Transitivity of Sylow permutability, the converse of Lagrange's theorem, and mutually permutable products
NAGIOS: RODERIC FUNCIONANDO

Transitivity of Sylow permutability, the converse of Lagrange's theorem, and mutually permutable products

Repositori DSpace/Manakin

Transitivity of Sylow permutability, the converse of Lagrange's theorem, and mutually permutable products

Mostra el registre complet de l'element

Visualització       (332.5Kb)

Exportar a Refworks
    
Asaad, M.; Ballester-Bolinches, Adolfo Perfil; Beidleman, J.C.; Esteban Romero, Ramón Perfil
Aquest document és un/a article, creat/da en: 2008
This paper is devoted to the study of mutually permutable products of finite groups. A factorised group G = AB is said to be a mutually permutable product of its factors A and B when each factor permutes with every subgroup of the other factor. We prove that mutually permutable products of Y -groups (groups satisfying the converse of Lagrange's theorem) and SC-groups (groups whose chief factors are simple) are SC -groups. Next, we show that a product of pairwise mutually permutable Y -groups is supersoluble. Finally, we give a local version of the result stating that if a mutually permutable product of two groups is a PST - group (that is, a group in which every subnormal subgroup permutes with all Sylow subgroups), then both factors are PST -groups

    Asaad, M. Ballester-Bolinches, Adolfo Beidleman, J.C. Esteban Romero, Ramón 2008 Transitivity of Sylow permutability, the converse of Lagrange's theorem, and mutually permutable products Trudy Instituta Matematiki 16 1 4 8
http://mi.mathnet.ru/timb47
distribuït sota llicència Creative Commons de Reconeixement-NoComercial 3.0 No adaptada

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre complet de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques