On finite groups with many supersoluble subgroups
NAGIOS: RODERIC FUNCIONANDO

On finite groups with many supersoluble subgroups

DSpace Repository

On finite groups with many supersoluble subgroups

Show full item record

View       (281.8Kb)

Exportar a Refworks
    
Ballester-Bolinches, Adolfo Perfil; Esteban Romero, Ramón Perfil; Lu, Jiakuan
This document is a artículoDate2017
The solubility of a finite group with less than 6 non-supersoluble subgroups is confirmed in the paper. Moreover we prove that a finite insoluble group has exactly 6 non-supersoluble subgroups if and only if it is isomorphic to A5 or SL2(5). Furthermore, it is shown that a finite insoluble group has exactly 22 non-nilpotent subgroups if and only if it is isomorphic to A5 or SL2(5). This confirms a conjecture of Zarrin (Arch Math (Basel) 99:201-206, 2012).

    Ballester-Bolinches, Adolfo Esteban Romero, Ramón Lu, Jiakuan 2017 On finite groups with many supersoluble subgroups Archiv der Mathematik 109 1 3 8
https://doi.org/10.1007/s00013-017-1041-4
distribuido bajo licencia Creative Commons de Reconocimiento-NoComercial 3.0 No adaptada

This item appears in the following Collection(s)

Show full item record

Search DSpace

Advanced Search

Browse

Statistics