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Abstract. We investigate the shear-driven instability of nonmagnetic relativistic jets with the bulk velocity, V ,
dependent on the cylindric radius, r. It is shown that instability can arise for any dependence of the velocity (or
the Lorentz factor that is the same) on r. The shear-driven instability can effectively operate in the whole volume
of a jet. The growth time can be shorter than that of the Kelvin-Helmholtz instability. The considered instability
leads to a turbulization of jets and can account for a distiction between the jets in the FRI and FRII sources.
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1. Introduction

The stability properties of jets has been a subject of an-
alytical and numerical studies by many authors (see, for
instance, Birkinshaw 1997 and references therein). These
studies usually consider the jet as a gas beam with one
bulk velocity and an interface made by a very narrow shear
layer with the external medium. This model, however, can
be too simplified because there exist some observational
and theoretical evidence that the jet structure is more
complex and different bulk velocities can be represented
inside the jet (for more details see the discussion in Hanasz
& Sol 1996). For instance, Katz-Stone & Rudnick (1994)
have argued that jets in both FRI and FRII sources may
have coaxial sheaths substantially wider than the inner
jet itself. It is not immediately clear whether such sheaths
are formed due to an interaction of the inner jet with
the surrounding medium or have been ejected from the
central engine. In fact, some models of jet formation pre-
dict the existence of a nonvanishing transverse gradient in
the jet velocity (see, e.g., Melia & Königl 1989; Königl &
Kartje 1994; Sol et al. 1989). Numerical simulations and
analytical modelling of the propagation also indicate that
the radial structure of jets can be more complex with a
transition shear layer surrounding the core (Aloy 1999a,
1999b; Bicknell 1983; Kahn 1983). Obviously, the stability
properties of such sheared jets may well be different from
those of jets with the constant bulk velocity.

Large scale hydrodynamic instabilities can be the rea-
son for the observed morphological complexity of jets, and
this has motivated many analytical (see, e.g., Birkinshaw
1984, 1991; Hardee & Norman 1988; Zhao et al. 1992;
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Hanasz & Sol 1996) and numerical (Hardee et al. 1992;
Hardee et al. 1998; Bodo et al. 1998; Micono et al. 2000;
Agudo et al. 2001) studies of the stability properties of
jets. One possible mechanism of destabilization of astro-
physical jets is often attributed to the well-known Kelvin-
Helmholtz instability which in its classical formulation is
the instability of a tangential discontinuity between two
flows, generally of a different density (see, e.g., Landau
& Lifshitz 1978; Chandrasekhar 1981). Note that some-
times instability of a stratified fluid with continuously
variable density and velocity is also called the Kelvin-
Helmholtz instability (see, e.g., Chandrasekhar 1981). To
distinguish between these cases we refer the “classical
Kelvin-Helmholtz instability” as instability of the inter-
face between two fluids. In real astrophysical jets the in-
terface is likely smoothed, and its role is played by a tran-
sition layer which can be wider or narrower depending on
the conditions. Obviously, the instability that can arise in
such flows with a sheared transition layer is like the classi-
cal Kelvin-Helmholtz instability only if the tangential and
normal lengthscales of perturbation exceed the character-
istic thickness of the transition layer. In the opposite case,
when the layer is very smooth and its thicknes is compa-
rable to the jet radius, the instability has not very much
in common with the classical Kelvin-Helmholtz instability.
In the lack of stratification, the stability properties of such
a jet with a smooth transition layer are probably closer to
those of ordinary shear flows which are made turbulent
due to shear stresses. This sort of instability is very com-
mon in hydrodynamics and leads to the turbulization of
a flow at sufficiently large Reynolds numbers (see Landau
& Lifshitz 1978). We will call this instability shear-driven
to distinguish it from the Kelvin-Helmholtz one.
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The classical Kelvin-Helmholtz instability is likely the
dominating factor of destabilization in a simplified model
of the jet with one bulk velocity and a narrow interface
with the external medium. The analysis of such a model
has been performed by many authors in either a linear
regime (e.g., Blandford & Pringle 1976; Ray 1981; Payne
& Cohn 1985; Zhao et al. 1992) or a nonlinear regime
(Bodo et al. 1994; Koide et al. 1996; Nishikawa et al. 1997;
Hardee et al. 1998). All these studies have shown that the
Kelvin-Helmholtz instability can play an important role
in the explanation of observed phenomena in astrophysi-
cal jets, such as jet disruption, limb-brightened features,
surface filaments, etc. However, obviously the processes
in such a simplified model cannot exhaust all the diver-
sity of hydrodynamic phenomena in jets. For instance, a
modification of the simplest model considered by Hanasz
& Sol (1996), who analysed a two-component jet model,
shows very apparent differences with respect to the one-
component model.

In the present paper we consider the stability proper-
ties of non-magnetized relativistic sheared jets. Note that
the magnetic field likely plays a key role in the forma-
tion of astrophysical jets, and probably it can also influ-
ence the stability properties of sheared jets. The effect
of the magnetic field is however beyond the scope of the
present paper, and we are planning to address this prob-
lem elsewhere. The outline of this paper is as follows. In
Sect. 2, we represent the basic equations governing the
shear-driven instability in relativistic jets. In Sect. 3, we
discuss the dispersion relation for short wavelength per-
turbations derived in a WKB-approximation. Instability
of perturbations with long wavelengths is considered in
Sect. 4. Finally, in Sect. 5, we discuss the possible role of
the shear-driven instability as the mechanism of a distinc-
tion between jets in the FRI and FRII sources.

2. Basic equations

We model the jet by an infinitely long straight plasma
cylinder of radius R. Plasma inside the jet has a velocity
V = V (r)ez with respect to the ambient medium; r, ϕ, z
are the cylindrical coordinates with er, eϕ, ez being the
corresponding unit vectors. For the sake of simplicity, we
assume that the temperature of plasma inside the jet is
nonrelativistic. This assumption can likely be well justi-
fied at a sufficiently large distance from the central object
where expansion and cooling process may cools down the
jet plasma. Without loss of generality, we can consider the
plasma density inside the jet, ρ, to be constant.

In relativistic hydrodynamics the continuity, momen-
tum, and energy equations read (see, e.g., Weinberg 1972)

Γ
(
∂ρ

∂t
+ v · ∇ρ

)
+
(
ρ+

p

c2

) [∂Γ
∂t

+∇ · (Γv)
]

= 0, (1)

Γ2
(
ρ+

p

c2

) [∂v
∂t

+ (v · ∇)v
]

= −∇p− v

c2
∂p

∂t
, (2)

∂

∂t
(pn−γ) + v · ∇(pn−γ) = 0, (3)

where Γ = (1−v2/c2)−1/2 is the Lorentz factor, p is the gas
pressure and n the number density in the fluid’s rest frame;
γ is the adiabatic index. For plasma with a nonrelativistic
temperature, we have ρ ≈ nm and ρ� p/c2.

Our stability analysis is based on the linearized set
of Eqs. (1)–(3). Small perturbations will be marked by
the index 1; for unperturbed quantities subscripts will be
omitted with the exception of vector components. The lin-
earized continuity, momentum and energy equations are

Γ
(
∂ρ1

∂t
+ v1 · ∇ρ+ V · ∇ρ1

)
+ ρ

[
∇ · (Γv1)

+
Γ3

c2
V

(
v̇1z + V

∂v1z

∂z

)]
= 0, (4)

ρ∗
[
∂v1

∂t
+ (v1 · ∇)V + (V · ∇)v1

]
= −∇p1 −

V

c2
ṗ1, (5)

∂p1

∂t
+ v1 · ∇p+ V · ∇p1 +

γp

Γ

[
∇ · (Γv1)

+
Γ3

c2
V

(
v̇1z + V

∂v1z

∂z

)]
= 0, (6)

where ρ∗ = Γ2ρ. In Eq. (4) we took into account that
Γ1 = Γ3(V · v1)/c2.

Since the unperturbed density, pressure and velocity
do not depend on t and the coordinates ϕ and z, the de-
pendence of all perturbations on these quantities can be
taken in the form exp(iωt− ikz− imϕ). In the present pa-
per, we consider axisymmetric perturbations with m = 0.
The dependence on r has to be calculated from Eqs. (4)–
(6). Substituting this dependence into Eqs. (4) and (6), we
can express the perturbation of pressure in terms of v1,

p1 =
i

σ

{
v1 · ∇p+

γp

Γ

[
∇ · (Γv1) + iσ

Γ3

c2
V v1z

]}
, (7)

where σ = ω − kV (r). The quantity kV is an advective
frequency and has a kinematic origin. It always appears
in a consideration of plane waves in a moving fluid if the
wavevector has a component parallel to V . The perturba-
tions of a velocity can be expressed in terms of p1 from the
momentum Eq. (5) which for the considered perturbations
has the form

ρΓ2

(
iσv1 + v1r

dV
dr

)
= −i

(
ωV

c2
− i∇

)
p1. (8)

Substituting expressions for v1r and v1z into Eq. (7) and
taking into account that in the unperturbed state dp/dr =
0, we obtain the equation containing p1 alone

p′′1 +
[

1
r

+
2Γ2V ′

σ

(
k − ωV

c2

)]
p′1

+Γ2

[
σ2

c2s
−
(
k − ωV

c2

)2
]
p1 = 0, (9)

where c2s = γp/ρ and V ′ = dV/dr. Equation (9) represents
the behaviour of small perturbations for any velocity pro-
file, V (r). It has been first derived by Birkinshaw (1984)
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in his stability analysis of two-component jets. If the jet
is nonrelativistic and V � c (Γ ≈ 1), then the equation
for p1 simplifies very much

p′′1 +
(

1
r

+
2V ′k
σ

)
p′1 +

(
σ2

c2s
− k2

)
p1 = 0. (10)

This equation describes, for example, axisymmetric modes
which can exist in supersonic nonrelativistic sheared jets.

For our purposes, it will be more convenient to use
another form of the Eq. (9). Making a substitution

p1 =
1√
r

exp
[
−
∫

Γ2V ′

σ

(
k − ωV

c2

)
dr
]
f, (11)

Eq. (9) can be transformed into

f ′′ + q2(r)f = 0, (12)

where

q2 =
Γ2σ2

c2s
− V ′2

σ2

[
2kk1 −

σ2Γ2

c2

(
1 +

Γ2V 2

c2

)]
− k

2
1

Γ2
− (rV ′)′k1

rσ
+

1
4r2

, (13)

and k1 = k − σΓ2V/c2 = Γ2(k − ωV/c2). Note that
Γ(k − ωV/c2) is the z-component of a wavevector in the
comoving frame.

Consider a very idealized model assuming that plasma
moves with a relativistic velocity, V (r) ≈ c, at r ≤ R
and the Lorentz factor is large, Γ(r) � 1. The veloc-
ity is assumed to be varying slightly across the jet be-
ing close to c at any r ≤ R. On the contrary, the
Lorentz factor, Γ = (1 − V 2/c2)−1/2, may vary within
a very wide range. For the sake of simplicity, we assume
that Γ(r) varies monotonously and decreases with increas-
ing r. For such a model, we have σ ≈ ω − kc = const and
V ′ = c2Γ′/V Γ3 ≈ cΓ′/Γ3. Substituting these expressions
into Eq. (13), we obtain

q2 =
Γ2σ2

c2s

[
1−

(
k1cs
σΓ2

)2

+
( cs

2rσΓ

)2
]
− 2k2c2

σ2Γ4

×
{(

Γ′

Γ

)2
k1

k
+
(
σΓ2

2kc

)
k1

k

(
Γ′

rΓ
+

Γ′′

Γ
− 3Γ′2

Γ2

−Γ′2

Γ4

)
− 2

(
σΓ2

2kc

)2(Γ′

Γ

)2(
1 +

1
Γ2

)}
. (14)

We are looking for a relatively fast instability with a
growth rate greater than cs max(k/Γ2, 1/2rΓ). In this
case, the first term in the first paranthesis on the r.h.s.
of Eq. (14) is larger than the second and third terms
which can be neglected. The terms in the chain brack-
ets of Eq. (14) are of a different order in the parameter
σΓ2/2ck. This parameter can be small for real jet con-
ditions (see below) because the growth time of hydrody-
namic instability is usually much longer than the period
of an electromagnetic wave. Therefore, we will neglect the
terms of the first and second order in this parameter in

Eq. (14). Taking into account that k1 ≈ k at | σ |< ck/Γ2,
we can simplify the expression (14)

q2 ≈ Γ2σ2

c2s
− 2c2k2

σ2Γ4

(
Γ′

Γ

)2

. (15)

If σ2 is real and σ2 > 0, the quantity q2 has a positive max-
imum at the jet axis and decreases towards the boundary.
For some values of σ2, q2 can even change the sign within
the jet. On the contrary, if σ2 < 0 (that corresponds to un-
stable modes), q2 has a negative minimum at the axis and
increases with an increase of r. Generally, in this case q2

can change the sign as well.
Consider the solution of Eq. (12) in some particu-

lar cases.

3. The instability in a WKB-approximation

In this section, we consider the particular case when
Eq. (12) can be solved by making use of a WKB-
approximation which is well justified if f has many knots
in the radial direction (see, e.g., Landau & Lifshitz 1981).
Therefore, the condition of applicability of this approach
is | q | r > 1. Note, however, that a WKB-approximation
yields qualitatively correct results even if the number of
knots is not large, n ∼ 1. In the region where q2 > 0, the
WKB-solution of Eq. (12) can be represented as

f(r) =
1√
q(r)

[
C1e

i
∫
r

r0
qdr′

+ C2e
−i
∫
r

r0
qdr′
]
, (16)

where r0 is the so-called turning point at which q2 = 0
and a WKB-approximation does not apply; C1 and C2

are constants that have to be choosen in such a way as
to satisfy the boundary conditions. If q2 > 0 everywhere
within the jet then we can suppose r0 = 0.

To obtain the eigenvalues and eigenfunctions of
Eq. (12) one needs the boundary conditions for pertur-
bations. The boundary condition at the axis of a jet is
obvious: f should be vanishing there. If q2 has a turning
point r = r0 and q2 < 0 at 0 < r < r0, then this boundary
condition implies that the solution has to go to 0 beyond
the turning point, at r < r0. It is known (see, e.g. Landau
& Lifshitz 1981) that the solution (16) matches an expo-
nentially decreasing solution beyond the turning point if
C1 = (C/2) exp(iπ/4) and C2 = (C/2) exp(−iπ/4) where
C is constant. Hence, in this case, the solution (16) takes
the form

f(r) =
C√
q(r)

cos
(∫ r

r0

q(r′)dr′ +
π

4

)
· (17)

The formulation of true boundary conditions at the
outer boundary can face some problems but, fortunately,
the WKB-approximation used in our treatment is well
adopted for modes with a relatively small radial length-
scale. The properties of such modes are not sensitive to
the particular choice of boundary conditions. Besides, the
shear-driven instability is caused by the presence of an
inhomogeneous velocity profile rather than the boundary
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condition and, due to this, is also not very sensitive to
the latter. Therefore, the main conclusions of our analysis
are qualitatively the same for any boundary conditions.
To illustrate this point we can obtain and compare the
WKB-solutions for different boundary conditions.

First, consider the case when the density in a surround-
ing medium is much larger than in the jet. In this case (see,
e.g., Glatzel 1988; Wu & Wang 1991), a much more dense
surrounding medium plays the role of a wall and the per-
turbations of a radial displacement are vanishing at the
outer boundary, r = R. As it follows from Eq. (8), the
radial velocity vanishes if dp1/dr = 0 at r = R. Using the
definition (11), we can rewrite this condition as

σΓ2V

kc2

(
f ′ − f

2r

)
− Γ′

Γ

(
1− σΓ2V

kc2

)
f = 0. (18)

Taking into account that we consider the instability in
the case σ < kc/Γ2, the boundary condition ar r = R can
approximately be represented as

f(R) ≈ 0. (19)

With this boundary conditions, the dispersion equation
reads∫ R

r0

q(r)dr = πα, (20)

where α = n+ 1/4, n is integer.
If the density of a jet is larger than that of a surround-
ing plasma, then perturbations of the pressure should be
vanishing at the outer boundary, p1 = 0 (Glatzel 1988;
Wu & Wang 1991), and we again obtain the condition
(19). Therefore, with the accuracy in terms of the order of
σΓ2/ck the dispersion equation is the same for both con-
sidered limiting cases. Note that the main qualitative con-
clusions of our analysis will be unchanged even if we choose
less realistic boundary conditions. For example, if we as-
sume (without any physical motivation) that df/dr = 0
ar r = R then instead of the dispersion Eq. (20) we obtain
the same equation where n+ 1/4 is replaced by n− 1/4.
Since a WKB-approximation is valid if n� 1, this change
will have a small impact on the result. This weak sensitiv-
ity to the boundary conditions reflects the fact that the
shear-driven instability is caused mainly by shear stresses
in the jet volume.

Equation (20) describes the eigenvalues of axisymmet-
ric modes which can propagate in ultrarelativistic sheared
jets. In the case σ < ck/Γ2, the dispersion equation reads∫ R

r0

[
Γ2

c2s
σ2 − 2c2k2

σ2Γ4

(
Γ′

Γ

)2
]1/2

dr = πα. (21)

Using the mean value theorem, we can estimate the char-
acteristic roots of Eq. (21) without specifying the velocity
profile. We have[

Γ2
∗
c2s
σ2 − 2c2k2

σ2Γ4
∗

(
Γ′∗
Γ∗

)2
]1/2

=
απ

R1
, (22)

where Γ∗ is the value of the Lorentz factor at some point
r = r∗, R > r∗ > r0, andR1 = R−r0. Then, σ2 is given by

σ2 =
c2s

2Γ2
∗

(πα
R1

)2

±

√(
πα

R1

)4

+
8c2k2

c2sΓ2
∗

(
Γ′∗
Γ∗

)2
 . (23)

The first root (corresponding to the top sign) results
only in a shift of the frequency of oscillations and is
responsible for a drift of perturbations relatively to the
mean flow. On the contrary, the second root (the bottom
sign) leads to instability because σ2 < 0 for this root. If
k � (πα/2R1)2(cs/c)(Γ/Γ′), we have from Eq. (23)

σ2 ≈ ±
√

2csck
Γ3
∗

(
Γ′∗
Γ∗

)
, (24)

and for the bottom sign we obtain

ω ≈ kc± 21/4i

Γ3/2
∗

√
csck | Γ′∗ | /Γ∗. (25)

Our calculations apply if σ satisfies the condition |σ | Γ2/
2ck < 1. Substituning σ from Eq. (24), we can rewrite this
inequality as cs/c < 2

√
2kΛ/Γ∗ where Λ = Γ∗/ |Γ′∗ |. If the

longitudinal wavelength of perturbations is comparable to
the jet radius, kΛ ∼ 2π, we have cs/c < 4

√
2π/Γ∗. This

condition can well be fulfilled for many real relativistic
jets.

The characteristic growth time of the unstable mode is

τ ≈ Γ3/2
∗

21/4

√
Γ∗

csck | Γ′∗ |
· (26)

The growth time depends on the gradient of Γ being
shorter for a larger Γ′. The instability arises faster for
perturbations with a shorter axial wavelength but this de-
pendence is relatively weak, τ ∝ k−1/2. The growth time
increses with an increase of the Lorentz factor therefore
the instability can be suppressed in jets with very high Γ.

The characteristic growth length, L = cτ , is given by

L ≈ 2−1/4Γ3/2
∗

(
c

cs

)1/2( Γ∗
k | Γ′∗ |

)1/2

. (27)

For the axial wavelength comparable to the jet radius,
k ∼ 1/R, and | Γ∗/Γ′∗ |∼ R, the instability can manifest
itself at the distance

L ∼ RΓ3/2
∗
√
c/cs (28)

from the central object. Obviously, the growth length be-
comes longer and longer with an increase of the Lorentz
factor, and in highly relativistic jets the instability devel-
opes only in the most removed regions or does not appear
at all if the length of a jet is smaller than L.

If n is very large and k � (πα/2R1)2(cs/c)(Γ/Γ′) then,
from Eq. (23), we obtain the following expression for σ2

corresponding to unstable modes

σ2 ≈ −2c2k2R2
1

π2Γ4
∗n

2

(
Γ′∗
Γ∗

)2

, (29)

and the growth rate decreases with increasing n.
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4. The instability of long wavelength
perturbations

The instability can arise not only in small radial scales,
as required by a WKB-approximation, but also in scales
comparable to the jet radius. Consider the case of a rela-
tively smoothly varying Γ-profile when we can obtain the
analytical solution of Eq. (12),

Γ(r) = Γ0

(
b

b+ r

)1/3

, (30)

where Γ0 is the value of Γ at the jet axis, and b charac-
terises the width of a distribution of Γ. At the jet surface,
we have Γ(R) = Γ0[b/(b+R)]1/3.

For such Γ(r), Eq. (12) with q2 given by Eq. (15) trans-
forms into

f ′′ +
(

b

b+ r

)2/3(
σ2Γ2

0

c2s
− 2c2k2

9σ2Γ4
0b

2

)
f = 0. (31)

Introducing the new variable, x = r + b, and denoting

α = b2/3
(
σ2Γ2

0

c2s
− 2c2k2

9σ2Γ4
0b

2

)
, (32)

we can rewrite Eq. (31) as

d2f

dx2
+

α

x2/3
f = 0. (33)

The solution of this equation can be expressed in terms of
the Bessel functions,

f =
√
x
[
A1J3/4(3

√
αx2/3/2) +A2Y3/4(3

√
αx2/3/2)

]
,(34)

where A1 and A2 are constant. The dispersion equation
can easily be obtained from the boundary onditions. We
have

Y3/4(ξ)J3/4(λξ) = J3/4(ξ)Y3/4(λξ), (35)

where ξ = 3
√
αb2/3/2 and λ = (1 + R/b)2/3 > 1. All

the roots of this equation are real and simple (see, e.g.,
Abramowitz & Stegun 1970). The asymptotic expansion
of the sth zero is

ξs =
sπ

λ− 1
+

5(λ− 1)
32λπs

− 25(λ− 1)3

6144π3λ3s3

×(19λ2 + 25λ+ 19) + ... (36)

The frequency, σ, corresponding to the sth zero, satisfies
the equation

σ2b2Γ2
0

c2s
− 2c2k2

9σ2Γ4
0

=
4
9
ξ2
s . (37)

Solving for σ2, we obtain the expression

σ2 =
2c2sξ

2
s

9b2Γ2
0

1±

√
1 +

9
2ξ2
sΓ2

0

(
c

cs

)2

b2k2

 (38)

which is the analogy of Eq. (23). One of the roots of this
equation represents an unstable mode with σ2 < 0. If

(3/
√

2ξ2
sΓ0)(c/cs)bk > 1, the expression for σ2 simplifies,

and we have

σ2 ≈ ±
√

2csck
3Γ3

0b
· (39)

Then,

ω ≈ kc± 21/4i

31/2Γ3/2
0

√
csck/b, (40)

and the characteristic growth time of the unstable mode
is given by

τ ≈ 1.45Γ3/2
0

√
b/csck. (41)

The corresponding growth length is

L ≈ 1.45Γ3/2
0

√
cb

csk
≈ 0.6Γ3/2

0 R

(
bλ

R2

)1/2(
c

cs

)1/2

, (42)

where λ = 2π/k is the axial wavelength of perturbations.
The dependence of τ and L on the parameters is quali-
taively the same as for short wavelength modes discussed
in the previous section.

5. Discussion

We considered the instability that can arise in relativistic
sheared jets. In our simplified model, the particular mech-
anism of the formation of a shear layer is unimportant.
The instability considered is probably only the limiting
case of various shear-driven instabilities that can exist in
supersonic jets. This sort of instability has already been
considered by a number of authors for nonrelativistic flows
and for some particular velocity profiles. Blumen et al.
(1975) and Drazin & Davey (1977) examined the hyper-
bolic tangent profile in the case of compressible fluid and
showed that this profile leads to instability. A linear super-
sonic shear layer has been considered in detail by Glatzel
(1988) who obtained that both Kelvin-Helmholtz modes
and sonic modes are responsible for instability. This al-
lows us to speculate that shear-driven instabilities prob-
ably play an important role in all supersonic jets. In our
model, the instability is caused by the radial dependence
of the Lorenz factor that is a particular case of shear.

The physical reasons causing the shear-driven instabil-
ity in a compressible flow are rather simple. Let us assume
that at some instant of time a small perturbation of the
radial velocity has been created, v1r. Due to the presence
of shear, the inertial force can generate from v1r some mo-
tion in the z-direction. Since the mean flow is supersonic
but the gas temperature and pressure are assumed to be
nonrelativistic, the pressure plays practically no role in
the momentum transfer in the z-direction. Therefore, the
longitudinal acceleration is almost entirely determined by
the inertial force,

dv1z

dt
≈ −v1r

dV
dr

(43)
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(see the z-component of the momentum Eq. (8)), d/dt =
∂/∂t + V ∂/∂z. If we denote the characteristic local time
of the process as τ0 then we can estimate v1z as ∼V ′τ0v1r.
In a compressible gas both the radial and longitudinal
motions lead generally to nonuniformities of the density,
ρ1. For the conditions under consideration the effect of
v1z is typically more pronounced and longitudinal motions
form density nonuniformities in the z-direction. Therefore,
we have from the continuity condition

ρ1 ∼ ρkτ0v1z ∼ ρkτ2
0V
′v1r, (44)

where k is again the longitudinal wave vector.
Perturbations of the density are accompanied by those
of the pressure. In the adiabatic case, these perturbations
are related by p1 = c2sρ1. Then,

p1 ∼ ρkc2sτ2
0V
′v1r. (45)

In its turn, perturbations of the pressure depend on r and
can change the radial velocity due to a pressure force. The
change of a radial velocity after a short time interval, ∆t,
is given by

∆v1r ∼
1
ρΓ2

∂p1

∂r
∆t, (46)

where the coefficient before ∆t is the acceleration caused
by a pressure force. The radial pressure gradient is mainly
determined by a strong dependence of τ0 on r since we
have ∂(1/τ0)/∂r ∼ kV ′. Substituting this expression into
Eq. (46), we obtain that the change of radial velocity is

∆v1r ∼
k2c2sV

′2

Γ2
τ3
0 v1r∆t. (47)

Again, estimating ∆v1r/∆t as v1r/τ0, we obtain the fol-
lowing estimate for the timescale of instability

1
τ0
∼
√
kcsV ′

Γ
, (48)

in a good agreement with Eqs. (26) and (41). As it is seen
from this explanation shear stresses and compressibility
are the most important underlying physical effects result-
ing in the instability. Note that compressibility can be cru-
cial also for some other instability mechanisms proposed
for supersonic jets. For instance, Payne & Cohn (1985)
considered the instability caused by reflection of sound
waves from the jet boundary. After the sound waves trav-
elling towards the jet have been reflected off the jet axis,
they propagate outward to the boundary, striking it where
the expansion is maximum. Not all the waves striking the
boundary escape the jet; a significant fraction is reflected
back into the jet once again. Since perturbations are pe-
riodic, the ingoing waves beginning their second cycle are
aided by the perturbation of the jet cross-section, one
wavelength downstream of the first. The resonant nature
of this instability arises bacause a given perturbation is re-
inforced by the perturbation upstream of it. Clearly, that
the mechanism considered in our paper is qualitatively
different from that proposed by Payne & Cohn (1985).

The fact of instability itself does not depend very much
on the particular shape of a velocity profile. As it fol-
lows from Eq. (25), instability can arise for any profile.
The characterisic growth time and growth length depend,
however, on shear being shorter for a sharper dependence
of V on r. Note that only perturbations with a nonvan-
ishing axial wavevector, k 6= 0, can be unstable, and the
growth rate is larger for a shorter wavelength.

The principle difference between the considered insta-
bility and the well-studied Kelvin-Helmholtz instability is
that the latter develops in the boundary layer whereas the
shear-driven instability arises in the volume of a jet. It is
also important to emphasise that the growth rate of the
relativistic shear-driven instability is approximately by a
factor

√
c/cs larger than that of the Kelvin-Helmholtz in-

stability and, correspondingly, the growth length is by the
same factor shorter (compare, for instance, to Hardee et al.
1998). Due to this, the considered instability can be an ef-
ficient mechanism for the generation of turbulent motions
inside the jet. In its turn, turbulence in highly supersonic
flows can be responsible for various physical processes such
as generation of the magnetic field and synchrotron emis-
sion, formation of shocks etc.

As follows from Eqs. (27) and (41), an increase of Γ
makes the growth time longer, and the instablity has to
be less efficient in highly relativistic jets. Under certain
conditions, it can be possible that the growth length of
instability, L, is longer than the length of a jet. In this
case, the jet can remain more or less laminar up to the
head region. Note also that the growth length depends on
the temperature of plasma inside the jet being longer for
cooler jets.

The dependence of the growth rate on the Lorentz fac-
tor and the temperature can explain the difference in prop-
erties of jets in extragalactic radio sources. Observations
suggest that the flow speed in these jets is relativistic and
more or less laminar on parsec scales in both the power-
ful FRII sources and the weaker FRI sources (Kellerman
& Pauliny-Toth 1981; Ghisellini et al. 1993). In contrast,
on the kiloparsec scale, jets in FRI sources are of a lower
power and more turbulent compared to jets in FRIIs which
are more stable and laminar (see, e.g., Kaiser & Alexander
1997). A possible explanation suggested by a number of
authors (see Bridle 1984; Sol et al. 1989) is the physical
distinction of flows on the large and small scales. It seems
the hypothesis that jets in FRI sources decelerate from
relativistic speeds on kiloparsec scales is consistent with
many of their observed properties (Laing 1994). The phys-
ical mechanisms behind this deceleration are not immedi-
ately clear, but it has been emphasised by Laing (1994)
that velocity gradients across and along relativistic jets
may radically modify their appearence. The instability
considered in the present paper can be one of the driv-
ing forces caused a deceleration (and even destruction)
of jets.

The scenario can be the following. All jets in extra-
galactic radio sources start out basically with presumably
relativistic but slightly different bulk velocities. After that,
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turbulence rapidly growing due to the shear-driven in-
stability in weaker and hotter jets destroys the laminar
structure and slows down jets. Such sources should have
an appearences of the FRI type. The flow in stronger and
cooler jets stays mostly laminar because the instability
arises on a longer time scale. At intermediate distances
from the central engine, before the weaker jets have be-
come entirely turbulent, the appearences of both weak and
strong jets should be similar which is confirmed by obser-
vations (Laing 1993). Note that in our model not only the
Lorentz factor determines the growth rate of instability
but the temperature as well. In fact, a hotter jet with a
larger Lorentz factor can be less stable than a cooler jet
with a smaller Γ. Qualitatively the same dependence on
the temperature can be obtained if the jet slows down by
accumulating gas from the surroundings (Bowman et al.
1996). All else being equal, initially hotter jets are shown
by these authors to have lower energy fluxes than cooler
flows, indicating that the former are more closely related
to FRI sources and the latter to FRIIs.

It is not clear from observations, however, at which
scale jets become turbulent and decelerate. As it was men-
tioned, most likely, these scales lie between the pc and kpc
scales. We give an estimate of the growth length for the
jet model with the radius ∼50 ps and the Lorentz factor
Γ0 = 5. We assume that cs ∼ 0.1c, that corresponds to
the temperature ∼1011 K. For the chosen values of pa-
rameters, the quantity σΓ2/2ck is approximately equal to
0.08

√
λ/b if we use the expression (39) for σ. Obviously,

for λ ≤ b this quantity is actually small and the expres-
sion (15) for q2 is well justified. Therefore, we can use
the estimate (42) for the growth length. For perturbations
with λ = R we obtan L ≈ 1.2

√
b/R kpc. This estimate

gives a reasonable value for the growth length of instabil-
ity in FRI jets. Note that, according to our model, per-
turbations with a shorter wavelength should grow faster,
therefore small scale turbulent structures can be observ-
able even at intermediate distances.
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Ibañez and J. M. Marti for helpful discussions and stimulat-
ing interest in this work. This research was supported in part
by the Russian Foundation of Basic Research and Deutsche
Forschungsgemeinschaft (grant 00-02-04011). The author also
thanks Ministerio de Educacion, Culture y Deporte of Spain
for the financial support under the grant SAB1999-0222.

References

Abramowitz, M., & Stegun, I. 1970, Handbook of
Mathematical Functions (New York: Dover Publications,
Inc.)

Agudo, I., Gomez, J. L., Marti, J. M., et al. 2001, ApJ, 549,
L183

Aloy, M. A., Ibáñez, J. M., Marti, J. M., & Müller, E. 1999a,
ApJS, 122, 151
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