Self‐consistent intermediate Hamiltonians : A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing
NAGIOS: RODERIC FUNCIONANDO

Self‐consistent intermediate Hamiltonians : A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing

DSpace Repository

Self‐consistent intermediate Hamiltonians : A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing

Show simple item record

dc.contributor.author Nebot Gil, Ignacio José
dc.contributor.author Sánchez Marín, José
dc.contributor.author Malrieu, Jean Paul
dc.contributor.author Heully, J.L.
dc.contributor.author Maynau, D.
dc.date.accessioned 2010-07-30T11:19:01Z
dc.date.available 2010-07-30T11:19:01Z
dc.date.issued 1995
dc.identifier.uri http://hdl.handle.net/10550/16759
dc.language.iso en en
dc.relation http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JCPSA6000103000007002576000001&idtype=cvips&prog=normal&doi=10.1063/1.469680 en
dc.source NEBOT GIL, I. ; SÁNCHEZ MARÍN, J. ; MALRIEU, J.P. ; HEULLY, J.L. ; MAYNAU, D. Self‐consistent intermediate Hamiltonians: A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing. En: Journal of Chemical Physics, 1995, vol. 103, no. 7 en
dc.subject Hamiltonians ; Self−Consistent Field ; Many−Body Problem ; Perturbation Theory ; Configuration Interaction ; Algorithms en
dc.title Self‐consistent intermediate Hamiltonians : A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing en
dc.type info:eu-repo/semantics/article en
dc.type info:eu-repo/semantics/publishedVersion en
dc.subject.unesco UNESCO::FÍSICA::Química física en
dc.identifier.doi 10.1063/1.469680 en
dc.description.abstractenglish This paper presents a new self‐consistent dressing of a singles and doubles configuration interaction matrix which insures size‐consistency, separability into closed‐shell subsystems if localized molecular orbitals (MOs) are used, and which includes all fourth order corrections. This method yields, among several schemes, a reformulation of the coupled cluster method, including fully the cluster operators of single and double excitations, and partially those of the triples (Bartlett’s algorithm named CCSDT‐1a). Further improvement can be easily included by adding exclusion principle violating corrections. Since it leads to a matrix diagonalization, the method behaves correctly in case of near degeneracies between the reference determinant and some doubles. Due to its flexibility this formulation offers the possibility of consistent combination with less expensive treatments for the study of very large systems. en
dc.description.private nebot@uv.es ; sanchezm@uv.es en

View       (313.3Kb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics