Crecimiento cristalino de nano y microestructuras de ZnO mediante PVD y MOCVD
NAGIOS: RODERIC FUNCIONANDO

Crecimiento cristalino de nano y microestructuras de ZnO mediante PVD y MOCVD

DSpace Repository

Crecimiento cristalino de nano y microestructuras de ZnO mediante PVD y MOCVD

Show simple item record

dc.contributor.advisor Muñoz Sanjosé, Vicente
dc.contributor.advisor Martínez Tomás, María del Carmen
dc.contributor.author Montenegro Martinez, Diana Nathalie
dc.contributor.other Departament de Física Aplicada i Electromagnetisme es_ES
dc.date.accessioned 2014-02-11T08:24:37Z
dc.date.available 2014-02-12T07:10:03Z
dc.date.issued 2014
dc.date.submitted 28-01-2014 es_ES
dc.identifier.uri http://hdl.handle.net/10550/32854
dc.description.abstract El tema central de esta tesis doctoral ha sido el crecimiento cristalino de nano y microestructuras de ZnO mediantes los métodos PVD y MOCVD. De manera general, mediante los diversos estudios realizados, hemos profundizado en el proceso de crecimiento de las nano y microestructuras de ZnO obtenidas con el método PVD en ausencia de catalizador dentro de un rango de temperaturas relativamente bajo (300-500 ºC). Los estudios realizados nos permitieron obtener la síntesis de una amplia gama de estructuras de ZnO con diferentes morfologías, como por ejemplo: poliedros aislados, agujas, hilos y capas rugosas. Adicionalmente, estos estudios nos han permitido mostrar que las características morfológicas de estas estructuras están principalmente gobernadas por el nivel de supersaturación de las especies en fase gaseosa a lo largo de la zona de cristalización con respecto al tiempo de crecimiento. De manera particular, hemos podido concluir que nuestras estructuras en forma de agujas o hilos evolucionan, en condiciones de baja supersaturación, a partir de la faceta piramidal o basal de un nanopoliedro sintetizado durante las primeras etapas de crecimiento, mientras que en condiciones de alta supersaturación se favorece la formación de capas rugosas conformadas por estructuras en forma de poliedros que tienden a coalescer debido al reforzamiento del crecimiento lateral que experimentan bajo condiciones de alta supersaturación. Adicionalmente, las medias ópticas realizadas en estructuras individuales, permitieron concluir que, debido al proceso de descomposición de la fuente de material, las estructuras que son sintetizadas durante las primeras etapas de crecimiento, crecen en condiciones de deficiencia de oxígeno y por ende tiende a incorporar una mayor densidad de defectos intrínsecos como vacantes de oxigeno (VO), mientras que las estructuras que se desarrollan en etapas posteriores, crecen con mayor riqueza de oxígeno de tal manera que se reduce significativamente la incorporación de este tipo de defectos. Por otra parte, a lo largo de esta tesis también hemos profundizado en la correlación entre los parámetros de crecimiento de MOCVD y las características morfológicas, estructurales y ópticas de las nanocolumnas de ZnO. Los estudios mostraron que mediante la variación de la riqueza de oxígeno en el proceso de crecimiento es posible inducir diferentes transiciones morfológicas en las nanocolumnas de ZnO: nanocolumnas–nanotubos-capas rugosas. Este tipo de transiciones han sido explicadas como una consecuencia de la reducción de la longitud de difusión que sufren los adátomos de zinc en algunos planos cristalinos cuando se incrementa la riqueza de oxígeno en el proceso de crecimiento. Los diferentes estudios llevados a cabo adicionalmente nos han permitido mostrar la existencia de una correlación entre el nivel de supersaturación y el ordenamiento vertical de las nanocolumnas. A partir de los resultados hemos concluido que esto se debe al reforzamiento del crecimiento lateral que experimenta el material bajo condiciones de alta supersaturación, el cual favorece, durante las primeras etapas de crecimiento, la formación de complejos estructurales pirámides-hilos bien definidos y verticalmente alineados. Esto a su vez facilita el buen ordenamiento vertical de las nanocolumnas de ZnO que se desarrollan posteriormente a partir estos complejos estructurales bajo condiciones de alta supersaturación. Los estudios que hemos realizado acerca de la influencia del tratamiento térmico del sustrato y el uso de una capa buffer de ZnO sobre las propiedades de las nanocolumnas de ZnO sintetizadas