Size-intensive decomposition of orbital energy denominators
Mostra el registre complet de l'element
Visualització
(63.26Kb)
|
|
|
|
|
|
Koch, Henrik; Sánchez de Merás, Alfredo
|
|
Aquest document és un/a article publicat, creat/da en: 2000
|
|
We introduce an alternative to Almlöf and Häser’s Laplace transform decomposition of orbital energy denominators used in obtaining reduced scaling algorithms in perturbation theory based methods. The new decomposition is based on the Cholesky decomposition of positive semidefinite matrices. We show that orbital denominators have a particular short and size-intensive Cholesky decomposition. The main advantage in using the Cholesky decomposition, besides the shorter expansion, is the systematic improvement of the results without the penalties encountered in the Laplace transform decomposition when changing the number of integration points in order to control the convergence. Applications will focus on the coupled-cluster singles and doubles model including connected triples corrections [CCSD(T)], and several numerical examples are discussed.
|
|
KOCH, Henrik ; SANCHEZ DE MERÁS, Alfredo. Size-intensive decomposition of orbital energy denominators. En: Journal of Chemical Physics, 2000, vol. 113, no. 2 |
|
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JCPSA6000113000002000508000001&idtype=cvips&prog=normal&doi=10.1063/1.481910
|
distribuït sota llicència Creative Commons de Reconeixement-NoComercial 3.0 No adaptada
Aquest element apareix en la col·lecció o col·leccions següent(s)
Mostra el registre complet de l'element