Natural sciences for schoolteachers
LESSON 3:
Energy transfer
Contents

1. Work and energy.
2. Energy forms and sources.
3. Heat and temperature.
4. Energy conservation, transformation, and degradation.
Work and energy

Work
In physics, whenever a force is applied to an object, causing a displacement of the object in the direction of the force, work is done by the force.

Mathematically, we can express work as:

\[W = F \cdot \Delta x \]

Therefore,

1) **No work is done without a displacement.**

2) **The displacement must occur in the direction of the force** (i.e., a vertical force does not do work on a horizontally displaced object).
Work and energy

Work
Force is measured in newtons (N) and displacement in meters (m).
What are the units of work?

\[W = F \cdot \Delta x \]

\[[W] = N \cdot m = kg \cdot m^2 / s^2 = J \]

The unit of work in the International System of Units is the joule, which is the work done to an object when a force of 1 N acts on that object in the direction of its motion through a distance of 1 m.
Work and energy

Power
In everyday life, we are not so interested in the amount of work done as in how effectively it is done (or how quickly it is done).

In physics, *power* is the rate at which work is done.

Mathematically, we can express power as:

\[
P = \frac{W}{\Delta t}
\]
Work and energy

Power

Work is measured in joules (J) and time in seconds (s).
What are the units of power?

\[P = \frac{W}{\Delta t} \]

\[[P] = \frac{J}{s} = \frac{N \cdot m}{s} = \frac{kg \cdot m^2}{s^2} = k g \cdot m^2 / s^3 = W \]

The unit of power in the International System of Units is the watt, which is equal to a work of 1 J per second.
Work and energy

Power

<table>
<thead>
<tr>
<th>Electrical appliance</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fridge</td>
<td>250 – 350</td>
</tr>
<tr>
<td>Microwave</td>
<td>900 – 1 500</td>
</tr>
<tr>
<td>Washing machine</td>
<td>1 500 – 2 200</td>
</tr>
<tr>
<td>Dishwasher</td>
<td>1 500 – 2 200</td>
</tr>
<tr>
<td>Oven</td>
<td>1 200 – 2 200</td>
</tr>
<tr>
<td>Glass-ceramic cooktop</td>
<td>900 – 2 000</td>
</tr>
<tr>
<td>TV</td>
<td>150 – 400</td>
</tr>
<tr>
<td>Air conditioner</td>
<td>900 – 2 000</td>
</tr>
<tr>
<td>Electric heater</td>
<td>1 000 – 2 500</td>
</tr>
</tbody>
</table>
Work and energy

Energy
In physics, energy is the capacity of objects for causing changes in themselves or other objects.

Therefore, work is the transfer of energy from one system to the outside or vice versa.

\[W = \Delta E \]

If work is done by the system, its energy will decrease \((W < 0)\). If work is done on the system, its energy will increase \((W > 0)\).

The unit of energy in the International System of Units is the joule.
Energy

A commonly used unit of energy is the **kilowatt per hour** (kWh), which is the amount of energy delivered by a machine with a power of 1 kW for one hour.

\[
1 \text{ kWh} = 1000 \text{ W} \times 3600 \text{ s} = 3600000 \text{ W} \cdot \text{s} = 3600000 \text{ J}
\]
Work and energy

Energy
Living things need food to obtain energy and transform it to perform their daily activities.

In *nutrition*, the unit of energy commonly used to express the amount of energy provided by food is the **calorie**.

$$1 \text{ cal} = 4.1868 \text{ J}$$

Example:
A person needs about 2 000 kcal daily, i.e., 8 373.6 kJ.
This energy is equal to the energy needed to light a bulb with a power of 100 W for 23 h, 15 min and 36 s.
Work and energy

Energy

<table>
<thead>
<tr>
<th>Activity</th>
<th>Work (kcal) in 1 hour</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Walking</td>
<td>200</td>
<td>350</td>
</tr>
<tr>
<td>Running</td>
<td>800 – 1000</td>
<td>930 – 1200</td>
</tr>
<tr>
<td>Dancing</td>
<td>200 – 400</td>
<td>230 – 460</td>
</tr>
<tr>
<td>Playing tennis</td>
<td>400 – 500</td>
<td>460 – 580</td>
</tr>
<tr>
<td>Swimming</td>
<td>300 – 900</td>
<td>350 – 1050</td>
</tr>
</tbody>
</table>
Work and energy

Energy

<table>
<thead>
<tr>
<th>Food</th>
<th>Nutritional values (kcal) per 100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>White bread</td>
<td>258</td>
</tr>
<tr>
<td>Lettuce</td>
<td>14</td>
</tr>
<tr>
<td>Lentils</td>
<td>314</td>
</tr>
<tr>
<td>Egg</td>
<td>100</td>
</tr>
<tr>
<td>Whole cow’s milk</td>
<td>65</td>
</tr>
<tr>
<td>Cod</td>
<td>83</td>
</tr>
<tr>
<td>Chicken</td>
<td>112</td>
</tr>
<tr>
<td>Pork chop</td>
<td>327</td>
</tr>
<tr>
<td>Orange</td>
<td>44</td>
</tr>
<tr>
<td>Almonds</td>
<td>620</td>
</tr>
<tr>
<td>Beer</td>
<td>45</td>
</tr>
<tr>
<td>Chocolate</td>
<td>518</td>
</tr>
</tbody>
</table>
Energy forms and sources

Energy forms

Energy can manifest itself in different ways, and, depending on the process, it is called:

1) mechanical energy
2) thermal energy
3) electric energy
4) radiant energy
5) chemical energy
6) nuclear energy
Energy forms and sources

Energy forms: mechanical energy

Mechanical energy is the energy associated with the motion and position of an object. It can be of two types:

- **Kinetic energy** \((E_k)\), which is the energy associated with the motion of an object.

- **Potential energy** \((E_p)\), which is the energy associated with a system’s configuration.

\[
E = E_k + E_p
\]
Energy forms and sources

Energy forms: mechanical energy – kinetic energy

The **kinetic energy** \((E_k) \) is the energy associated with the **motion** of an object. Its value depends on the mass \((m) \) and the speed \((v) \) of the object.

\[
E_k = \frac{1}{2} m \cdot v^2
\]

Example:

The kinetic energy of the wind **is used in wind turbines to generate electricity.**

Image: Hans Hillewaert

CC BY-SA 4.0
Energy forms and sources

Energy forms: mechanical energy – potential energy

The potential energy \((E_p)\) is the energy associated with the system’s configuration.

- The **gravitational potential energy** is the energy associated with the height above ground of an object.

- The **elastic potential energy** is the energy associated with the deformation of an object.
Energy forms and sources

Energy forms: mechanical energy – potential energy

The gravitational potential energy is the energy associated with the height above ground of an object.

Its value depends on the mass (m) of the object, gravity (g), and the height above ground (h) of the object.

\[E_p = m \cdot g \cdot h \]

Example:

Hydroelectric power plants use the gravitational potential energy that a mass of water has due to a difference in height.
Energy forms and sources

Energy forms: mechanical energy – potential energy

The **elastic potential energy** is the energy associated with the **deformation** of an object. Its value depends on the elasticity of the object (k) and how much it has been deformed (x).

\[
E_p = \frac{1}{2} k \cdot x^2
\]

Example:

When the string of a bow is drawn back, it bends the limbs of the bow, storing elastic potential energy. When the string is released, the potential energy in the bow limbs is transformed into the kinetic energy of the arrow as it takes flight.
Energy forms and sources

Energy forms: thermal energy

Thermal energy is the total kinetic energy of a system's constituent particles (atoms, molecules, etc.), which are in constant motion.

The faster the particles move, the more kinetic energy they have.
Energy forms and sources

Energy forms: electric energy

Electric energy is the energy caused by the motion of electrical charges inside conductors.

It is used in everyday life, and through it, we can use a computer, illuminate our homes, keep food fresh in a fridge, etc.
Energy forms and sources

Energy forms: radiant energy

Radiant energy is the energy of electromagnetic waves such as visible light, radio waves, UV radiation, and IR radiation. These waves do not require the presence of a material medium to transport their energy from one location to another.

Example: The energy emitted by the Sun reaching Earth in the form of light and heat is radiant energy.

![Diagram of electromagnetic spectrum with wavelength and frequency scales](Image: Inductiveload, NASA)
Energy forms and sources

Energy forms: chemical energy

Chemical energy is energy stored in the bonds of atoms and molecules of *chemical compounds* and released in *chemical reactions*.

Example: the combustion of butane
Energy forms and sources

Energy forms: nuclear energy

Nuclear energy is the energy that holds together the nuclei of atoms, and which is released in nuclear reactions. The nuclear reactions that release energy are:

• nuclear fission: the (heavy) nucleus of an atom splits into two or more smaller (lighter) nuclei.

• nuclear fusion: two or more atomic nuclei join to form a heavier nucleus.
Energy forms and sources

Energy sources
An energy source is any material or natural resource from which energy can be obtained, either for direct use or to transform it.

Energy sources are classified into:

1) **Renewable:** which can be used continuously, since they are replenished constantly (such as wind, sunlight, and tides).

2) **Non-renewable:** which once used take too long to renew themselves, or will never renew (fossil fuels and nuclear energy).
Energy forms and sources

Energy sources: renewables

1) Wind power. Energy obtained from *air flow* using *wind turbines*.

2) Solar energy. The electromagnetic radiation that reaches Earth from the *Sun*.

3) Hydropower. Energy obtained from falling or fast running *water* retained in reservoirs.

4) Geothermal energy. The heat generated and stored in the *Earth*.

5) Biomass. Energy obtained from *organic matter* either directly (combustion) or indirectly (biofuel).

6) Tidal power. Energy obtained from *tides* and *waves*.
Energy forms and sources

Energy sources: non-renewables

1) **Fossil fuels** (*petroleum*, *coal* and *natural gas*). Formed by the accumulation, millions of years ago, of large quantities of organic remains at the bottom of seas and lakes.

2) **Nuclear energy.** The energy that holds together the nuclei of atoms, and which is released in nuclear reactions (nuclear fission or fusion).
Energy forms and sources

Energy sources

Total World Energy Consumption by Source (2013)

REN21 Renewables 2014 Global Status Report
Heat and temperature

Temperature
We usually associate the concept of temperature with how ‘hot’ or ‘cold’ objects feel when touched.
Heat and temperature

Temperature

Our sense of touch provides a qualitative indication of the temperature - but is not very reliable.

Therefore, we need a reliable and reproducible method to determine how relatively ‘hot’ or ‘cold’ objects are, and which is exclusively related to the temperature of the object.
Heat and temperature

Temperature
The temperature of a system is a measure related to the average kinetic energy of its particles ...

... but this energy is very difficult to calculate.
Heat and temperature

Temperature
Fortunately, some systems have **observable properties** that vary with **temperature**:

- volume of a liquid
- length of a solid
- electrical resistance of a conductor
- thermal radiation emitted

Thermometers are instruments that use some of these physical properties for measuring the temperature of an object.
Heat and temperature

Temperature

Example:

Image: Menchi
CC BY-SA 3.0

Image: Svdmolen
CC BY 2.5

Image: Hustvedt
CC BY-SA 3.0
Heat and temperature

Temperature scales
The temperature unit in the International System is the Kelvin, although the use of other temperature scales (Celsius or Fahrenheit) is common for everyday applications.
Heat and temperature

Temperature scales

- In **Celsius** (°C), 0°C is defined as the freezing point of water and 100°C is defined as the boiling point of water. This scale is divided into 100 equal degrees between those two points.

- In **Fahrenheit** (°F), 0°F is defined as the temperature of a solution of brine (solution of salt in water) in ice. Further limits were established as the melting point of ice (32°F) and an estimate of the average human body temperature (96°F). This scale is divided into 180 equal degrees between the freezing and boiling points of water.

 \[F = 1.8 \cdot C + 32 \]

- The **Kelvin** (K) scale is based on a single point (0 K, absolute zero), which corresponds to the temperature at which the molecules and atoms of a system have the minimum possible thermal energy. From there, the scale increases by equal degrees that are the same size as Celsius degrees.

 \[K = C + 273.15 \]
Heat and temperature

Heat

Heat is the energy in transit from one object to another due to a difference of temperature.

This transfer of energy always happens from a high temperature object to a lower temperature object, until both reach the same temperature (thermal equilibrium).

The unit of heat in the International System of Units is the joule.
Heat and temperature

Heat transfer
Heat can be transferred from place to place by:

- Conduction
- Convection
- Radiation

Image: Kmecfiunit
CC BY-SA 4.0
Heat and temperature

Heat transfer
Heat can be transferred from place to place by:

1. **Conduction**, which is heat transfer by means of collisions of particles (atoms, molecules, etc.) within an object or between contiguous objects.

2. **Convection**, which is heat transfer by means of the movement of fluids (liquids or gases).

3. **Radiation**, which is heat transfer by means of electromagnetic waves, and does not involve the movement or the interaction of matter.
Heat and temperature

Heat transfer: conduction
If one end of a metal rod is at a higher temperature, as one particle vibrates it causes the next in line to vibrate also. This process repeats, particle after particle, allowing energy to be transferred down the rod towards the colder end.

In conduction, the particles in the solid do not move and only vibrate.
Heat and temperature

Heat transfer: convection

Fluids (liquids and gases) usually expand when they are heated. The fluid in hot areas is less dense than the fluid in cold areas, so it rises into the cold areas. The denser cold liquid falls into the warm areas. In this way, *convection currents* that transfer heat from place to place are set up.

![Diagram of convection currents](image_url)

Image: Oni Lukos [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0)
Heat and temperature

Heat transfer: radiation

All objects radiate energy in the form of *electromagnetic waves*. The hotter the object, the more it radiates.

Radiation does not require the presence of matter, and it is the only means of an object transferring energy in a *vacuum*.
Energy conservation, transformation, and degradation

Energy conservation
We can change the position of an object (**potential energy**) or its speed (**kinetic energy**) by doing work on it.

In general, by doing work on an object, we can simultaneously modify its position and speed, and thus:

\[W = \Delta E = \Delta E_k + \Delta E_p \]

where the total energy of the object is given by:

\[E = E_k + E_p \]
Energy conservation, transformation, and degradation

Energy conservation
The law of conservation of energy states that:

‘Energy is neither created nor destroyed, only transformed.’

In these transformations, the total energy remains constant, i.e., the total energy is the same before and after each transformation.

\[\Delta E = 0 \]
Energy conservation, transformation, and degradation

Energy conservation

“Energy is neither created nor destroyed, only transformed.”

In the case of mechanical energy, it can be concluded that, in the absence of friction and without any external work, the sum of the kinetic and potential energies remains constant.

\[\Delta E = \Delta E_k + \Delta E_p = 0 \rightarrow \Delta E_k = -\Delta E_p \]

\[E = E_k + E_p = \text{constant} \]

That is, the kinetic energy can be converted into potential energy and vice versa.
Energy conservation, transformation, and degradation

Energy conservation

‘Energy is neither created nor destroyed, only transformed.’

Example:

https://youtu.be/rKLtuc-N7EE
Energy conservation, transformation, and degradation

Energy conservation

‘Energy is neither created nor destroyed, only transformed.’

Example:

[Image of a crane with a ball and chain]

https://youtu.be/xXXF2C-vrQE
Energy conservation, transformation, and degradation

Energy conservation

‘Energy is neither created nor destroyed, only transformed.’

Example:

http://youtu.be/8p1ZJ_WBRkU

Image: Dominique Toussaint
CC BY-SA 3.0
Energy conservation, transformation, and degradation

Energy transformation

Energy is constantly changing from one form to another. Energy always goes from a ‘more useful’ to a ‘less useful’ form (referring to the ability to do work).

Example:
When we fill the fuel tank of a car, we are introducing a certain amount of chemical energy. The combustion of the gasoline inside the engine converts the chemical energy into heat, which causes the expansion of the gases from the combustion, and thus doing mechanical work. The motor gears transmit the mechanical energy to the wheels, which move the car. A portion of all the generated energy is converted into heat in the engine and the tires. A part of that energy is also transformed into noise.
Energy conservation, transformation and degradation

Energy degradation
Energy is constantly changing from one form to another, and after each transformation, energy loses quality, becomes less useful, and degrades.

In every transformation, part of the energy is transformed in *heat*. Any form of energy can be completely transformed in heat, but heat cannot completely be transformed in any other form of energy. Therefore, it is said that *heat is a degraded form of energy.*

Examples:
Electric energy is transformed into heat in an incandescent bulb.
Chemical energy is transformed into heat during combustion.
Mechanical energy is transformed into heat by friction.
Energy conservation, transformation and degradation

Energy degradation

Therefore, the **efficiency** of a device can be defined (in %) as the ratio of the useful energy transferred and the total energy supplied in any transformation:

\[
\text{Efficiency} = 100 \times \frac{\text{Useful energy}}{\text{Total energy}}
\]

Example:

In an incandescent bulb, the efficiency is 5%. This means that only 5% of the electric energy consumed is used to provide light. The rest is lost as heat.