (3
2
π2ρ(r))

1

3 , where ρ(r) is the target nucleon density in the nucleus which is

taken from ref. [47] for the protons, and scaled with a factor N/Z for the neutrons. All

kinematic variables are defined by the integral itself, except the cosinus of relative angle

between ~p and ~k − ~k ′ which is obtained from the δ function of energies.

To obtain these formulas we have followed a quasi-free approach where both Σ and Λ have

been treated as stable particles, with a well defined energy for a given momentum. This is

acceptable because both are quite narrow even in the nuclear medium, see i.e. ref. [48], where

additional decay channels are present. Also, in the actual implementation of Eq. 19 when

solving the δ of energies, we have neglected the real part of the hyperon optical potential in

the nucleus. We have checked numerically that potentials of a typical size (≈ −30MeV ρ/ρ0)

do not modify appreciably the results.

B. Final State Interactions

The hyperons Λ0, Σ0, Σ− which are produced in reactions (1-3) undergo elastic and charge

exchange scattering with the nucleons present in the nucleus through strong interactions

while some of the Σ0 disappear through the electromagnetic decay channel Σ0 → Λ0 + γ.

Therefore the production cross sections for the hyperons from the nuclear targets are affected

by the presence of the electromagnetic and strong interactions of final state hyperons in

the nuclear medium. One of the interesting features of the final state interactions(FSI) of

hyperons in the nuclear medium is the appearance of Σ+ hyperons which are not produced

in the basic weak process induced by the ν̄. This is due to charge exchange scattering

processes like Λ0 + p → Σ+ + n and Σ0 + p → Σ+ + n which can take place in nuclei. The

effect of FSI on the weak production cross section for Σ0, Σ− and Λ0 and the appearance

of Σ+ are estimated with the help of a Monte Carlo code for propagation of hyperons in

the nuclear medium using as input the scarce available experimental cross sections for the



hyperon nucleon scattering cross sections. We have compiled the parametrizations used in

this work in the Appendix.

C. Monte Carlo simulation

¿From Eq. 18 we can obtain d6σ
d3r d3k′

after performing the integration over the rest of

variables. This profile function is then used as input for our Monte Carlo simulation. We

generate hyperon production events by selecting a random position r and a momentum k′

and assigning to the event the weight given by the profile function. We then assume the real

part of the hyperons nuclear potential to be weak compared with their kinetic energies and

propagate them following straight lines till they are out of the nucleus. To take into account

the collisions we follow the hyperon by moving it a short distance dl, along its momentum

direction, such that P dl << 1, where P is the probability of interaction per unit length. A

random number x ∈ [0, 1] is generated and we consider that an interaction has taken place

when P dl > x. If no interaction occurs we repeat the procedure by moving the hyperon a

new step dl.

The probability of interaction per unit length of a hyperon Y is given by

PY =
∑

f

{

σY +n→f(Ē)ρn + σY +p→f(Ē)ρp

}

(20)

where f accounts for all possible final channels, n and p are neutrons and protons and ρn,

ρp are their local densities. The cross section is evaluated at an invariant energy of the

neutrino-nucleon system averaged over the local Fermi sea. We use a threshold energy cut

of 30 MeV for quasielastic collisions (Λ → Λ,Σ → Σ). Below this energy, we only consider

possible Σ → Λ processes. Thus, the energy spectra at those low kinetic energies will not

be meaningful.

If the hyperon has interacted we select the channel accordingly to their respective prob-

abilities. Finally, once the channel has been selected, we approximately implement Pauli

blocking with the following procedure. A random nucleon is selected in the local Fermi sea.

Assuming isotropic cross sections in the hyperon-nucleon CM system, we generate a random

scattering angle in that system and calculate the hyperon and nucleon momenta. Finally, we

boost these momenta to the lab system. If the final nucleon is below the Fermi level (Pauli

blocked) we consider that there was no interaction and the hyperon continues its movement.



Otherwise, we have a new hyperon type and/or a new direction and energy.

It should be mentioned that all this procedure does not modify neither the (ν̄, lepton)

cross section, nor the q2 dependence of that observable, and only the type of outgoing

hyperon and its energy and angle distributions are modified. In exclusive reactions, where

both the lepton and the hyperon are observed, there could be some changes due to the fact

that the lepton distributions would correspond to those of the primary hyperon and not to

that of the observed one that could be of a different kind.

IV. RESULTS AND DISCUSSION

The numerical evaluations of the quasielastic production of Σ0, Σ− and Λ0 hyperons

induced by antineutrinos from free nucleons have been done using Eq. 4 with the form factors

given in table II. The nuclear medium effects due to Fermi motion are incorporated through

Eq. 19. The FSI effects, due to hyperon nucleon elastic and charge exchange scattering

processes in presence of other nucleons in nuclei are taken into account using a Monte Carlo

simulation described in section IIIC. All the results presented here correspond to muonic

antineutrinos.

A. Lepton differential cross sections

We first present the differential cross section for antineutrino induced ∆S = 1 weak

quasielastic processes from nucleon and nuclear targets. The sensitivity of the differential

cross sections to the axial vector dipole mass has been studied. We have also studied the

effect of nuclear medium and final state interactions on the differential cross sections. We

find that in the range of energies under analysis, Fermi motion of the nucleons and FSI of

the hyperons do not appreciably modify the lepton distributions, except for a scale factor

that can also be seen in the total cross sections. As a typical case, we show in Fig. 1 the

q2 dependence on free nucleons and on 16O at Eν̄ = 1 GeV. The lowest curve corresponds

to the small Σ+ production which occurs via FSI. The other lines show the results for the

Λ, Σ− and Σ0. The results without FSI are very close to the free nucleon ones and are

not shown. Even the full model curves have the same shape. Thus, we find that nuclear

data could still be used to investigate the q2 dependence of the form factors in the hyperons
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FIG. 1: q2 distributions for the reaction ν̄ + A → µ+ + Y + X at Eν̄ = 1 GeV in nucleons and in
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hyperon production on a free nucleon. The upper curves correspond to Λ, next to Σ−, next to Σ0.

Dotted line: Σ+.

sector. However, as shown in Fig. 2, the MA dependence is very mild. This is specially so at

low energies and for the case of Σ production. Only at relatively large antineutrino energies

and for Λ production the cross section shows some sensitivity to this parameter.

B. Hyperons spectra

We show in Fig. 3 the hyperons spectra with and without FSI for 1 GeV antineutrinos.

The main effect of FSI is a redistribution of strength, pushing the spectra towards lower

energies. This is due to quasielastic collisions with the nucleons and also to inelastic scatter-

ing, in which the kind of hyperon changes and part of the energy is passed to the nucleons.

Also remarkable is the appearance of Σ+ through the Σ0 + p → Σ+ +n and Λ + p → Σ+ +n

processes. This channel is not present on free nucleons and will be further discussed in the

next section. We should recall here that our MC code does not include neither the effects of

the real part of the optical potentials nor interactions of particles with kinetic energies below

30 MeV. Therefore, the results at those low energies are not meaningful and are shown only
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for illustrative purposes.

C. Total Cross sections

We present in figures 4-6 the numerical results for the muonic antineutrino total cross

sections σ(Eν̄) for free nucleons and for 16O and 56Fe, divided in the nuclear case by the

number of ”active” nucleons, with and without the inclusion of FSI. We see from these

figures that

(i) The effect of the Fermi motion of the initial nucleons is quite small on the quasielastic

production of hyperons even for a heavy nucleus like 56Fe as shown in figures 4-6. Of course,

this effect is larger at energies, not shown in the figures, very close to threshold, where the

cross sections are very small. Actually, in the nuclear case, the production threshold changes

due to Fermi motion although the exact size of the effect depends on the hyperon nucleus

optical potential.

(ii) The effect of hyperons FSI leads to an increase of the cross sections for Λ production

and a decrease of Σ0 and Σ− production cross sections. This change in the cross section per

nucleon increases with the charge and mass number of the nucleus and is larger for 56Fe as
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model, dashed line: without final state interaction.

compared to 16O. This is because Σ−,0 can disappear through the quasielastic processes like

Σ− + p → Λ0 + n, Σ0 + n → Λ0 + n and others, while the inverse process of depletion of

Λ is also allowed, but inhibited due to the difference in masses. In addition to these strong

processes leading to the depletion of Σ0, they are further depleted by the electromagnetic

decay Σ0 → Λ+γ. This has not been included in the calculation as the mean life guarantees

that the decay will occur out of the nucleus and can be easily taken into account when

comparing with data.

(iii) For free nucleon targets, the cross section for production of Λ is always greater than

the cross section for production of Σ0. The ratio R = σ(ν̄+p→µ++Σ0)
σ(ν̄+p→µ++Λ)

reaches an asymptotic

value of around 0.3 which is consistent with older results of Cabibbo and Chilton [31] but

is considerably different with the prediction of a relativistic quark model due to Finjord
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and Ravndal[33]. This ratio is considerably smaller at low energies due to threshold effects

which suppress Σ0 production compared to Λ production. The sensitivity of this ratio for

two values of the axial vector dipole mass MA is shown in Fig. 7.

(iv) For free nucleon targets, using SU(3) symmetric form factors, the ratio of cross

sections for ∆S = 0 and ∆S = 1 induced processes by antineutrinos, i.e. R = σ(ν̄+p→µ++Λ)
σ(ν̄+p→µ++n)

reaches an asymptotic value of 0.04. This value comes mainly due to the Cabibbo suppression

and from the threshold effects which are quite large in this case. The energy dependence of

this ratio along with its sensitivity to the value of the axial vector dipole mass MA is shown

in Fig. 8.

(v) In Fig. 9, we show the cross section for Σ+ production. Whereas in the other channels

FSI produces simply a correction to the direct process, in this case all events come from

FSI and therefore the cross section is very sensitive to the relatively unknown hyperon

nucleon cross sections. This channel is a source of positive pions induced by a charged

current antineutrino process, but the cross section is very small and other sources, like charge

exchange reactions of pions produced inside the nuclei by other processes, as discussed below,
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will be more important.

D. Pion production from hyperons

Currently, there is considerable interest in the weak pion production cross sections. For

these processes, ∆ excitation followed by its decay will be dominant at intermediate energies

given its strong coupling to the pion nucleon system. However, two aspects deplete its

contribution to the pion production in nuclei. First, the mean life of the ∆ is very short.

Thus, it decays inside the nucleus and part of the pions are absorbed and don’t come out

of the nucleus. This is quite different to the hyperons case which decay weakly into pions.

The hyperons large mean life implies that most of the times they decay already far from the

nucleus avoiding the pion absorption. On the other hand, the mass of the ∆ implies that

the cross section decreases at low enough energies faster than for the Λ and Σ cases. These

two factors could partially compensate for the tan2θc suppression.

We show in Fig. 10 our results for pion production, obtained using the experimental
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branching ratios for the hyperons and the previous calculations for the hyperon production

cross sections. We also show results derived from the ∆ production cross section in 16O

of ref. [26] which incorporated pion absorption. In that paper, only the total number of

pions (or ∆’s) was obtained. In order to compare with the current results, we have used

the corresponding isospin factors to assign the charges of the pions (relative weights for

p → ∆0 → pπ−, p → ∆0 → nπ0 and n → ∆− → nπ− are 1/9, 2/9 and 1), thus neglecting

possible pion charge exchange reactions. We see that at low energies pions from hyperon

decays dominate and the ∆ mechanism becomes dominant at energies above 550 MeV for

negative pions and 650 MeV for neutral pions. The importance of the hyperon mechanisms

would be larger for heavier nuclei, where pion absorption would suppress more strongly other

competing mechanisms which produce the pions inside the nucleons.



V. SUMMARY AND CONCLUSIONS

We have studied the weak charged current induced quasielastic production of Λ and Σ

hyperons from nucleons and nuclei. The transition form factors for the nucleon-hyperon

transitions determined from an analysis experimental data on neutrino nucleon scattering

and semileptonic decays of hyperons using Cabibbo theory with SU(3) symmetry have been

applied to calculate the the total and differential cross sections for lepton and hyperon

production from nucleon and nuclear targets. The nuclear medium and final state interaction

effects have been calculated for the hyperon production from nuclear targets like 16O and

56Fe which are proposed to be used in future detectors for neutrino oscillations and proton

decay search experiments. These are calculated in a local Fermi gas model for the nuclei

and a simple energy dependent parametrization for the hyperon nucleon scattering cross

sections. The hyperon energy distribution for the quasielastic production of Λ, Σ+ and Σ0

hyperons induced by antineutrinos and the effect of final state interactions on their energy

distribution has been studied. The energy distribution of Σ+, which are produced only as

a consequence of final state interactions has also been presented. Finally the total cross

sections for pion production due to decays of hyperons has been presented and compared

with the pion production cross sections from ∆ production. The main conclusions that can

be drawn from our present study are:

(i) The differential cross sections dσ
dq2 are more sensitive to the axial vector dipole mass

for the case of Λ production than Σ production. However this sensitivity is not as large as

compared to to the sensitivity of dσ
dq2 to the axial vector dipole mass for neutrino nucleon

scattering in the ∆S = 0 sector.

(ii) The effect of nuclear medium effects on dσ
dq2 and total cross section σ on the hyperon

production is quite small.

(iii) The effect of final state interaction is to increase the cross sections for Λ production

and to decrease the cross section for Σ− and Σ0 production. The strength of production

cross section shifts towards the lower energy of the produced hyperon as a result of final

state interactions. The most interesting aspect of the final state interaction is that it leads

to the production of Σ+ hyperons which is of the order of 10% of the Σ− production cross

sections from oxygen targets around 1 GeV. This proportion increases with mass and charge

of the nucleus.



(iv) The hyperon production is dominated by Λ production and the production cross

section for Σ0 is small at lower energies but could approach 30% of Λ production as the

energy increases and becomes larger than 1.0 GeV.

(v) At low energies, the nuclear pion production induced by antineutrinos through the

production of hyperons and their subsequent decays can become important as compared

to the antineutrino pion production through the excitation and subsequent decays of ∆

resonance. This, for example, happens for neutrino energies E <550(650) MeV) for the case

of antineutrino induced π−(π0) production at intermediate energies from 16O target.

Acknowledgments

This work was partially supported by DGI and FEDER funds, contract BFM2003-00856

and by the EU Integrated Infrastructure Initiative Hadron Physics Project contract RII3-

CT-2004-506078. S. K. S acknowledges support from the Academic Exchange Agreement

beetwen Aligarh M. U. and Valencia U.

APPENDIX: HYPERON NUCLEON CROSS SECTIONS

We present here the parametrizations used in our MC code for the hyperon nucleon cross

sections. In the formulas, cross sections are expressed in mb and energies and momenta in

GeV. The data used in the fits have been obtained from [49], although we will also quote

below the original references. These parametrizations correspond to the best fits (χ-square)

to data with the chosen functional form but the statistical errors of the data are quite large

and one should use these numbers as simple estimates. The momenta in the formulas always

refer to the hyperons

1. Λ + N → Λ + N

σ = (39.66 − 100.45x + 92.44x2 − 21.40x3)/pLAB

where x = Min(2.1, pLAB). Fitted to data for Λp → Λp scattering from refs. [50, 51].

2. Λ + N → Σ0N

σ = (31.10 − 30.94x + 8.16x2)pΣ
CM/pΛ

CM

where x = Min(2.1, pLAB). Fitted to data for Λp → Σ0p scattering from [51].



3. Σ+ + p → Σ+ + p

σ = 11.77/pLAB + 19.07.

Fitted to data for Σ+p → Σ+p scattering from refs. [52].

4. Σ− + p → Σ− + p

σ = 22.40/pLAB − 1.08.

Fitted to data for Σ−p → Σ−p scattering from [52].

The rest of the channels have not been fitted and we have used either isospin symmetry,

detailed balance or assumed a similar size and energy dependence to the available

channels.

5. σΛ+n→Σ−p = σΛ+p→Σ+n = 2σΛ+n→Σ0+n = 2σΛ+p→Σ0+p , σΣ−+n→Σ−+n = σΣ++p→Σ++p

and σΣ++n→Σ++n = σΣ−+p→Σ−+p using isospin symmetry.

With these, we already have all channels with a Λ in the initial state. The missing

channels with a Λ in the final state are obtained by detailed balance, so that

p2
abσab→cd = p2

cdσcd→ab

where pab and pcd are the corresponding CM momenta. The rest of the Σ+N processes

have been taken with a cross section equal to the Σ− + p → Σ− + p. For the case

Σ− + p → Σ0 + n there are a few data points [53] compatible with this value.
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