On a class of supersoluble groups

A. Ballester-Bolinches∗ J. C. Beidleman†
R. Esteban-Romero‡ M. F. Ragland§

Abstract

A subgroup H of a finite group G is said to be S-semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing $|H|$. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.

Keywords and phrases: finite group, soluble PST-group, T_0-group, MS-group, BT-group.

1 Introduction

In the following, G always denotes a finite group. Recall that subgroups H and K of G is said to permute if HK is a subgroup of G and that a subgroup H of G is said to be permutable in G if H permutes with all subgroups of G.

Various generalisations of permutability have been defined and studied and, in particular, we mention the S-semipermutability. A subgroup H is said to be S-semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing $|H|$. This subgroup embedding property

∗Departament d’Àlgebra, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, València, Spain, email: Adolfo.Ballester@uv.es
†Department of Mathematics, University of Kentucky, Lexington KY 40506-0027, USA, email: clark@ms.uky.edu
‡Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain, email: resteban@mat.upv.es. Current address: Departament d’Àlgebra, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, València, Spain, email: Ramon.Esteban@uv.es
§Department of Mathematics, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124-4023, USA, email: mragland@aum.edu
has been extensively studied recently (see for instance [1, 4, 7, 9]). Most of these papers concern situations where many subgroups (for instance all maximal subgroups of the Sylow subgroups) have the stated property. Thus we say that a group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G.

The main aim of this paper is to characterise the MS-groups.

2 Preliminary results

In this section, we collect the definitions and results which are needed to prove our main theorems.

We shall adhere to the notation used in [2]: this book will be the main reference for terminology and results on permutability.

A subgroup H is permutable in a group G if and only if H permutes with every p-subgroup of G for every prime p (see for instance [2, Theorem 1.2.2]). A less restrictive subgroup embedding property is the S-permutability introduced by Kegel in 1962 [5] and defined in the following way:

Definition 1. A subgroup H of G is said to be S-permutable in G if H permutes with every Sylow p-subgroup of G for every prime p.

Note that we are not considering all p-subgroups, but just the maximal ones, that is, the Sylow p-subgroups.

In recent years there has been widespread interest in the transitivity of normality, permutability and S-permutability.

Definition 2. 1. A group G is a T-group if normality is a transitive relation in G, that is, if every subnormal subgroup of G is normal in G.

2. A group G is a PT-group if permutability is a transitive relation in G, that is, if H is permutable in K and K is permutable in G, then H is permutable in G.

3. A group G is a PST-group if S-permutability is a transitive relation in G, that is, if H is S-permutable in K and K is S-permutable in G, then H is S-permutable in G.

If H is S-permutable in G, it is known that H must be subnormal in G ([2, Theorem 1.2.14(3)]). Therefore, a group G is a PST-group (respectively, a PT-group) if and only if every subnormal subgroup is S-permutable (respectively, permutable) in G.
Note that T implies PT and PT implies PST. On the other hand, PT does not imply T (non-Dedekind modular p-groups) and PST does not imply PT (non-modular p-groups).

A less restrictive class of groups is the class of T_0-groups which has been studied in [3, 6, 8].

Definition 3. A group G is called a T_0-group if the Frattini factor group $G/\Phi(G)$ is a T-group.

The group in Example 13 below is a soluble T_0-group which is not a PST-group. Soluble T_0-groups are closely related to PST-groups as the following result shows.

Theorem 4 ([6, Theorems 5 and 7 and Corollary 3]). Let G be a soluble T_0-group with nilpotent residual $L = \gamma_\infty(G)$. Then:

1. G is supersoluble.
2. L is a nilpotent Hall subgroup of G.
3. If L is abelian, then G is a PST-group.

Here the nilpotent residual $\gamma_\infty(G)$ of a group G is the smallest normal subgroup N of G such that G/N is nilpotent, that is, the limit of the lower central series of G defined by $\gamma_1(G) = G, \gamma_{i+1}(G) = [\gamma_i(G), G]$ for $i \geq 1$.

It is known that S-semipermutability is not transitive. Hence it is natural to consider the following class of groups:

Definition 5. A group G is called a BT-group if S-semipermutability is a transitive relation in G, that is, if H is S-semipermutable in K and K is S-semipermutable in G, then H is S-semipermutable in G.

This class was introduced and characterised by Wang, Li and Wang in [9]. Further contributions were presented in [1].

Theorem 6 ([9, Theorem 3.1]). Let G be a group. The following statements are equivalent:

1. G is a soluble BT-group.
2. Every subgroup of G is S-semipermutable.
3. G is a soluble PST-group and if p and q are distinct prime divisors of the order of G not dividing the order of the nilpotent residual of G, then $[G_p, G_q] = 1$, where $G_p \in \text{Syl}_p(G)$ and $G_q \in \text{Syl}_q(G)$.

3
The group presented in Example 12 below is an MS-group which is not a soluble BT-group. Furthermore, Example 13 shows that the classes of T_0-groups and MS-groups are not closed under taking subgroups.

The first remarkable fact concerning the structure of an MS-group can be found in [7]. It is proved there that every MS-group is supersoluble.

Theorem 7 ([7, Corollary 9]). Let G be an MS-group. Then G is supersoluble.

More recently, the second and fourth authors proved the following theorem.

Theorem 8 ([4, Theorems A, B and C]). Let G be an MS-group with nilpotent residual $L = \gamma_\infty(G)$. Then:

1. If N is a normal subgroup of G, then G/N is an MS-group;
2. L is a nilpotent Hall subgroup of G;
3. G is a soluble T_0-group.

It is well-known that the nilpotent residual of a supersoluble group is nilpotent. Hence the nilpotency of L in Theorem 8 is a consequence of Theorem 7.

Let G be a group whose nilpotent residual $L = \gamma_\infty(G)$ is a Hall subgroup of G. Let $\pi = \pi(L)$ and let $\theta = \pi'$, the complement of π in the set of all prime numbers. Let θ_N denote the set of all primes p in θ such that if P is a Sylow p-subgroup of G, then P has at least two maximal subgroups. Further, let θ_C denote the set of all primes q in θ such that if Q is a Sylow q-subgroup of G, then Q has only one maximal subgroup, or equivalently, Q is cyclic.

Throughout this paper we will use the notation presented above concerning $\pi, \theta = \pi', \theta_N,$ and θ_C.

3 The main results

Our first main result is a characterisation theorem.

Theorem 9. Let G be a group with nilpotent residual $L = \gamma_\infty(G)$. Then G is an MS-group if and only if G satisfies the following properties.

1. G is a T_0-group.
2. L is a nilpotent Hall subgroup of G.

4
3. If \(p \in \pi \) and \(P \in \text{Syl}_p(G) \), then a maximal subgroup of \(P \) is normal in \(G \).

4. Let \(p \) and \(q \) be distinct primes with \(p \in \theta_N \) and \(q \in \theta \). If \(P \in \text{Syl}_p(G) \) and \(Q \in \text{Syl}_q(G) \), then \([P, Q] = 1 \).

5. Let \(p \) and \(q \) be distinct primes with \(p \in \theta_C \) and \(q \in \theta \). If \(P \in \text{Syl}_p(G) \) and \(Q \in \text{Syl}_q(G) \) and \(M \) is the maximal subgroup of \(P \), then \(MQ = \bigcup_{i=} \) is a nilpotent subgroup of \(G \).

Proof. Let \(G \) be an MS-group. By Theorems 7 and 8, \(G \) is a supersoluble \(T_0 \)-group whose nilpotent residual \(L \) is a nilpotent Hall subgroup of \(G \). Thus properties 1 and 2 hold.

Let \(\pi = \pi(L) \) and let \(p \in \pi \). Further, let \(P \) be a Sylow \(p \)-subgroup of \(G \) and let \(M \) be a maximal subgroup of \(P \). Then \(M \leq P \leq L \) and \(M \) is normal in \(L \) and subnormal in \(G \). Let \(q \in \theta = \pi' \) and note that \(MQ \) is a subgroup of \(G \) for a given Sylow \(q \)-subgroup \(Q \) of \(G \). Moreover \(M \) is a Sylow \(p \)-subgroup of \(MQ \) and so \(M \) is a normal subgroup of \(MQ \). Consequently \(M \) normalises \(P \) and each Sylow \(q \)-subgroup \(Q \) of \(G \), so \(M \) is a normal subgroup of \(G \) and property 3 holds.

Let \(X \) be a Hall \(\theta \)-subgroup of \(G \) and note that \(G = L \times X \), the semidirect product of \(L \) by \(X \), and \(X \) is nilpotent. Let \(t \) be a prime from \(\theta_N \) and \(r \) be a prime from \(\theta \). Also let \(T \in \text{Syl}_r(G) \) and \(R \in \text{Syl}_r(G) \). Let \(M_1 \) and \(M_2 \) be two distinct maximal subgroups of \(T = \langle M_1, M_2 \rangle \). Since \(G \) is an MS-group, \(M_1R = RM_1 \) and \(M_2R = RM_2 \). Applying [2, Theorem 1.2.2], we have \(TR = TR \). Observe that \(TR \) is a \(\theta \)-subgroup of \(G \) and so \(TR \) is nilpotent since \(TR \) is a subgroup of some conjugate of \(X \). Therefore, \([T, R] = 1 \) and property 4 holds.

Let \(p \) and \(q \) be distinct primes with \(p \in \theta_C \) and \(q \in \theta \). Further, let \(P \in \text{Syl}_p(G) \) and \(Q \in \text{Syl}_q(G) \). If \(M \) is the maximal subgroup of \(P \), then \(MQ = \bigcup_{i=} \) is a nilpotent \(\theta \)-subgroup of \(G \). Thus property 5 holds.

Let \(G \) be a group satisfying properties 1–5. We are to show that \(G \) is an MS-group. By properties 1 and 2, \(G \) is a soluble \(T_0 \)-group, and by Theorem 4, \(G \) is thus supersoluble.

Let \(p \in \pi = \pi(L) \), let \(P \) be a Sylow \(p \)-subgroup of \(G \), and let \(M \) be a maximal subgroup of \(P \). Then \(M \) is a normal subgroup of \(G \) by property 3 and clearly \(P \) is a normal subgroup of \(G \). This means that \(M \) permutes with every Sylow subgroup of \(G \) and \(P \) permutes with every maximal subgroup of any Sylow subgroup of \(G \).

Let \(p \) and \(q \) be distinct primes from \(\theta \) and let \(P \in \text{Syl}_p(G) \) and \(Q \in \text{Syl}_q(G) \). We consider a maximal subgroup \(M \) of \(P \). Note that \(\theta = \theta_N \cup \theta_C \).
and \(\theta_N \cap \theta_C = \emptyset \), the empty set. If \(p \in \theta_N \), then by property 4, \([P,Q] = 1\), so that \(MQ = QM \). Hence assume \(p \in \theta_C \). Then, by property 5, \(MQ = QM \).

Therefore, every maximal subgroup of any Sylow subgroup of \(G \) is S-semipermutable in \(G \) and \(G \) is an MS-group.

The second and fourth authors in [4] posed the following two questions.

1. When is a soluble PST-group an MS-group?
2. When is a soluble PST-group which is also an MS-group a BT-group?

Using Theorem 9 we are able to answer the first question and provide a partial answer to the second.

Theorem 10. Let \(G \) be a soluble PST-group. Then \(G \) is an MS-group if and only if \(G \) satisfies 4 and 5 of Theorem 9.

Proof. Let \(G \) be a soluble PST-group with nilpotent residual \(L = \gamma_\infty(G) \). By [6, Lemma 5], \(G/\Phi(G) \) is a T-group and so \(G \) is a \(T_0 \)-group. Notice that 1, 2 and 3 of Theorem 9 are satisfied for the group \(G \).

Assume that \(G \) is an MS-group. By Theorem 9, 4 and 5 are satisfied by \(G \).

Conversely, assume that 4 and 5 of Theorem 9 are satisfied by \(G \). By Theorem 9, \(G \) is an MS-group.

This completes the proof.

The group given in Example 12 below is a soluble PST-group which is not an MS-group and the group given in Example 13 is an MS-group which is not a soluble PST-group.

Theorem 11. Let \(G \) be a soluble PST-group which is also an MS-group. If \(\theta_C \) is the empty set, then \(G \) is a BT-group.

Proof. Let \(G \) be a soluble PST-group which is also an MS-group. Let \(L = \gamma_\infty(G) \) be the nilpotent residual of \(G \). By the Theorem of Agrawal [2, Theorem 2.1.8], \(L \) is an abelian Hall subgroup of \(G \) on which \(G \) acts by conjugation as a group of power automorphisms. Recall that \(\theta = \pi'(\pi(L)) \). Moreover \(\theta = \theta_N \) if \(\theta_C \) is empty. Let \(p \) and \(q \) be distinct primes from \(\theta \) and let \(P \in \text{Syl}_p(G) \) and \(Q \in \text{Syl}_q(G) \). Note that since \(G \) is an MS-group, we have that \(G \) satisfies properties 4 and 5 of Theorem 9. Then \([G_p,G_q] = 1\) by property 4 of that theorem. Therefore, \(G \) is a BT-group by Theorem 6. This completes the proof of Theorem 11.

We remark that if \(\theta \) contains only one prime, then \(G \) is a BT-group by [9, Corollary 3.4].
4 Examples

The following examples appear in [4]. For the sake of completeness, we list them here.

Example 12. Let $G = \langle y, z, x \mid y^3 = z^2 = x^7 = 1, [y, z] = 1, x^y = x^2, x^z = x^{-1} \rangle$. Then $[(y)^x, z] \neq 1$ and G is a soluble group which is not a BT-group. However, G is an MS-group.

Example 13. Let $G = \langle a, x, y \mid a^2 = x^3 = y^3 = [x, y]^3 = [x, [x, y]] = 1, x^a = x^{-1}, y^a = y^{-1} \rangle$. Then $H = \langle x, y \rangle$ is an extraspecial group of order 27 and exponent 3. Let $z = [x, y]$, so $z^a = z$. Then $\Phi(G) = \Phi(H) = \langle z \rangle = Z(G) = Z(H)$. Note that $G/\Phi(G)$ is a T-group so that G is a T_0-group. The maximal subgroups of H are normal in G and it follows that G is an MS-group. Let $K = \langle x, z, a \rangle$. Then $\langle xz \rangle$ is a maximal subgroup of $\langle x, z \rangle$, the Sylow 3-subgroup of K. However, $\langle xz \rangle$ does not permute with $\langle a \rangle$ and hence $\langle xz \rangle$ is not an S-semipermutable subgroup of K. Therefore, K is not an MS-subgroup of G. Also note that $\Phi(K) = 1$ and so K is not a T-subgroup of G and K is not a T_0-subgroup of G. Hence the class of soluble T_0-groups is not closed under taking subgroups. Note that G is a soluble group which is not a PST-group.

Example 14. Let $G = \langle y, z, x \mid y^9 = z^2 = x^{19^2} = 1, [y, z] = 1, x^y = x^{b_2}, x^z = x^{-1} \rangle$. Then the soluble group G is a PST-group, but G is not an MS-group since $[(y)^x, z] \neq 1$.

Acknowledgements

The work of the first and the third authors has been supported by the grant MTM2010-19938-C03-03 from the Ministerio de Economía y Competitividad, Spain. The first author has also been supported by the grant 11271085 from the National Natural Science Foundation of China.

References