por MOCVD han mostrado que el uso combinado de sustratos recocidos de zafiro y una capa buffer de ZnO, crecida también por MOCVD, permite mejorar sustancialmente la calidad cristalina de las nanocolumnas de ZnO. Adicionalmente, mediante la aplicación del método de Williamson-Hall a nuestras nanoestructuras, se demostró que es posible diferenciar entre las características estructurales de la capa y las nanocolumnas dentro una misma muestra. Por su parte, la caracterización, mediante las espectroscopias Raman y CL, de los diferentes conjuntos de muestras sintetizadas por MOCVD, nos permitió establecer que las condiciones de crecimiento ricas en zinc favorecen la formación de defectos complejos relacionados con intersticiales de zinc (ZnI) en las nanocolumnas de ZnO. Este tipo de defectos demostraron comportarse como centros de recombinación no radiativos reduciendo sustancialmente la eficiencia luminiscente de nuestras estructuras. Adicionalmente, se logró determinar que este tipo de defectos tienden a incorporarse principalmente en la punta de las nanocolumnas, lo cual parece estar relacionado con el reforzamiento del crecimiento lateral que sufren estas estructuras bajo condiciones ricas en zinc. Por otra parte, demostramos que la presencia de una capa buffer induce un cambio en el modo de crecimiento de las nanocolumnas de ZnO, lo cual parece favorecer la no formación de defectos relacionados a ZnI y por ende mejora las propiedades luminiscentes de estas estructuras. es_ES
dc.format.extent 204 p. es_ES
dc.language.iso es es_ES
dc.subject crecimiento cristalino es_ES
dc.subject nanoestructuras es_ES
dc.subject caracterización óptica es_ES
dc.subject óxido de zinc es_ES
dc.title Crecimiento cristalino de nano y microestructuras de ZnO mediante PVD y MOCVD es_ES
dc.type info:eu-repo/semantics/doctoralThesis es_ES
dc.subject.unesco UNESCO::FÍSICA es_ES
dc.description.abstractenglish The aim of this doctoral thesis has been to contribute to a better understanding of the correlation between method and parameters of the growth process and the morphological, structural, and optical properties of ZnO nanostructures. In order to carry it out, we have selected two different growth methods: a low-cost method such as physical vapor deposition (PVD) and a method with industrial character like metal organic chemical vapour deposition (MOCVD). In each experimental system, we have done different systematic studies on the influence of growth parameters. From these studies we have obtained relevant results which are shown in the following paragraphs. Regarding the growth by means of PVD, ZnO nano and microstructures with different shapes as polyhedrons, needles, wires and tripods, were obtained in the 300-500 ºC temperature range by using a well selected value of the carrier gas flow. The systematic studies carried out about the influence of growth time and temperature gradient, have allowed to correlate the morphology characteristics of ZnO structures with the level of the gas-phase supersaturation along the crystallization zone. The results have shown that: (i) under low supersaturation conditions, the anisotropic growth is more favorable. The structures in form of needles and wires tend to develop from the basal o pyramidal facets of a nanopolyhedron synthetized during the early growth stages; (ii) under high supersaturation conditions, rough layers conformed by coalesced polyhedrons tend to be formed. This can be explained by the enhanced lateral growth of the polyhedrons under high supersaturation conditions. Moreover, we have investigated the influence of the nature of the substrate on the nanostructures growth processes. This study indicated that, under our experimental conditions, the growth of nanostructures is free enough to not be significantly affected by the type of substrate. Otherwise, optical measurements made on the samples and on the individual structures by means of Raman and cathodoluminescence spectroscopy showed that the morphology evolution of the structures regarding the growth time have a significant influence on the luminescent properties of these structures. The results showed that the luminescence of the structures synthetized during the early growth stages (polyhedrons) is principally governed by the deep level emission centered in the green spectral range. Meanwhile, the luminescence of the structures grown at the subsequent growth stages is dominated by the near band edge emission. These results evidenced that the richness of oxygen chemical species varies during the growth time, which can be related with the role of carbon in the evaporation process of ZnO. This can promote the incorporation of defects related with the lack of oxygen, such as oxygen vacancy which is commonly associated with green emission in ZnO. Moreover with regard to the growth by MOCVD, by carrying out a systematic study, we have focused on the influence of the oxygen/zinc partial pressure ratio (VI/II ratio) and precursor flow-rate on the morphological and structural properties of ZnO. Zinc and oxygen flow-rates were individually controlled and varied in order to analyze a wide range of VI/II ratio (80 to 510), i.e. attempting to modulate oxygen-rich conditions by changing either oxygen or zinc partial pressure. Growth rate effects have been also investigated by simultaneously increasing the precursor flows at constant VI/II ratio. In addition, we have deepened on the influence of annealing sapphire substrates and ZnO buffer layer on ZnO nanorods growth. The systematical studies regarding the VI/II ratio influence showed that under O-rich conditions, increasing VI/II ratio induces a morphological transition from nanorods towards nanotubes and, further, rough layers. This influence of VI/II ratio on the surface smoothening agrees with the commonly admitted fact that, when using MOCVD, high VI/II ratio conditions favor the growth of 2D layers, while low VI/II ratios lead to the growth of ZnO nanowires. The morphology transition observed in our samples can be understood by the reduction of the diffusion length of Zn adatoms on the growing surface as the oxygen richness increases. By studying the effect of the zinc precursor flow, which controls the growth rate, it has been shown that the precursor’s supersaturation has a significant influence on the vertical alignment of the nanorods, as well as on the aspect ratio. High supersaturation conditions enhance lateral growth in detriment of the c-axis growth and high aspect ratio. The formation of well-defined pyramids and/or nucleation islands at the base of vertical nanorods is also favored. Thus it can be inferred that the enhanced lateral growth could be at the origin of the enhanced vertical alignment. Otherwise, structural measurements showed that a combined use of an annealed substrate and a ZnO buffer layer can improve substantially the crystal quality, vertical alignment and aspect ratio (length/width) of ZnO nanorods. The rocking curves measurements made on these nanorods arrays allowed a FWHM as low as 288 arc sec. The tilt and twist obtained from our nanorods arrays have also demonstrated that, by using annealed substrate and a ZnO buffer layer, the density of edge and screw defects can be significantly reduced. In addition, by applying the Williamson-Hall method in our samples, we have showed the possibility to separate the structural properties of the nanorods from those of the layer on which they grown. Finally, the analysis of the micro-Raman and CL mesurements has allowed to conclude that the nonradiative recombination centers (NRRCs), which substantially affect the light emission in the visible spectral range of our nanorods, can be ascribed to ZnI-related defects. Indeed, it has been shown that high Zn supersaturation reduces the luminescence efficiency. The characterization of individual nanorods, grown on bare sapphire substrates, has allowed to focus on the spatial location of these defects that seems to be principally located at the nanorod tips. The Raman and CL measurements of individual nanorods permitted to detect inhomogeneities, showing that the excess ZnI defects accumulate in a region extending few micrometers below the tip. Moreover, we have observed that the use of a ZnO buffer layer instead of a bare sapphire substrate during the synthesis process could substantially modify the growth mode of ZnO nanorods. This is explained by the reduction of the formation of ZnI-related defects and hence the concentration of NRRCs associated with these defects, and finally these results in a substantial improvement of the optical quality of ZnO nanorods. es_ES
dc.embargo.terms 0 days es_ES

View       (11.66Mb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics