Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams
NAGIOS: RODERIC FUNCIONANDO

Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams

Repositori DSpace/Manakin

Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams

Mostra el registre complet de l'element

Visualització       (126.8Kb)

Exportar a Refworks
    
Cabral Rosetti, Luis Gustavo; Sanchis Lozano, Miguel Ángel
Aquest document és un/a article, creat/da en: 2000
Present and future high-precision tests of the Standard Model and beyond for the fundamental constituents and interactions in Nature are demanding complex perturbative calculations involving multi-leg and multi-loop Feynman diagrams. Currently, large effort is devoted to the search for closed expressions of loop integrals, written whenever possible in terms of known - often hypergeometric-type - functions. In this work, the scalar three-point function is re-evaluated by means of generalized hypergeometric functions of two variables. Finally, use is made of the connection between such Appell functions and dilogarithms coming from a previous investigation, to recover well-known results.

    Cabral Rosetti, Luis Gustavo Sanchis Lozano, Miguel Ángel 2000 Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams Journal of Computational and Applied Mathematics 115 1-2 93 99
http://dx.doi.org/10.1016/S0377-0427(99)00121-1
distribuït sota llicència Creative Commons de Reconeixement-NoComercial 3.0 No adaptada

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre complet de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques