Some subgroup embeddings in finite groups

A. Ballester-Bolinches∗ J. C. Beidleman†
R. Esteban-Romero‡ M. F. Ragland§

Abstract

In this survey paper several subgroup embedding properties related
to some types of permutability are introduced and studied.

2010 Mathematics subject classification: 20D05, 20D10, 20F16

Keywords and phrases: finite group, permutability, S-permutability,
semipermutability, primitive subgroup, quasipermutable subgroup.

1 Introduction

All groups in the paper are finite.

The purpose of this survey paper is to show how the embedding of cer-
tain types of subgroups of a finite group G can determine the structure
of G. The types of subgroup embedding properties we consider include: S-
permutability, S-semipermutability, semipermutability, primitivity, and qua-
sipermutability.

A subgroup H of a group G is said to permute with a subgroup K of G
if HK is a subgroup of G. H is said to be permutable in G if H permutes
with all subgroups of G. A less restrictive subgroup embedding property is
the S-permutability introduced by Kegel and defined in the following way:

∗Departament d’Àlgebra, Universitat de València, Dr. Moliner, 50, 46100 Burjassot,
València, Spain, email: Adolfo.Ballester@uv.es
†Department of Mathematics, University of Kentucky, Lexington KY 40506-0027, USA,
email: clark@ms.uky.edu
‡Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València,
Camí de Vera, s/n. 46022 València, Spain, email: resteban@mat.upv.es. Current
address: Departament d’Àlgebra, Universitat de València, Dr. Moliner, 50, 46100 Burjassot,
València, Spain, email: Ramon.Esteban@uv.es
§Department of Mathematics, Auburn University at Montgomery, P.O. Box 244023,
Montgomery, AL 36124-4023, USA, email: mragland@aum.edu
Definition 1. A subgroup H of G is said to be *S-permutable* in G if H permutes with every Sylow p-subgroup of G for every prime p.

In recent years there has been widespread interest in the transitivity of normality, permutability and S-permutability.

Definition 2.
1. A group G is a *T-group* if normality is a transitive relation in G, that is, if every subnormal subgroup of G is normal in G.

2. A group G is a *PT-group* if permutability is a transitive relation in G, that is, if H is permutable in K and K is permutable in G, then H is permutable in G.

3. A group G is a *PST-group* if S-permutability is a transitive relation in G, that is, if H is S-permutable in K and K is S-permutable in G, then H is S-permutable in G.

If H is S-permutable in G, it is known that H must be subnormal in G ([1, Theorem 1.2.14(3)]). Therefore, a group G is a PST-group (respectively a PT-group) if and only if every subnormal subgroup is S-permutable (respectively permutable) in G.

Note that T implies PT and PT implies PST. On the other hand, PT does not imply T (non-Dedekind modular p-groups) and PST does not imply PT (non-modular p-groups). The reader is referred to [1, Chapter 2] for basic results about these classes of groups. Other characterisations based on subgroup embedding properties can be found in [2].

Agrawal ([1, 2.1.8]) characterised soluble PST-groups. He proved that a soluble group G is a PST-group if and only if the nilpotent residual in G is an abelian Hall subgroup of G on which G acts by conjugation as power automorphisms. In particular, the class of soluble PST-groups is subgroup-closed.

Let G be a soluble PST-group with nilpotent residual L. Then G is a PT-group (respectively T-group) if and only if G/L is a modular (respectively Dedekind) group ([1, 2.1.11]).

Definition 3 ([3]). A subgroup H of a group G is said to be *semipermutable* (respectively, *S-semipermutable*) provided that it permutes with every subgroup (respectively, Sylow subgroup) K of G such that $\gcd(|H|, |K|) = 1$.

An S-semipermutable subgroup of a group need not be subnormal. For example, a Sylow 2-subgroup of the nonabelian group of order 6 is semipermutable and S-semipermutable, but not subnormal.
Definition 4 (see [4]). A group G is called a BT-group if semipermutability is a transitive relation in G.

L. Wang, Y. Li, and Y. Wang proved the following theorem which showed that soluble BT-groups are a subclass of PST-groups:

Theorem 5 ([4]). Let G be a group with nilpotent residual L. The following statements are equivalent:

1. G is a soluble BT-group;
2. every subgroup of G of prime power order is S-semipermutable;
3. every subgroup of G of prime power order is semipermutable;
4. every subgroup of G is semipermutable;
5. G is a soluble PST-group and if p and q are distinct primes not dividing the order of L with G_p a Sylow p-subgroup of G and G_q a Sylow q-subgroup of G, then $[G_p, G_q] = 1$.

Research papers on BT-groups include [4, 5, 6, 7].

We next present an example of a soluble PST-group which is not a BT-group.

Example 6. Let L be a cyclic group of order 7 and $A = C_3 \times C_2$ be the automorphism group of L. Here C_3 (respectively, C_2) is the cyclic group of order 3 (respectively, 2). Let $G = [L]A$ be the semidirect product of L by A. Let $L = \langle x \rangle$, $C_3 = \langle y \rangle$ and $C_2 = \langle z \rangle$ and note that $[(y)^z, z] \neq 1$. Now G is a PST-group by Agrawal’s theorem, but G is not a BT-group by Theorem 5.

A subclass of the class of soluble BT-groups is the class of soluble SST-groups, which has been introduced in [8].

Definition 7 (see [9]). A subgroup H of a group G is said to be SS-permutable (or SS-quasinormal) in G if H has a supplement K in G such that H permutes with every Sylow subgroup of K.

Definition 8 (see [8]). We say that a group G is an SST-group if SS-permutability is a transitive relation.

SS-permutability can be used to obtain a characterisation of soluble PST-groups.

Theorem 9 ([8]). Let G be a group. Then the following statements are equivalent:
1. G is soluble and every subnormal subgroup of G is SS-permutable in G.

2. G is a soluble PST-group.

Theorem 10 ([8]). A soluble SST-group G is a BT-group.

The following example shows that a soluble BT-group is not necessarily an SST-group.

Example 11 ([8]). Let $G = \langle x, y \mid x^5 = y^4 = 1, x^y = x^2 \rangle$. The nilpotent residual of G is the Sylow 5-subgroup $\langle x \rangle$. By Theorem 5, G is a soluble BT-group. Let $H = \langle y \rangle$ and $M = \langle y^5 \rangle$. Suppose that M is SS-permutable in G. Then G is the unique supplement of M in G. It follows that M is S-permutable in G, and thus $M \leq O_2(G)$. This implies that either $O_2(G) = H$ or $O_2(G) = M$. Since $y^5 = yx^{-1}$ and $(y^{5})^5 = y^{5}x^{5}$, neither H nor M are normal subgroups of G. This contradiction shows that M is not SS-permutable in G. Since M is S-permutable in $\langle x, y^2 \rangle$ and this subgroup is SS-permutable in G, we obtain that the soluble group G cannot be an SST-group.

A less restrictive class of groups is the class of T_0-groups which has been studied in [5, 7, 10, 11, 12].

Definition 12. A group G is called a T_0-group if the Frattini factor group $G/\Phi(G)$ is a T-group.

Theorem 13 ([11]). Let L be the nilpotent residual of the soluble T_0-group. Then:

1. G is supersoluble;
2. L is a nilpotent Hall subgroup of G.

Theorem 14 ([10]). Let G be a soluble T_0-group. If all the subgroups of G are T_0-groups, then G is a PST-group.

A group G is called an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable.

Theorem 15 ([13]). If G is an MS-group, then G is supersoluble.

Theorem 16 ([7]). Let L be the nilpotent residual of an MS-group G. Then:

1. L is a nilpotent Hall subgroup of G;
2. G is a soluble T_0-group.
We now provide three examples which illustrate several properties and differences of some of the classes presented in this paper. These examples are from [6, 7].

Example 17. Let $C = \langle x \rangle$ be a cyclic group of order 7 and let $A = \langle y \rangle \times \langle z \rangle$ be a cyclic group of order 6 with y an element of order 3 and z an element of order 2. Then $A = \text{Aut}(C)$. Let $G = [C, A]$ be the semidirect product of C by A. Then $[\langle y \rangle^2, z] \neq 1$ and G is not a soluble BT-group. However, G is an MS-group.

Example 18 shows that the classes of MS- and T_0-groups are not subgroup closed.

Example 18. Let $H = \langle x, y \mid x^3 = y^3 = [x, y]^3 = [y, [x, y]] = [y, [x, y]] = 1 \rangle$ be an extraspecial group of order 27 and exponent 3. Then H has an automorphism a of order 2 given by $x^a = x^{-1}$, $y^a = y^{-1}$ and $[x, y]^a = [x, y]$. Put $G = [H] \langle a \rangle$, the semidirect product of H by $\langle a \rangle$. Let $z = \langle x, y \rangle$. Then $\Phi(G) = \Phi(H) = \langle z \rangle = \text{Z}(G) = \text{Z}(H)$. Note that $G/\Phi(G)$ is a T-group so that G is a T_0-group. The maximal subgroups of H are normal in G and it follows that G is an MS-group. Let $K = \langle x, z, a \rangle$. Then $\langle xz \rangle$ is a maximal subgroup of $\langle x, z \rangle$, the Sylow 3-subgroup of K. However, $\langle xz \rangle$ does not permute with $\langle a \rangle$ and hence $\langle xz \rangle$ is not an S-semipermutable subgroup of K. Therefore, K is not an MS-subgroup of G. Also note that $\Phi(K) = 1$ and so K is not a T-subgroup of G and K is not a T_0-subgroup of G. Hence the class of soluble T_0-groups is not closed under taking subgroups. Note that G is not a soluble PST-group.

Example 19 presents an example of a soluble PST-group which is not an MS-group.

Example 19. Let $C = \langle x \rangle$ be a cyclic group of order 19^2, $D = \langle y \rangle$ a cyclic group of order 3^2, and $E = \langle z \rangle$ is a cyclic group of order 2 such that $D \times E \leq \text{Aut}(C)$. Then $G = [C, (D \times E)]$ is a soluble PST-group and G is not an MS-group since $[\langle y^2 \rangle^x, z] \neq 1$.

The following notation is needed in the presentation of the next theorem which characterises MS-groups. Let G be a group whose nilpotent residual L is a Hall subgroup of G. Let $\pi = \pi(L)$ and let $\theta = \pi'$, the complement of π in the set of all prime numbers. Let θ_N denote the set of all primes p in θ such that if P is a Sylow p-subgroup of G, then P has at least two maximal subgroups. Further, let θ_C denote the set of all primes q in θ such that if Q is a Sylow q-subgroup of G, then Q has only one maximal subgroup, or, equivalently, Q is cyclic.
Theorem 20 ([6]). Let G be a group with nilpotent residual L. Then G is an MS-group if and only if G satisfies the following:

1. G is a T_0-group.
2. L is a nilpotent Hall subgroup of G.
3. If $p \in \pi$ and $P \in \text{Syl}_p(G)$, then a maximal subgroup of P is normal in G.
4. Let p and q be distinct primes with $p \in \theta_N$ and $q \in \theta$. If $P \in \text{Syl}_p(G)$ and $Q \in \text{Syl}_q(G)$, then $[P, Q] = 1$.
5. Let p and q be distinct primes with $p \in \theta_C$ and $q \in \theta$. If $P \in \text{Syl}_p(G)$ and $Q \in \text{Syl}_q(G)$ and M is the maximal subgroup of P, then $QM = MQ$ is a nilpotent subgroup of G.

Theorem 21 ([6]). Let G be a soluble PST-group. Then G is an MS-group if and only if G satisfies 4 and 5 of Theorem 20.

Theorem 22 ([6]). Let G be a soluble PST-group which is also an MS-group. If θ_C is the empty set, then G is a BT-group.

Definition 23 ([14]). A subgroup H of a group G is called primitive if it is a proper subgroup in the intersection of all subgroups containing H as a proper subgroup.

All maximal subgroups of G are primitive. Some basic properties of primitive subgroups include:

Proposition 24. 1. Every proper subgroup of G is the intersection of a set of primitive subgroups of G.
2. If X is a primitive subgroup of a subgroup T of G, then there exists a primitive subgroup Y of G such that $X = Y \cap T$.

Johnson [14] proved that a group G is supersoluble if every primitive subgroup of G has prime power index in G.

The next results on primitive subgroups of a group G indicate how such subgroups give information about the structure of G.

Theorem 25 ([15]). Let G be a group. The following statements are equivalent:

1. every primitive subgroup of G containing $\Phi(G)$ has prime power index;
2. $G/\Phi(G)$ is a soluble PST-group.

Theorem 26 ([16]). Let G be a group. The following statements are equivalent:

1. every primitive subgroup of G has prime power index;

2. $G = [L]M$ is a supersoluble group, where L and M are nilpotent Hall subgroups of G, L is the nilpotent residual of G and $G = LN_G(L \cap X)$ for every primitive subgroup X of G. In particular, every maximal subgroup of L is normal in G.

Let \mathfrak{X} denote the class of groups G such that the primitive subgroups of G have prime power index. By Proposition 24 (1), it is clear that \mathfrak{X} consists of those groups whose subgroups are intersections of subgroups of prime power indices.

The next example shows that the class \mathfrak{X} is not subgroup closed.

Example 27. Let $P = \langle x, y \mid x^5 = y^5 = [x, y]^5 = 1 \rangle$ be an extraspecial group of order 125 and exponent 5. Let $z = [x, y]$ and note that $Z(P) = \Phi(P) = \langle z \rangle$. Then P has an automorphism a of order four given by $x^a = x^2$, $y^a = y^2$, and $z^a = z^4 = z^{-1}$. Put $G = [P]\langle a \rangle$ and note that $Z(G) = 1$, $\Phi(G) = \langle z \rangle$, and $G/\Phi(G)$ is a T-group. Thus G is a soluble T_0-group. Let $H = \langle y, z, a \rangle$ and notice that $\Phi(H) = 1$. Then H is not a T-group since the nilpotent residual L of H is $\langle y, z \rangle$ and a does not act on L as a power automorphism. Thus H is not a T_0-group, and hence not a soluble PST-group. By Theorem 25, G is an \mathfrak{X}-group and H is not an \mathfrak{X}-group.

Theorem 28 ([17]). Let G be a group. The following statements are equivalent:

1. G is a soluble PST-group;

2. every subgroup of G is an \mathfrak{X}-group.

We bring the paper to a close with the quasipermutable embedding which is defined in the following way.

Definition 29. A subgroup H is called *quasipermutable* in G provided there is a subgroup B of G such that $G = N_G(H)B$ and H permutes with B and with every subgroup (respectively, with every Sylow subgroup) A of B such that gcd$(|H|, |A|) = 1$.

Theorem 30 contains new characterisations of soluble PST-groups with certain Hall subgroups.
Theorem 30 ([18]). Let $D = G^{\text{nil}}$ be the nilpotent residual of the group G and let $\pi = \pi(D)$. Then the following statements are equivalent:

1. D is a Hall subgroup of G and every Hall subgroup of G is quasipermutable in G;
2. G is a soluble PST-group;
3. every subgroup of G is quasipermutable in G;
4. every π-subgroup of G and some minimal supplement of D in G are quasipermutable in G.

Acknowledgements

The work of the first and the third authors has been supported by the grant MTM2010-19938-C03-03 from the Ministerio de Economía y Competitividad, Spain. The first author has also been supported by the grant 11271085 from the National Natural Science Foundation of China.

References

