Angular pseudomomentum theory for the generalized nonlinear Schrodinger equation in discrete rotational symmetry media
NAGIOS: RODERIC FUNCIONANDO

Angular pseudomomentum theory for the generalized nonlinear Schrodinger equation in discrete rotational symmetry media

DSpace Repository

Angular pseudomomentum theory for the generalized nonlinear Schrodinger equation in discrete rotational symmetry media

Show full item record

View       (659.8Kb)

    
García March, Miguel Ángel; Ferrando Cogollos, Albert; Zacarés, Mario; Vijande Asenjo, Javier Perfil; Carr, Lincoln D.
This document is a artículoDate2009

Este documento está disponible también en : http://hdl.handle.net/10550/39135
We develop it complete mathematical theory for the symmetrical solutions of the generalized nonlinear Schrodinger equation based on the concept of angular pseudomomentum. We consider the symmetric solitons of a generalized nonlinear Schrodinger equation with a nonlinearity depending on the modulus of the field. We provide a rigorous proof of a set of mathematical results justifying that these solitons can be classified according to the irreducible representations of a discrete group. Then we extend this theory to non-stationary solutions and study the relationship between angular momentum and pseudomomentum. We illustrate these theoretical results with numerical examples.

    García March, Miguel Ángel Ferrando Cogollos, Albert Zacarés, Mario Vijande Asenjo, Javier Carr, Lincoln D. 2009 Angular pseudomomentum theory for the generalized nonlinear Schrodinger equation in discrete rotational symmetry media Physica D 238 15 1432 1438
http://dx.doi.org/10.1016/j.physd.2008.12.007
distribuido bajo licencia Creative Commons de Reconocimiento-NoComercial 3.0 No adaptada

This item appears in the following Collection(s)

Show full item record

Search DSpace

Advanced Search

Browse

Statistics