Size-intensive decomposition of orbital energy denominators
NAGIOS: RODERIC FUNCIONANDO

Size-intensive decomposition of orbital energy denominators

DSpace Repository

Size-intensive decomposition of orbital energy denominators

Show simple item record

dc.contributor.author Koch, Henrik
dc.contributor.author Sánchez de Merás, Alfredo
dc.date.accessioned 2010-06-14T09:26:06Z
dc.date.available 2010-06-14T09:26:06Z
dc.date.issued 2000
dc.identifier.uri http://hdl.handle.net/10550/12958
dc.language.iso en en
dc.relation http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JCPSA6000113000002000508000001&idtype=cvips&prog=normal&doi=10.1063/1.481910 en
dc.source KOCH, Henrik ; SANCHEZ DE MERÁS, Alfredo. Size-intensive decomposition of orbital energy denominators. En: Journal of Chemical Physics, 2000, vol. 113, no. 2 en
dc.subject Orbital calculations ; Perturbation theory ; Convergence of numerical methods ; Integration ; Coupled cluster calculations en
dc.title Size-intensive decomposition of orbital energy denominators en
dc.type info:eu-repo/semantics/article en
dc.type info:eu-repo/semantics/publishedVersion en
dc.subject.unesco UNESCO::FÍSICA::Química física en
dc.identifier.doi 10.1063/1.481910 en
dc.description.abstractenglish We introduce an alternative to Almlöf and Häser’s Laplace transform decomposition of orbital energy denominators used in obtaining reduced scaling algorithms in perturbation theory based methods. The new decomposition is based on the Cholesky decomposition of positive semidefinite matrices. We show that orbital denominators have a particular short and size-intensive Cholesky decomposition. The main advantage in using the Cholesky decomposition, besides the shorter expansion, is the systematic improvement of the results without the penalties encountered in the Laplace transform decomposition when changing the number of integration points in order to control the convergence. Applications will focus on the coupled-cluster singles and doubles model including connected triples corrections [CCSD(T)], and several numerical examples are discussed. en
dc.description.private Alfredo.Sánchez@uv.es en

View       (63.26Kb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics