On finite soluble groups in which Sylow permutability is a transitive relation
NAGIOS: RODERIC FUNCIONANDO

On finite soluble groups in which Sylow permutability is a transitive relation

DSpace Repository

On finite soluble groups in which Sylow permutability is a transitive relation

Show simple item record

dc.contributor.author Ballester-Bolinches, Adolfo
dc.contributor.author Esteban Romero, Ramón
dc.date.accessioned 2015-09-18T08:03:51Z
dc.date.available 2015-09-18T08:03:51Z
dc.date.issued 2003
dc.identifier.uri http://hdl.handle.net/10550/47145
dc.description.abstract A characterisation of finite soluble groups in which Sylow permutability is a transitive relation by means of subgroup embedding properties enjoyed by all the subgroups is proved in the paper. The key point is an extension of a subnormality criterion due to Wielandt.
dc.language.iso eng
dc.relation.ispartof Acta Mathematica Hungarica, 2003, vol. 101, num. 3, p. 193-202
dc.rights.uri info:eu-repo/semantics/openAccess
dc.source Ballester Bolinches, Adolfo Esteban Romero, Ramón 2003 On finite soluble groups in which Sylow permutability is a transitive relation Acta Mathematica Hungarica 101 3 193 202
dc.subject Àlgebra
dc.subject Grups, Teoria de
dc.title On finite soluble groups in which Sylow permutability is a transitive relation
dc.type info:eu-repo/semantics/article
dc.date.updated 2015-09-18T08:03:51Z
dc.identifier.doi http://dx.doi.org/10.1023/B:AMHU.0000003903.71033.fc
dc.identifier.idgrec 041251

View       (346.1Kb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics