Canonical Neutral Current Predictions from the
Weak-Electromagnetic Gauge group SU(3)xU(1)

by

M. Singer, J.W.F. Valle, and J. Schechter
Physics Department, Syracuse University
Syracuse, New York 13210

Abstract
A straightforward SU(3)xU(1) model in which there is effec-
tively one new neutral current parameter (denoted by R) is shown
to give the canonical neutrino neutral current predictions for all
values of R. For small R the "low energy" theory is essentially
SU(3) xU(1) while for R of the order of one it has a much richer
"low energy" gauge boson mass spectrum. Even in the latter case,
the predicted e-D asymmetry agrees with experiment. It is inter-
esting that the atomic physics parity violation depends sensitively
on R.
1. Introduction

The remarkable experimental success of the SU(2)$_L$ x U(1) weak-electromagnetic gauge theory1 lies in its prediction of the varied pattern of neutral current interactions.2 Dividing the experiments into two classes:

a) neutrino neutral current experiments

b) electron neutral current experiments

we presently know3 that there are many experiments belonging to class a) which agree with the theory while there are so far only two types of experiments belonging to b). Of the latter, the polarized electron-deuteron scattering asymmetry agrees with the theory while the polarized photon atom scattering asymmetry measurements are more controversial.

Since the gauge bosons and the Higgs bosons predicted by SU(2)$_L$ x U(1) have not yet been seen it is certainly interesting to ask if there are other gauge theories which give the same neutral current predictions. A number of authors4 have shown that if the gauge group is of the form SU(2)$_L$ x U(1)$_G$, and if certain additional restrictions on the Higgs's structure and representation assignments are made, then the neutrino neutral currents will agree with those of SU(2)$_L$ x U(1)$_G$. In the present paper we extend the class of groups which can reproduce the canonical form of the neutrino neutral currents in a different direction: to a group of the form GL x U(1)$_G$. Of course this would be trivial if U(1) is the same as the usual U(1) and if the usual SU(2)$_L$ is embedded in GL in such a way that the "low energy" (i.e., $\mathcal{O}(100 \text{ GeV})$) gauge bosons are just the W^\pm and Z, effectively. However we shall show that it is possible to have the same neutrino neutral currents even when the "low energy" gauge boson spectrum is very much richer. Furthermore it will turn out that the predictions for e-0 scattering agree with those of SU(2)$_L$ x U(1) up to the precision of present experiments, while the predictions for the atomic physics parity violation experiments depend sensitively on a new parameter, R.

We shall utilize the gauge group SU(3)$_L$ x U(1) to illustrate our result which holds for a class of SU(n)$_L$ x U(1) gauge models (and probably others under appropriate conditions). Theories based on SU(3)$_L$ x U(1) have been discussed by many authors4 who have explored many possible fermion and Higg's representation assignments. The present model is probably most similar to that of Georgi and Pais.4 However the two models are not identical and they also investigated questions different from the ones discussed here.

The notational conventions and representation assignments are given in section 2. Formulas for the gauge boson mass spectrum are collected in section 3. In section 4, the effective neutral current Lagrangian which is due here to the exchange of two massive neutral vector bosons is given in a convenient form. Also formulas for comparison with experiment and with SU(2)$_L$ x U(1) are given. Our results on reproducing the canonical neutral current predictions are stated and discussed in section 5. Finally further discussion of the model is given in section 6.
2. Raw Materials of the Model

First the eight SU(3) gauge bosons are specified by a traceless tensor: \(W_{\mu}^a \), with \(\delta^{ab} \). Ordinary beta decay is mediated by \(W_{\mu}^a \). Conveniently normalized neutral fields are:

\[
F_\mu = \sqrt{\frac{1}{2}} W_\mu^1, \quad H_\mu^a = \sqrt{\frac{1}{2}} (W_\mu^2 - i W_\mu^3).
\]

(2.1)

The U(1) gauge field is denoted \(D_\mu \). Linear combinations of \(F \) and \(D \) above are defined through

\[
\begin{bmatrix} F \\ D \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} = \begin{bmatrix} A_\mu \\ B_\mu \end{bmatrix},
\]

(2.2)

where \(c, s \) is the photon field. The diagonal fields \(Z_\mu \) and \(H_\mu \) can mix with each other to form the two physical heavy neutral gauge fields \(\tau^1 \) and \(\tau^2 \).

Three triplets of Higgs fields \(f^{(1)}, f^{(2)}, \) and \(f^{(3)} \) are assumed. Their electric charges are as follows:

\[
f^{(1)} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad f^{(2)} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad f^{(3)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},
\]

(2.3)

and it is assumed that the vacuum expectation values obey the simple pattern

\[
e^a_{ab} = \frac{1}{\sqrt{3}} \epsilon_{abc}.
\]

(2.4)

This orthogonality of vacuum values can be enforced by having prominent terms like \(f^{(2)} f^{(2)} f^{(3)} \) in the Higgs potential. The SU(3) coupling constant \(g \) and the U(1) coupling constant \(g' \) may be specified by defining the gauge covariant derivative of \(f^{(1)} \):

\[
(\partial_\mu f^{(1)})_a = \partial_\mu f^{(1)} - i g Y^a f^{(1)} - \frac{2 i g'}{\sqrt{2}} D_\mu f^{(1)}.
\]

(2.5)

The coupling constants are related to the proton charge \(e \) by

\[
\sqrt{\frac{3}{2}} \frac{g g'}{2} = g' = e.
\]

(2.6)

A convenient parameter\(^5\) which has exactly the same significance as the conventional \(\sin^2 \theta_W \) of the SU(2) × U(1) theory is

\[
x = \frac{1}{\sqrt{2}}.
\]

(2.7)

Note that here one has the stronger bound \(x < 3/4 \).

Finally consider the fermions. All right handed fields are taken to be SU(3) singlets. The left-handed leptons are assumed to belong to three anti-triplets as follows:

\[
\begin{bmatrix} e \\ \nu_e \end{bmatrix}, \begin{bmatrix} u \\ \nu^u \end{bmatrix}, \begin{bmatrix} \tau \\ \nu^\tau \end{bmatrix}.
\]

(2.8)

The first two entries in each anti-triplet are the usual particles; the third will be considered to be (heavy) "neutrinos" and will also have right handed singlets associated with them. The anomaly cancellation\(^6\) in a model of the present type must be achieved by having an equal number of triplets and anti-triplets and furthermore requiring the sum of all fermion charges to vanish.\(^7\) A characteristic feature of the present class of models is the fact that anomaly cancellation does not occur generation by generation. Thus we put the first two generations of left-handed quarks into six (counting color) triplets:

\[
\begin{bmatrix} u \\ d \\ c \end{bmatrix}_L, \begin{bmatrix} s \\ d' \end{bmatrix}_L, \begin{bmatrix} s' \end{bmatrix}_L.
\]

(2.9)
The fields in (2.8) are, of course, the gauge group eigenstates which are related to physical fields by unitary transformations involving Cabibbo-like angles. d' and s' are new (heavy) quarks. The members of the third generation of left handed quarks, are put into three anti-triplets:

\[
\begin{pmatrix}
 \bar{b} \\
 \bar{t} \\
 \bar{t}'
\end{pmatrix}_L
\]

Here b and t' are presently unobserved heavy quarks with electric charge 2/3. We shall assume negligible mixing between the primed and unprimed fermion fields and between the third generation of quarks and the first two generations. The latter assumption is needed to suppress some flavor changing neutral currents for the first four flavors. These assumptions are perhaps an inelegant feature of this model but they are not unreasonable.

3. Gauge boson mass formulas

From the terms in the Lagrangian

\[
\frac{1}{4} \delta_{\mu}^{\nu} f_4^{(1)} \partial_{\mu} f_4^{(1)} \partial_{\nu} f_4^{(1)}
\]

(3.1)

together with (2.4) one finds the masses of the "off-diagonal" gauge fields:

\[
\begin{align}
 m^2(k_1^2) &= \frac{1}{8} g^2 (k_1^2 + k_2^2) \\
 m^2(k_2^2) &= \frac{1}{8} g^2 (k_2^2 + k_3^2) \\
 m^2(k_3^2) &= \frac{1}{8} g^2 (k_3^2 + k_1^2)
\end{align}
\]

(3.2)

where \(k_i^2 \) denotes \(|k_i|^2 \).

The masses of the two neutral gauge fields \(z^{(1)} \) and \(z^{(2)} \) are obtained by diagonalizing a 2\times2 matrix; the result is

\[
\begin{align}
 m_1^2 &= \frac{1}{2} [m_{z1}^2 + m_{z2}^2 - \sqrt{(m_{z1}^2 - m_{z2}^2)^2 + 4p^2}] \\
 m_2^2 &= \frac{1}{2} [m_{z1}^2 + m_{z2}^2 + \sqrt{(m_{z1}^2 - m_{z2}^2)^2 + 4p^2}]
\end{align}
\]

(3.3)

Since the Fermi constant \(G_F = \sqrt{2} G / 4 \pi^2 \) we have the following constraint on the vacuum values

\[
k_1^2 + k_2^2 = \frac{\sqrt{2}}{4 G_F}
\]

(3.4)

4. Neutral Currents

First for comparison we give the effective neutral current Lagrangian due to 2 exchange for the SU(2)xU(1) theory:

\[
\mathcal{L}^{\text{eff}} = \frac{1}{2} G_F \sum_{\mu} \left(J^{(0)}_{\mu} \cdot x \right) J^{\text{EM}}_{\mu}
\]

(4.1)

Here x and \(G_F \) have their usual meanings. \(J^{\text{EM}}_{\mu} \) is the electromagnetic current

\[
J^{\text{EM}}_{\mu} = -i \overline{\nu}_{\mu} \gamma_{\mu} e - i \overline{\nu}_{\mu} \gamma_{\mu} \gamma_5 \overline{\nu}_{\mu} \gamma_{\mu} e + \ldots
\]

(4.2)

and \(J^{(0)}_{\mu} \) is the "weak-isospin" current:

\[
J^{(0)}_{\mu} = -i \overline{\nu}_{L\mu} \gamma_{\mu} e - i \overline{\nu}_{L\mu} \gamma_{\mu} \gamma_5 \overline{\nu}_{L\mu} \gamma_{\mu} e + \ldots
\]

(4.3)

For convenience we isolate the neutral current interactions of the electron neutrino for example to get
\[\mathcal{L}_{\text{eff}}(e) = \frac{1}{2} \frac{3}{4} \frac{3}{2} \langle \overline{Y}_u \gamma_\mu Y_u \rangle \gamma_\mu \langle Y_u \rangle^\dagger (\frac{x}{2} \gamma_\mu + x^E M) \]

(4.4)

(The current \(J^{(o)}_u \) on the RIS of (4.4) is given by (4.3) but
with an extra factor of \(\frac{1}{2} \) for the \(i \overline{Y}_u \gamma_\mu Y_u \) term). Similarly,
isolating the electron term one has

\[\mathcal{L}_{\text{eff}}(e) = \frac{1}{2} \frac{3}{4} \frac{3}{2} \langle \overline{Y}_u \gamma_\mu Y_u \rangle \gamma_\mu \langle Y_u \rangle^\dagger x^E M, \]

(4.5)

wherein again an extra factor \(\frac{1}{2} \) should be supplied for the electron term.

In the present model both \(z^{(1)} \) and \(z^{(2)} \) exchange contribute to the effective neutral current Lagrangian. The result
can be written in the following compact form

\[\mathcal{L}_{\text{eff}} = \frac{1}{2} \frac{3}{4} \frac{3}{2} \langle \overline{Y}_u \gamma_\mu Y_u \rangle \gamma_\mu \langle Y_u \rangle^\dagger z^{(1)} + \frac{1}{2} \frac{3}{4} \frac{3}{2} \langle \overline{Y}_u \gamma_\mu Y_u \rangle \gamma_\mu \langle Y_u \rangle^\dagger z^{(2)}, \]

(4.6)

where the components of the (un-diagonalized) inverse squared mass matrix are given by

\[\frac{3}{2} \frac{3}{4} \frac{3}{2} \langle \overline{Y}_u \gamma_\mu Y_u \rangle \gamma_\mu \langle Y_u \rangle^\dagger \frac{k_2^2 - k_3^2}{k_2^2 k_3^2} \]

(4.7)

and the currents are

\[J^{(1)}_u = \frac{3}{2} \langle \overline{Y}_u \gamma_\mu Y_u \rangle \gamma_\mu \langle Y_u \rangle^\dagger \]

\[J^{(2)}_u = \frac{3}{2} \langle \overline{Y}_u \gamma_\mu Y_u \rangle \gamma_\mu \langle Y_u \rangle^\dagger \frac{x}{2} \gamma_\mu + x^E M \]

(4.8)

theory, but not in the SU(2)xU(1) theory:

\[J^{(1)}_u \overline{Y}_u \gamma_\mu Y_u \]

\[J^{(2)}_u \overline{Y}_u \gamma_\mu Y_u \]

We note that the third quark generation contributes to \(J^{(1)}_u \)
in a different way from the first two generations. With our
assumption of negligible mixing between the third quark
generation and the others, this does not affect any of our results.
Also note that we are not including any of the terms coming
from charged intermediate boson exchange which can be Fierz
transformed to neutral current form, in our \(\mathcal{L}_{\text{eff}} \).

From (4.6) we extract the neutrino interactions as in (4.4)
for the SU(2)xU(1) theory, to find

\[\mathcal{L}_{\text{eff}}(e) = \frac{1}{2} \frac{3}{4} \frac{3}{2} \langle \overline{Y}_u \gamma_\mu Y_u \rangle \gamma_\mu \langle Y_u \rangle^\dagger \]

where

\[\frac{3}{2} \frac{3}{4} \frac{3}{2} \langle \overline{Y}_u \gamma_\mu Y_u \rangle \gamma_\mu \langle Y_u \rangle^\dagger \frac{k_2^2 - k_3^2}{k_2^2 k_3^2} \]

(4.10)

The quantity \(x \) is defined by (2.7) and (2.2). The electron
interactions which follow from (4.6) are

\[\mathcal{L}_{\text{eff}}(e) = \frac{1}{2} \frac{3}{4} \]
Here A is the asymmetry $[d_{R} - d_{L}]/[d_{R} + d_{L}]$, q^2 is the four
momentum transfer squared, $a = e^2/4\pi$, x is the quantity in (2.7)
while y is the percentage energy loss of the incoming electron.
The second formula is for a quantity related to the parity violat-
ing asymmetry in the scattering of polarized light off an atom
with proton number Z and neutron number N. This quantity is
essentially the axial part of the effective electron neutral cur-
tent times the vector part of an appropriate hadron piece. Follow-
ing the notation of Abbot and Barnett11 we call this parameter
"$g_{A}^{V,\text{HAD}}$" and find

$$g_{A}^{V,\text{HAD}} = \left[\frac{2}{3} - x(\frac{1}{2})^2 \left(\frac{k_2^2}{k_5^2} \right) + \frac{1}{2} \left(\frac{k_2^2}{k_5^2} \right) \left(\frac{k_3^2}{k_5^2} \right) - \frac{1}{4} \left(1 - \frac{k_2^2}{k_5^2} \right) \right]$$

(4.13)

5. Interesting special cases

The present model contains three Higgs vacuum values $k_1, k_2, \ k_3$ as opposed to only one in the usual SU(2)\timesU(1) model. Because of
the constraint (5.4), this gives us two relevant free neutral current parameters. Here we shall demonstrate the following:

(i) The limit where k_3 becomes very large is the usual SU(2)\timesU(1) theory. This result is known12, but is a helpful calibration.

(ii) The limit where k_2 becomes very small, for any
value of the ratio k_2^2/k_3^2 the same neutrino neutral currents as
the SU(2)\timesU(1) theory. Furthermore even for fairly large values
of k_2^2/k_3^2 the predicted polarized electron-deuteron asymmetry para-

meter agrees with experiment as well as the SU(2)\timesU(1) pre-
diction. There is the possibility of more disagreement with
SU(2)\timesU(1) in the atomic physics parity violation prediction but
here the experimental statement is not so clear.

(iii) The limit where k_2 becomes very small gives, for any
value of the ratio k_2^2/k_3^2 the same electron neutral currents as the
SU(2)\timesU(1) theory. However the neutrino neutral currents differ
here so this case is not so reasonable experimentally.

First consider case (i) where k_3 becomes very large. Formally
we shall take $k_3 \rightarrow \infty$. From the mass formulas (5.3) we see that the
masses of the "K meson-like" K-bosons become infinite and hence
the second order processes mediated by their exchange vanish.

From (5.3) it can be seen that $m^2(2^{(1)}) \rightarrow \infty$ while

$$m^2(2^{(1)}) = \frac{2}{3} \frac{n^2}{m_H^2} = \frac{8a^2(k_1^2 + k_2^2)}{2 \left(3a^2 + 1 \right)} \ x \ \text{h}_{p}(1 - x)$$

(5.1)

where (5.4) and (2.7) were used in the last step. This formula is
seen to agree with the one for $m^2(2)$ in SU(2)\timesU(1). Thus
$W_1^* \ W_2^*$ and $Z^{(2)}$ as well as the photon are the only vector bosons
with finite mass. Furthermore the neutral current effective
Lagrangian (4.6) becomes a degenerate quadratic form showing that
in this limit neutral current processes are effectively mediat-
ed by a single massive neutral boson; explicitly

$$\mathcal{L}_{\text{eff}} \sim \frac{3a^2}{2} (\gamma^a \gamma^a H_{\mu}^2)$$

(5.2)

which, using (4.8), is seen to agree with (4.1).

To demonstrate (iii) above merely note that as $k_2 \rightarrow 0$, $A = 1$
(see 4.10), and (4.11)-(4.5).

We shall discuss (11) above in more detail. It is most interesting, but of course not necessary, to consider a situation where the spectrum of vector mesons is very different from the SU(2)xU(1) case. Namely we would like to consider all 8 of them (excepting the photon) to have masses of roughly the same order. Thus we may consider

$$R = \frac{\mu^2}{\Delta_1^2}$$

(5.3)
to be around 1/4 or so. Plots of vector meson masses versus $\frac{1}{R}$, based on section 3, are displayed in Fig. 1. Although the formal limit $k_1^2 = 0$ will be taken, this should be regarded as an approximation to k_1 small. A lower bound on k_1 can be gotten by holding the Yukawa term responsible for the mass of the bottom quark, m_b, and requiring the appropriate dimensionless coupling constant to be less than unity. This gives

$$\left(\frac{\Delta_1}{\Delta_0}\right)^2 > \frac{2}{7m_b^2} \approx 10^{-3}.$$

(5.4)

To see that the neutrino neutral current interactions are the same as in the SU(2)xU(1) theory note that as $k_1^2 = 0$, $\Lambda = 1$, and (4.9)-(4.4).

This already means that the present model agrees with the majority of neutral current experiments. Our prediction for the electron-deuteron asymmetry is given in (4.12). Note for comparison that $k_2 = 0$ gives the SU(2)xU(1) prediction. Because of the $(1-4\times)$ factor the second term is negligible. Then we see (in the $k_1 = 0$ limit)

$$\left(\frac{\Delta_1}{\Delta_0}\right)_{SU(2)xU(1)} = \left(1 + \frac{2}{3}x(1+R)\right)^{3/2} \approx 1 + 0.32R$$

(5.4)

where we have taken $x = 0.23$. Thus for R as large as $\frac{1}{2}$ the two theories give predictions which differ by 10%. Since the experimental accuracy of present is about 20%, the two theories cannot be distinguished on this basis. It is interesting that the predictions for the atomic physics parity violation experiments distinguish more sharply between the two models. The SU(2)xU(1) prediction for small k_1 is given by (4.13) with $\Lambda = 1$, while the SU(2)xU(1) prediction is given by the same formula wherein $\Lambda = 1$ and $k_2 = 0$. Thus we have

$$\frac{\Delta_1}{\Delta_0} = R \left(\frac{1-x/2}{1-x/2} - \frac{x}{2} \right),$$

(5.5)

For Bismuth, this becomes

$$1 + \frac{1}{R},$$

(5.6)

which should be contrasted with (5.4). The effect of the present model is, since R is positive definite, to lower the amount of predicted parity violation. To fit the Seattle experiments2 would require R about 0.55, while to agree with the Novosibirsk and Oxford experiments2 would require R to be less than about 0.15.

Of course the $R = 0$ limit is essentially just the SU(2)xU(1) theory at "low" energies.

Thus, the present model [SU(3)xU(1) with small k_1] agrees closely with all the well established neutral current experiments even for reasonably large values of R. For the atomic physics data, which may be considered controversial, this model provides, as a sensitive function of R, an interpolation between the SU(2)xU(1)
prediction and the possibility of no atomic parity violation.

From the present point of view the interest in the results of the atomic physics experiments is very much enhanced. In any event it is always possible to imagine R small. Then one has the usual SU(2)xU(1) theory effectively at energies less than several hundred GeV while a more complicated SU(3)xU(1) interaction pattern emerges at higher (say thousands of GeV) energies. This might be a way of creating oases in Glashow's "desert".

6. Additional Discussion

The main purpose of the present paper has been to show that the neutral current non-uniqueness theorems can be extended to gauge groups of the form G'xU(1). We have given an explicit illustration taking G = SU(3). The gauge theories based on SU(3)xU(1) are of course very much more complicated than the SU(2)xU(1) theories and permit a large number of different variations by taking different Higgs' structures, different assumed parameter ranges, different discrete symmetries, etc. Many of these possibilities have been discussed in detail in the literature. We shall briefly mention some of the (other than neutral current) characteristic features of the present model. These features could most likely be modified without materially changing the neutral current predictions, by imposing further symmetries, but we shall not consider this here.

First consider the leptons, whose left handed components are given in (2.8). All but ν_e, ν_μ, and ν_τ have right handed singlets also. We assume separate mixing in the sets (ν_e, ν_μ, ν_τ) and (ν'_e, ν'_μ, ν'_τ). Then the masslessness of (ν_e, ν_μ, ν_τ) implies that choosing the Kobayashi-Maskawa mixing matrix to be the unit matrix for W^3 interactions, there will be non-trivial and equal K-M matrices for the W^3 and Z^3 interactions. W^3 emission and reabsorption will mediate the exotic processes of ν_e → ν_μ. This will vanish in the limit when either m^2(W^3) → (SU(2)xU(1) limit) or when the K-M matrix for W^3 interactions goes to the unit matrix. The latter mechanism is indicated as a suppression mechanism for the large R limit of the theory. We have furthermore assumed (ν'_e, ν'_μ, ν'_τ) to be very heavy. This will save the embarrassment of not yet having seen the lightest of these which should be stable.

Next consider the quarks, whose left handed components are given in (2.9) and (2.10). We assume separate mixings in the sets (d, s, b) and (d', s', b'). Furthermore, for simplicity, we' mixings with to be d', s' and t' negligible. The characteristic feature here is that because there are two triplets and one anti-triplet, there exists a "metric tensor":

η = diag (1,1,1,1)

in generation space. This results in some strangeness changing neutral currents. To see this note that if the physical d, s, and b quarks are assembled into a column vector B we will have

\[V^a = \begin{pmatrix} \eta_d & \eta_s & \eta_b \end{pmatrix} \]

where \(\eta \) is a 3x3 unitary matrix. The 11 matrix element of \((\eta^2) \) controls the amplitude for \(\nu_e \to \nu_\mu \), etc. Substituting into
(4.11) gives, for example,
\[
\mathcal{L}_{\text{eff}}(\Delta S = 1) = \frac{G_F}{\sqrt{2}} \sum_{i} \sum_{j} N_{ij}^a N_{ji}^a \bar{\psi}_i (\gamma_\mu - i \gamma_5 \gamma_\mu) \psi_j d + \text{h.c.}
\]
Thus we must suppress \(\bar{\psi}_i \gamma_\mu \psi_j\) by having \(N_{ij}^a N_{ji}^a\) very small.

Footnotes and References
2. An up to date review is provided by P. Masset, CERN report EP 79-104 (1979).
8. This formula, which is independent of the number and assignment of the fermion fields, seems to have been first given in eq.(22) of J. Schechter and Y. Ueda, Phys. Rev. D2, 736 (1970). Of course rather than using three quarks, as in the above reference one should take four quarks as in S. Glashow, J. Iliopoulos, and C. Maiani, Phys. Rev. D2, 1285 (1970) or perhaps six quarks as in M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 42, 652 (1973).
9. The general neutral current effective Lagrangian for one 2-exchange is said to satisfy factorization. This does not apply in the present case. See P.Q. Hung and J.J. Sakurai, Phys. Lett. 69B, 323 (1977).

![Graph](image.png)

Fig. 1. Plots of gauge boson masses relative to $m(W_1^2)$ [or 80 GeV] versus $1/R$ in the $K_1 \to 0$ limit.