Transitivity of Sylow permutability, the converse of Lagrange’s theorem, and mutually permutable products

M. Asaad* A. Ballester-Bolinches† J.C. Beidleman‡ R. Esteban-Romero§

2nd January 2016

Dedicated to Professor Leonid Aleksandrovich Shemetkov on the occasion of his seventieth birthday

Abstract

This paper is devoted to the study of mutually permutable products of finite groups. A factorised group $G = AB$ is said to be a mutually permutable product of its factors A and B when each factor permutes with every subgroup of the other factor. We prove that mutually permutable products of Y-groups (groups satisfying a converse of Lagrange’s theorem) and SC-groups (groups whose chief factors are simple) are SC-groups, by means of a local version. Next we show that the product of pairwise mutually permutable Y-groups is supersoluble. Finally, we give a local version of the result stating that when a mutually permutable product of two groups is a PST-group (that is, a group in which every subnormal subgroup permutes with all Sylow subgroups), then both factors are PST-groups.

Mathematics Subject Classification (2000): 20D10, 20D40, 20D30

Keywords: mutually permutable product, permutability, Y-group, PST-group, SC-group

In this paper we will deal only with finite groups.

Many group theorists have been worried about what can be said of a group $G = G_1G_2\cdots G_m$ which is a product of some pairwise permutably subgroups if some properties of the factors are known. For instance, a well-known theorem of Kegel and Wielandt [26, 32] says that a product of two nilpotent groups is soluble. The fact that a product of two supersoluble groups is not necessarily supersoluble, even if both factors are normal in the group, motivates the restriction of this question to factorised groups in which both factors are connected by certain stronger permutability properties. The first author and Shaalan introduced in [6] the notion of mutually permutable product $G = AB$ of two subgroups A and B: in a mutually permutable product, each factor permutes with every subgroup of the other factor. In particular, this situation holds when both factors are normal in the group. Some results about normal products of supersoluble groups were extended to mutually permutable products in [6], for instance, a mutually permutable product $G = AB$ of two supersoluble groups A and B is supersoluble whenever G is nilpotent or one of the factors is nilpotent. They also showed that totally permutable products (that is, every subgroup of each factor permutes with every subgroup of the other factor) of supersoluble groups are supersoluble. Of course, central products and direct products are instances of totally

*Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt, email: moasmo45@yahoo.com
†Departament d’Àlgebra, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot, València, Spain, email: Adolfo.Ballester@uv.es
‡Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027, USA, email: clark@ms.uky.edu
§Departament de Matemàtica Aplicada-IMPA, Universitat Politècnica de València, Camí de Vera, s/n, E-46022 València, Spain, email: resteban@mat.upv.es
permutable products. Mutually and totally permutable products have been considered as well in [2, 12, 17, 18, 21, 22].

On the other hand, Kegel [27] proved that all subgroups of a group \(G \) which permute with all the Sylow subgroups of \(G \) are subnormal. We call these subgroups \(S \)-permutable. This motivates the definition of the class of PST-groups, or groups in which every subnormal subgroup is \(S \)-permutable. Agrawal [1] obtained a characterisation of soluble PST-groups as the groups \(G \) in which the nilpotent residual \(L \) is an abelian normal Hall subgroup of \(G \) and all elements of \(G \) induce power automorphisms in \(L \). Some interesting subclasses of the class of all PST-groups are the class of all PT-groups (groups in which permutability is a transitive relation, or in which every subnormal subgroup is permutable) and the class of all T-groups (groups in which normality is a transitive relation). These classes of groups have been studied by several authors (for instance, [3, 5, 8, 9, 11, 13, 14, 15, 19, 20, 21, 22, 23, 25, 29, 33]).

A consequence of the theorem of Agrawal [1], soluble PST-groups are supersoluble. Robinson [29] showed that, in the general finite universe, PST-groups have all their chief factors simple, or, as he says, they are \(SC \)-groups. The classification of finite simple groups and the truth of the Schreier conjecture yields the following description of \(SC \)-groups:

Theorem 1 ([29, Proposition 2.4]). A group \(G \) is an \(SC \)-group if and only if there is a perfect normal subgroup \(D \) such that \(G/D \) is supersoluble, \(D/Z(D) \) is a direct product of \(G \)-invariant simple groups, and \(Z(D) \) is supersolubly embedded in \(G \) (i.e., there is a \(G \)-admissible series of \(Z(D) \) with cyclic factors).

The relation between totally and mutually permutable products and \(SC \)-groups has been investigated in [10, 12, 17, 21, 22]. For instance:

Theorem 2 ([12, Theorems 2 and 3]). Assume that \(G \) is the mutually permutable product of its subgroups \(A \) and \(B \). Then:

1. If \(G \) is an \(SC \)-group, then \(A \) and \(B \) are \(SC \)-groups.
2. If \(A \) and \(B \) are \(SC \)-groups, then \(G/\text{Core}_G(A \cap B) \) is an \(SC \)-group.

Now let us pay attention to the class \(\mathcal{Y} \) of all groups \(G \) in which for every subgroup \(H \) and all primes \(q \) dividing the index \(|G:H| \) there exists a subgroup \(K \) of \(G \) such that \(H \) is contained in \(K \) and \(|K:H| = q \). This condition is equivalent to say that for every subgroup \(H \) of \(G \) there exist intermediate subgroups of all possible orders. Hence \(\mathcal{Y} \) consists of groups satisfying the converse of Lagrange’s theorem, the so-called CLT-groups. The class \(\mathcal{Y} \) has been studied in Chapter 1 and Section 6.1 of [31], and, more recently, in [7]. These groups can be characterised as follows:

Theorem 3. A group \(G \) is a \(\mathcal{Y} \)-group if, and only if, the nilpotent residual \(L \) of \(G \) is a nilpotent Hall subgroup of \(G \) and for all subgroups \(H \) of \(L \), \(G = LN_G(H) \).

In [7], it is proved that the class of soluble PST-groups coincides with the class of \(\mathcal{Y} \)-groups with abelian nilpotent residual.

The theory of finite groups has benefited from the local techniques. Given a group theoretical property \(\mathcal{A} \), we are interested in finding another weaker property \(\mathcal{A}_p \), depending on a prime \(p \), such that a group satisfies \(\mathcal{A} \) if and only if it satisfies \(\mathcal{A}_p \) for all primes \(p \). For instance, \(p \)-solubility (\(p \) a prime) becomes a good “localisation” of solubility. The local method is behind the notions of local formation and composition or Baer-local formation and other generalisations of these concepts (see [16, 24, 30] for more details). Local techniques turn out very useful in the study of PST-groups and other related classes. For example, in [23] and [28] the authors have presented some interesting local characterisations of soluble T-groups. A local characterisation of soluble PT-groups appears in [19]. In [3, 13, 14], local characterisations of soluble PST-groups are studied.
Definition 4. Let p be a prime number.

1. A p-soluble group G satisfies PST_p when every p'-perfect subnormal subgroup of G permutes with every Hall p'-subgroup of G (see [3]).

2. A group G satisfies U_p^* when G is p-supersoluble and all p-chief factors of G are G-isomorphic when regarded as G-modules (see [3]).

3. A (not necessarily p-soluble) group G satisfies \mathcal{Y}_p when for every pair of p-subgroups H and K such that $H \leq K$, H is S-permutable in $N_G(K)$ ([14]).

It is shown in [3] and [14] that for p-soluble groups, all three properties are equivalent and so soluble PST-groups are exactly the groups satisfying PST_p for all primes p. Other local properties for PST-groups in the general finite universe appear in [9]:

Definition 5. Let p denote a prime number. A group G is said to satisfy N_p when every nonabelian chief factor of G of order divisible by p is simple and for each normal subgroup N of G, p'-elements of G induce power automorphisms in $O_p(G/N)$.

The paper [9] characterises PST-groups as the groups satisfying N_p for all primes p. If we fix a prime p, it is rather clear that a p-soluble group G satisfying property N_p has all p-chief factors G-isomorphic when regarded as G-modules by conjugation. Hence G is a PST$_p$-group. Conversely, Assume that G is a p-soluble PST$_p$-group. Consider a normal subgroup N of G and take a subgroup L/N of $O_p(G/N)$. By [3, Lemma 2], G/N is a PST$_p$-group as well. Then L/N is a subnormal p'-perfect subgroup of G/N, and so L/N permutes with all Hall p'-subgroups of G/N. Let H be a Hall p'-subgroup of G. Then HN/N is a Hall p'-subgroup of G/N and L/N is a subnormal Sylow p-subgroup of $(L/N)(HN/N)$. In particular, L/N is normalised by HN/N. This implies that all elements of H normalise L. It follows that G is an N_p-group.

Therefore we have:

Lemma 6. Let p be a prime number. If a group G is p-soluble, then G satisfies N_p if and only if G satisfies PST_p.

The local method has also been successfully applied to the study of \mathcal{Y}-groups in [7] with the definition of the property Z_p (p a prime):

Definition 7. We say that G satisfies Z_p when for every p-subgroup X of G and for every power q^m of a prime q dividing $|G : XO_p'(G)|$, there exists a subgroup K of G containing $XO_p'(G)$ such that $|K : XO_p'(G)| = q^m$.

In [7, Theorem 13], it is proved that property Z_p is equivalent to the following one:

Theorem 8. Let G be a group and let p be a prime. If G is p-soluble, then G satisfies Z_p if and only if G satisfies either of the following conditions:

1. G is p-nilpotent, or

2. $G(p)/O_p'(G(p))$ is a Sylow p-subgroup of $G/O_p'(G(p))$ and for every p-subgroup H of $G(p)$, we have that $G = N_G(H)G(p)$.

Here $X(p)$ denotes the p-nilpotent residual of a group X, that is, the smallest normal subgroup N of X such that X/N is p-nilpotent.

Theorem 9 ([7, Theorem 15]). A soluble group satisfies \mathcal{Y} if and only if it satisfies Z_p for all primes p.
In [4] we prove some results on mutually permutable products whose factors belong to some of the above classes. We start with a localisation of SC-groups.

Definition 10. Let p be a prime number. A group G is said to be an SC_p-group whenever every chief factor of G whose order is divisible by p is simple.

It is clear that G is an SC-group (i.e., all its chief factors are simple) if and only if G is an SC_p-group for all primes p. In what follows, p will denote a fixed prime number. The proofs of Theorem 2 can be adapted to prove:

Lemma 11. Assume that G is a mutually permutable product of its subgroups A and B.

1. If G is an SC_p-group, then A and B are SC_p-groups.

2. If A and B are SC_p-groups, then $G/\text{Core}_G(A \cap B)$ is an SC_p-group.

Mutually permutable products of SC_p-groups and p-soluble Z_p-groups are the object of the next result:

Theorem 12. Let $G = AB$ be a mutually permutable product of its subgroups A and B. Assume that A is an SC_p-group and that B is a p-soluble Z_p-group. Then G is an SC_p-group.

The following corollaries follow immediately from Theorem 12:

Corollary 13. If G is a mutually permutable product of an SC-group A and a Y-group B, then G is an SC-group. In particular, if G is a mutually permutable product of a supersoluble group A and a Y-group B, then G is supersoluble.

Let \mathfrak{X} be a class of groups. A class of groups \mathfrak{F} is called the Fitting core of \mathfrak{X} provided that whenever if $A \in \mathfrak{X}$ and $B \in \mathfrak{F}$, and A and B are normal subgroups of a group G, then $AB \in \mathfrak{X}$ (see [20]). From Corollary 2 of [20] it follows that the class of soluble PST-groups belongs to the Fitting core of the formation of supersoluble groups. In fact from Corollary 13 we obtain a more general statement, mainly: the class \mathcal{Y} is contained in the Fitting core of both the formation of supersoluble groups and hence the formation of SC-groups.

Corollary 14. If G is a mutually permutable product of two p-soluble Z_p-groups, then G is p-supersoluble.

Corollary 15. If G is a mutually permutable product of two Y-groups, then G is supersoluble.

Corollary 15 admits the following generalisation:

Theorem 16. Let $G = G_1G_2 \cdots G_r$ be a group such that G_1, G_2, \ldots, G_r are pairwise mutually permutable subgroups of G. If all G_i are Y-groups, then G is supersoluble.

The proof of Theorem 16 depends on the following lemma:

Lemma 17. Let G be a Y-group with an abelian normal Sylow p-subgroup P for a prime p. Then every subgroup of P is normal in G.

We do not know whether a local version of Theorem 16 is true, namely, if all G_i are Z_p-groups, then G is p-supersoluble.

In [22, Theorem 5], the following result is proved:

Theorem 18. Let $G = AB$ be a mutually permutable product of the subgroups A and B. If G is a PST-group, then A is a PST-group.
Our proof of Theorem 20 depends on the following:

Lemma 19. Let N be a normal subgroup of G such that G/N satisfies N_p. If either N is non-abelian and simple or N is a p'-group, then G satisfies N_p.

We conclude with a local version of Theorem 18, from which it follows immediately:

Theorem 20. Let G be a mutually permutable product of its subgroups A and B. If G is a SC-group and satisfies N_p, then A satisfies N_p.

Acknowledgements

The second and the fourth authors have been supported by the Grant MTM2004-08219-C02-02 from MEC (Spain) and FEDER (European Union). The fourth author has been supported by the Grant GV/2007/243 from Generalitat (Valencian Community).

References

