From loops to trees by-passing Feynman's theorem
NAGIOS: RODERIC FUNCIONANDO

From loops to trees by-passing Feynman's theorem

Repositori DSpace/Manakin

From loops to trees by-passing Feynman's theorem

Mostra el registre complet de l'element

Visualització       (504.1Kb)

Exportar a Refworks
    
Catani, Stefano; Gleisberg, Tanju; Krauss, Frank; Rodrigo García, Germán Vicente; Winter, Jan-Christopher
Aquest document és un/a article, creat/da en: 2008
We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. We discuss in detail the duality that relates one-loop and tree-level Green's functions. We comment on applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluation of cross-sections at next-to-leading order.

    Catani, Stefano Gleisberg, Tanju Krauss, Frank Rodrigo García, Germán Vicente Winter, Jan-Christopher 2008 From loops to trees by-passing Feynman's theorem Journal of High Energy Physics 08 9 065
http://dx.doi.org/10.1088/1126-6708/2008/09/065
distribuït sota llicència Creative Commons de Reconeixement-NoComercial 3.0 No adaptada

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre complet de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques