Elementary presentation of self‐consistent intermediate Hamiltonians and proposal of two totally dressed singles and doubles configuration interaction methods
NAGIOS: RODERIC FUNCIONANDO

Elementary presentation of self‐consistent intermediate Hamiltonians and proposal of two totally dressed singles and doubles configuration interaction methods

DSpace Repository

Elementary presentation of self‐consistent intermediate Hamiltonians and proposal of two totally dressed singles and doubles configuration interaction methods

Show simple item record

dc.contributor.author Malrieu, Jean Paul
dc.contributor.author Nebot Gil, Ignacio José
dc.contributor.author Sánchez Marín, José
dc.date.accessioned 2011-08-18T12:22:12Z
dc.date.available 2011-08-18T12:22:12Z
dc.date.issued 1994
dc.identifier.uri http://hdl.handle.net/10550/20040
dc.language.iso en en
dc.relation http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JCPSA6000100000002001440000001&idtype=cvips&prog=normal&doi=10.1063/1.466622 en
dc.source Malrieu, Jean Paul ; NEBOT GIL, I. ; SÁNCHEZ MARÍN, J. Elementary presentation of self‐consistent intermediate Hamiltonians and proposal of two totally dressed singles and doubles configuration interaction methods. En: Journal of Chemical Physics, 1994, vol. 100, no. 2 en
dc.subject Hamiltonians ; Configuration Interaction ; Scf Calculations ; Eigenvalues ; Eigenvectors ; Degeneration ; Many−Body Problem ; Electronic Structure en
dc.title Elementary presentation of self‐consistent intermediate Hamiltonians and proposal of two totally dressed singles and doubles configuration interaction methods en
dc.type info:eu-repo/semantics/article en
dc.type info:eu-repo/semantics/publishedVersion en
dc.subject.unesco UNESCO::FÍSICA::Química física en
dc.identifier.doi 10.1063/1.466622 en
dc.description.abstractenglish Intermediate Hamiltonians are effective Hamiltonians which are defined on an N‐dimensional model space but which only provide n<N exact eigenvalues and the projections of the corresponding eigenvectors onto the model space. For a single root research, the intermediate Hamiltonian may be obtained from the restriction of the Hamiltonian to the model space by an appropriate, uniquely defined dressing of the diagonal energies or of the first column. Approximate self‐consistent dressings may be proposed. The simplest perturbative form gives the same result as the original 2nd order intermediate Hamiltonian or the ‘‘shifted Bk’’ technique but it is of easier implementation. Self‐consistent inclusion of higher order exclusion principle violating corrections greatly improves the results, especially for nearly degenerate problems, as shown on several illustrative applications. Possible generalizations to enlarged or reduced model spaces are discussed. en
dc.description.private sanchezm@uv.es ; nebot@uv.es en

View       (1.185Mb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics