Glassy PEEK‐WC vs Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi‐MOF Based Mixed Matrix Membranes
NAGIOS: RODERIC FUNCIONANDO

Glassy PEEK‐WC vs Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi‐MOF Based Mixed Matrix Membranes

DSpace Repository

Glassy PEEK‐WC vs Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi‐MOF Based Mixed Matrix Membranes

Show simple item record

dc.contributor.author Esposito, Elisa
dc.contributor.author Bruno, Rosaria
dc.contributor.author Monteleone, Marcello
dc.contributor.author Fuoco, Alessio
dc.contributor.author Ferrando Soria, Jesús
dc.contributor.author Pardo Marín, Emilio
dc.contributor.author Armentano, Donatella
dc.contributor.author Jansen, Johannes C.
dc.date.accessioned 2020-02-19T14:33:47Z
dc.date.available 2020-02-19T14:33:47Z
dc.date.issued 2020
dc.identifier.uri https://hdl.handle.net/10550/73155
dc.description.abstract Mixed matrix membranes (MMMs) are seen as promising candidates to overcome the fundamental limit of polymeric membranes, known as the so‐called Robeson upper bound, which defines the best compromise between permeability and selectivity of neat polymeric membranes. To overcome this limit, the permeability of the filler particles in the MMM must be carefully matched with that of the polymer matrix. The present work shows that it is not sufficient to match only the permeability of the polymer and the dispersed phase, but that one should consider also the individual contributions of the diffusivity and the solubility of the gas in both components. Here we compare the gas transport performance of two different MMMs, containing the metal-organic framework CuNi‐MOF in the rubbery Pebax®1657 and in the glassy poly(ether‐ether‐ketone) with cardo moiety, PEEK‐WC. The chemical and structural properties of MMMs were investigated by means of FT‐IR spectroscopy, scanning electron microscopy and EDX analysis. The influence of MOF on the mechanical and thermal properties of both polymers was investigated by tensile tests and differential scanning calorimetry, respectively. The MOF loading in Pebax®1657 increased the ideal H2/N2 selectivity from 6 to 8 thanks to an increased H2 permeability. In general, the MOF had little effect on the Pebax®165 membranes because an increase in gas solubility was neutralized by an equivalent decrease in effective diffusivity. Instead, the addition of MOF to PEEK‐WC increases the ideal CO2/CH4 selectivity from 30 to ~48 thanks to an increased CO2 permeability (from 6 to 48 Barrer). The increase in CO2 permeability and CO2/CH4 selectivity is maintained under mixed gas conditions.
dc.language.iso eng
dc.relation.ispartof Applied Sciences, 2020, vol. 10, num. 4, p. 1310-1329
dc.rights.uri info:eu-repo/semantics/openAccess
dc.source Esposito, Elisa Bruno, Rosaria Monteleone, Marcello Fuoco, Alessio Ferrando Soria, Jesús Pardo Marín, Emilio Armentano, Donatella Jansen, Johannes C. 2020 Glassy PEEK‐WC vs Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi‐MOF Based Mixed Matrix Membranes Applied Sciences 10 4 1310 1329
dc.subject Solucions polimèriques
dc.subject Termoplàstics
dc.title Glassy PEEK‐WC vs Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi‐MOF Based Mixed Matrix Membranes
dc.type info:eu-repo/semantics/article
dc.date.updated 2020-02-19T14:33:47Z
dc.identifier.doi https://doi.org/10.3390/app10041310
dc.identifier.idgrec 136342

View       (1.800Mb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics