Measurement of top quark polarization in top–antitop events from proton–proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter presents measurements of the polarization of the top quark in top–antitop quark pair events, using 4.7 fb$^{-1}$ of proton–proton collision data recorded with the ATLAS detector at the Large Hadron Collider at $\sqrt{s} = 7$ TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of $\alpha_\ell P$, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving (CPC) or a CP violating (CPV) production process. The measurements obtained, $\alpha_\ell P_{\text{CPC}} = -0.035 \pm 0.014\text{(stat)} \pm 0.037\text{(syst)}$ and $\alpha_\ell P_{\text{CPV}} = 0.020 \pm 0.016\text{(stat)}^{+0.013}_{-0.017}\text{(syst)}$, are in good agreement with the Standard Model prediction of negligible top quark polarization.
Measurement of top quark polarization in top–antitop events from proton–proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector
(The ATLAS Collaboration) (Dated: September 9, 2013)

This Letter presents measurements of the polarization of the top quark in top–antitop quark pair events, using 4.7 fb$^{-1}$ of proton–proton collision data recorded with the ATLAS detector at the Large Hadron Collider at $\sqrt{s} = 7$ TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of $\alpha_t P$, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving (CPC) or a CP violating (CPV) production process. The measurements obtained, $\alpha_t P_{\text{CPC}} = -0.035 \pm 0.014$ (stat) ± 0.037 (syst) and $\alpha_t P_{\text{CPV}} = 0.020 \pm 0.016$ (stat) -0.017 (syst), are in good agreement with the Standard Model prediction of negligible top quark polarization.

PACS numbers: 14.65.Ha, 12.38.Qk

The short lifetime of the top quark [1–5] implies that it decays before hadronization takes place, allowing its spin state to be studied using the angular distributions of its decay products. In the Standard Model (SM), parity conservation in the strong production of top–antitop quark pairs (tt) in proton–proton (pp) collisions implies zero longitudinal polarization of the quarks. A negligible polarization (0.003) is generated by the weak interaction [6]. Physics beyond the SM can induce top quark polarization. For example, models that predict the top quark forward-backward production asymmetry to be larger than the SM prediction, as seen by the Tevatron experiments D0 [7, 8] and CDF [9], can generate non-zero polarization of top quarks [10–12]. A first study of polarization in tt events has been performed by the D0 collaboration [8], showing good agreement between the SM prediction and data.

In this Letter, measurements are presented of the polarization of the top quark in inclusive tt production in single charged lepton ($tt \rightarrow ℓνq(b)b$) and dilepton ($tt \rightarrow ℓ⁺νℓ⁻(γν)b(b)$) events. The double differential distribution in polar angles, $θ$, of two of the final-state decay products, with respect to a given quantization axis is given by [13]

$$
\frac{dσ}{d θ_1 d θ_2} = \frac{1}{4} \left(1 + α_1 P_1 \cos θ_1 + α_2 P_2 \cos θ_2 - C \cos θ_1 \cos θ_2 \right),
$$

where $θ_1$ ($θ_2$) is the angular distribution of the decay daughter particle of the top (antitop) quark. Here, C represents the $t\bar{t}$ spin correlation, P_1 (P_2) represents the degree of polarization of the top (antitop) quark along the chosen quantization axis, and $α_1$ is the spin-analyzing power of the final state object [14, 15], which is a measure of the sensitivity of the daughter particle to the spin state of the parent. At leading order, charged leptons and down-type quarks from W-boson decays are predicted to have the largest sensitivity to the spin state of the top quark with a spin-analyzing power of $α = 1$. The helicity basis is used, in which the momentum direction of the top quark in the $t\bar{t}$ center-of-mass frame is chosen as the quantization axis. The $cos θ_t$ distributions of the charged leptons are used as observables to extract a measurement of $α_t P$.

The analysis is based on the full 2011 dataset of pp collision events, collected at a center-of-mass energy of 7 TeV by the ATLAS detector [16], corresponding to an integrated luminosity of 4.66 $±$ 0.08 fb$^{-1}$ [17] after data quality requirements.

ATLAS includes an inner tracking detector, covering a pseudorapidity range $|η| < 2.5$, surrounded by a superconducting solenoid providing a 2 T magnetic field. A liquid argon (LAr) electromagnetic sampling calorimeter ($|η| < 3.2$), an iron–scintillator tile hadronic calorimeter ($|η| < 1.7$), a LAr hadronic calorimeter ($1.4 < |η| < 3.2$), and a LAr forward calorimeter ($3.1 < |η| < 4.9$) provide the energy measurements. The muon spectrometer consists of tracking chambers covering $|η| < 2.7$, and trigger chambers covering $|η| < 2.4$, in a toroidal magnetic field. Events considered in this analysis are required to have one high-transverse-momentum (p_T) electron or muon that passes requirements of the three-level trigger system.

Both data-driven techniques and Monte Carlo (MC) simulations are used to estimate the sample composition of the data. For each MC sample, generated events are processed through a GEANT4 [19] simulation of the full ATLAS detector [20], and the same reconstruction and analysis software is used for both the data and the MC events. Signal tt events are simulated by the next-to-leading-order (NLO) generator MC@NLO 3.41 [21] with the NLO parton distribution function (PDF) set CT10 [22], assuming a top quark mass of 172.5 GeV. Parton showering is modeled with HERWIG 6.510 [23], and JIMMY 4.31 [24] is used for the underlying event. A tt production cross section of 167^{+17}_{-18} pb is used, calculated at approximate next-to-next-to-leading-order (NNLO) in QCD using HATHOR 1.2 [25]. Backgrounds are simulated using the MC@NLO, ALCHEMY [26], ALPGEN [27], and HERWIG generators, as detailed in Ref. [28]. Each simulated signal or background event is overlaid with additional pp collisions. The events are given a weight such that the distribution of the average number of events per beam crossing agrees with data. For each sample the cross section is rescaled to the most up to
date theoretical expectations, as described in Ref. [29].

The data sample is enriched in $t\bar{t}$ events by applying several selection criteria based on the $t\bar{t}$ event topology. The selected $t\bar{t}$ events consist of jets, isolated leptons and missing transverse momentum from the undetected neutrinos. Jets are reconstructed from clustered energy deposits in the calorimeters using the anti-k_T algorithm [30] with a radius parameter $R = 0.4$. Their energies are corrected to correspond on average to the total energy of the stable particles emitted towards the jet using energy- and η-dependent correction factors derived from simulation, and a residual correction derived from in situ measurements [31, 32]. They are required to have $p_T > 25$ GeV and $|\eta| < 2.5$. Furthermore, at least 75% of the scalar sum of the p_T of all the tracks associated with each jet must belong to tracks originating from the primary vertex, which is defined as the vertex with the highest sum of the squared p_T values of the associated tracks in the event. Jets originating from b-quarks are selected by using a neural network algorithm that combines information about the impact parameter of tracks with information about explicitly reconstructed secondary vertices and other variables. At the chosen working point, the algorithm identifies simulated b-jets from top quark decays with 70% efficiency and a rejection factor of about 140 for light partons [33-55]. Reconstructed electrons must have $p_T > 25$ GeV and be associated with a calorimeter cluster in the range $|\eta_{cl}| < 2.47$, excluding the transition between calorimeter sections, $1.37 < |\eta_{cl}| < 1.52$. Selected muons are required to fulfill $|\eta| < 2.5$ and $p_T > 20$ GeV. Each lepton is required to pass quality criteria, to be compatible with being produced at the primary vertex by having a longitudinal impact parameter smaller than 2 mm, and to be isolated from other calorimeter energy deposits and tracks [56]. The E_T^{miss} is calculated [37] as the magnitude of the negative of the vectorial sum of all energy deposits in the calorimeters, and then corrected for the momenta of the reconstructed muons.

The details of the final event selection depend on the W decay channels. This measurement uses five different channels, containing either one or two electrons or muons in the final state, including the ones coming from τ decays. The requirements for the single-lepton channels ($\ell +$jets) are:

- Exactly one electron or muon;
- At least four jets, at least one of which is b-tagged;
- $E_T^{miss} > 30$ GeV for the electron channel and $E_T^{miss} > 20$ GeV for the muon channel;
- The transverse mass of the W boson to be greater than 30 GeV for the electron channel, while $m_T + E_T^{miss} > 60$ GeV is required for the muon channel. The transverse mass is computed from the lepton p_T and ϕ angle (\(p_T^\ell, \phi^\ell\)) and the direction of the E_T^{miss} as $m_T = \sqrt{2p_T^\ell E_T^{miss}[1 - \cos(\phi^\ell - \phi(E_T^{miss}))]}$.

The selection of the dilepton channels (ee, $e\mu$, $\mu\mu$) requires:

- Exactly two oppositely charged electrons or muons;
- At least two jets;
- A dilepton invariant mass larger than 15 GeV for all the channels, and more than 10 GeV away from the Z boson mass for the ee and $\mu\mu$ channels;
- $E_T^{miss} > 60$ GeV for the ee and $\mu\mu$ channels;
- The scalar sum of the p_T of all selected leptons and jets to be larger than 130 GeV for the $e\mu$ channel.

The major backgrounds are due to vector boson production with additional jets, single top quark production, and to misidentified leptons. Their contributions are estimated using data-driven methods and MC simulation. In particular, the normalization of the dominant background in the $\ell+$jets channels, $W+$jets production, is estimated using a measurement of the lepton charge asymmetry in data [58], while the shape of the distribution of $cos \theta_L$ is taken from simulation. In the ee ($\mu\mu$) channel, the normalization of the Z/γ^*+jets background with Z/γ^* decaying into ee ($\mu\mu$) is determined from data. A Z/γ^*+jets enriched control region is defined, where a correction factor for the simulation normalization is derived as a function of the E_T^{miss} in the event, and applied to the signal region in order to account for possible E_T^{miss} mis-modeling.

The contributions of non-prompt leptons from semi-leptonic hadron decays and of jets misidentified as leptons (fakes) are determined from data using matrix methods [29, 39]. For $\ell+$jets channels this contribution comes primarily from multi-jet events, while for dilepton channels it originates primarily from $W+$jets events where one charged lepton comes from W decay and the other lepton is a non-prompt or fake lepton.

After selection, the expected yields for signal and background compared to data are shown in Table. The selected events are reconstructed under the $t\bar{t}$ event hypothesis: jets are associated with particular quarks, and the longitudinal momenta of the neutrinos in the event are determined. From the fully reconstructed decay chain we calculate the momentum of the top quark in the $t\bar{t}$ frame and from it $cos \theta_t$.

In the $\ell+$jets channels, a kinematic likelihood fit is performed. The likelihood for the event to correspond to a $t\bar{t}$ decay topology is calculated for each possible assignment of four jets selected from the up to five highest p_T jets in the event, to the two b-quark jets and the two jets from the W-boson decay [40]. The energies of the jets and the charged lepton, as well as the E_T^{miss}, are allowed to vary within their respective resolutions to best meet the W-boson and
TABLE I. Expected signal and background rounded yields compared to data for each of the five lepton flavor channels considered. The approximate NNLO SM prediction \cite{25} is assumed for $t\bar{t}$ production, and the total systematic and statistical uncertainties are reported.

| Source | e^+jets | μ^+jets | ee | $e\mu$ | $\mu\mu$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>16200</td>
<td>26500</td>
<td>570</td>
<td>4400</td>
<td>1660</td>
</tr>
<tr>
<td>Background</td>
<td>5100</td>
<td>9400</td>
<td>110</td>
<td>700</td>
<td>320</td>
</tr>
<tr>
<td>Total</td>
<td>21300</td>
<td>35900</td>
<td>690</td>
<td>5000</td>
<td>1980</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>± 1300</td>
<td>± 1700</td>
<td>± 80</td>
<td>± 500</td>
<td>± 180</td>
</tr>
<tr>
<td>Data</td>
<td>21956</td>
<td>37919</td>
<td>740</td>
<td>5328</td>
<td>2057</td>
</tr>
</tbody>
</table>

The signal templates are obtained by reweighting the top quark mass constraints to form the kinematic likelihood. The combined probability is calculated as the product of the maximum kinematic likelihood, the b-tagging efficiency and light-parton rejection probability. The highest probability permutation is chosen as the best reconstruction and used to calculate the charged lepton $\cos \theta_\ell$.

In the dilepton channels, the neutrino weighting method is used \cite{41}. Because of the presence of two neutrinos from W boson decays, the final system is underconstrained and assumptions must be made to calculate all particle momenta. Making a hypothesis for the pseudorapidities of the two neutrinos (η_1, η_2), a weight is assigned for each permutation of jets, based on the compatibility of the total neutrino transverse momentum vector and the measured E_T^{miss}, accounting for E_T^{miss} resolution \cite{27}. For each event, 10000 different hypotheses for (η_1, η_2) are scanned, drawn from the observed probability distribution in the signal MC sample. The configuration with the maximal weight is selected and used to reconstruct the values of $\cos \theta_\ell$ for both charged leptons. Events for which no physical solution can be found with this method are discarded, corresponding to 15% of the selected events in the simulated dilepton $t\bar{t}$ sample. The assumed η distributions of the neutrinos are insensitive to top quark polarization.

To extract the value of $\alpha_s P$ from the data, a fit using templates for partially polarized top quarks is performed. The signal templates are obtained by reweighting the top and antitop quark decay products in the simulated $t\bar{t}$ sample according to Eq. [1] using the helicity basis and setting C to the SM value of $t\bar{t}$ spin correlation, $C = 0.31$ \cite{6}. Two different assumptions about the top quark polarization are made to produce two template fits. In one case, the polarization is assumed to be induced by a charge–parity (CP) conserving process, which leads to top and antitop quarks having equal values of $\alpha_s P$ and therefore the same angular distribution for the daughter particles. In the other, maximal CP violation is assumed, leading to opposite values of $\alpha_s P$ for the top and antitop quarks. In this case, when a value of $\alpha_s P$ is quoted its sign refers to the sign of the coefficient for positively charged leptons. The positive and negative templates used in the fit are built assuming a value of $\alpha_s P = \pm 0.3$, to guarantee that the differential decay distribution is positive for all values of $\cos \theta_\ell$ given the degree of spin correlation. The fraction, f, of the positive template component and the $t\bar{t}$ production cross section are fitted simultaneously, in order to reduce the influence of normalization uncertainties on the measured polarization. The polarization is computed as $\alpha_s P = 0.6 f - 0.3$.

For all the considered channels, a template fit is performed with a binned maximum likelihood method on positive and negative lepton distributions separately. Combinations are made by multiplying the likelihood functions of the single channels for the two single-lepton channels, the dilepton channels, and all channels together. The fitting method is unbiased, which was shown using pseudoexperiments.

For each source of systematic uncertainty, new templates corresponding to the respective one standard deviation up and down variation are considered. When an uncertainty is evaluated as the difference between two points, it is symmetrized around the central value. The mean of the distribution of the respective differences between the central fit values and the up and down results from 1000 pseudo-datasets are taken as the systematic uncertainties on that source. Systematic uncertainties arising from the same source are treated as being correlated between the different lepton charge and flavor samples.

Detector systematic uncertainties, related to the determination of the energy or momentum scales, resolutions, and efficiencies for jets, electrons, and muons, as well as the E_T^{miss} are considered \cite{32, 37, 42–46}. Simulated samples are corrected in order to match the reconstructed object properties observed in data, and the correction factors are varied depending on the uncertainties of their values, in order to estimate the uncertainty on the final measurement. The largest uncertainty in this measurement comes from the jet energy scale.

Systematic uncertainties from the modeling of the $t\bar{t}$ final state in simulation are accounted for using alternative signal templates. These templates are produced by varying the MC event generator, initial- and final- state radiation, color reconnection, fragmentation modeling, and the PDF sets, as detailed in Ref. \cite{47}. The estimation of the uncertainty due to the top quark mass is performed by repeating the fitting procedure using seven samples with different mass settings in the simulation, and interpolating the change in the parameter f corresponding to a variation of the top quark mass of ± 1.4 GeV \cite{48} around the nominal value. Because an assumption on the degree of spin correlation is made when constructing the template, an additional uncertainty is applied based on the difference in the parton-level spin correlation in simulated $t\bar{t}$ events between the MC@NLO and POWHEG \cite{39} generators.

For the W+jets background in the ℓ+jets final state, the overall normalization is varied according to the residual uncertainty after the rescaling based on the measured
charge asymmetry. In addition, the $W+\text{jets}$ template is varied in shape and normalization by reweighting events according to both the uncertainty in the associated heavy quark production flavor fractions and the parameters of the simulation of extra jets. For the estimate of the systematic uncertainty due to events with non-prompt or fake leptons, the templates are varied according to its uncertainties in the matrix method inputs. The MC statistical uncertainty is taken into account by performing pseudo-experiments, where the bin content of each template is varied independently according to the uncertainty. Table summarizes the sources of systematic uncertainty and their effect on $\alpha_L P$ for the combined fit. The two largest uncertainties come from jet reconstruction and MC modeling, both affecting the shape of the $\cos \theta_\ell$ distribution. For sources of systematic uncertainty that do not depend on the lepton charge in the event, the uncertainty in the CP violating scenario is greatly reduced. These uncertainties push the fit parameters in opposite directions for the samples with different lepton charge, leading to a smaller total uncertainty in the combination.

The results of the fit to the data in single-lepton and dilepton channels are summarized in Table III. Figure 1 shows the fitted observable in the single-lepton and dilepton final states with the CP conserving hypothesis, and Fig. 2 shows the same observable in the CP violating hypothesis. The deviation from the expected linear behavior of the $\cos \theta_\ell$ distributions is primarily a result of the detector acceptance.

The single-lepton and dilepton channels combined results are:

$$\alpha_L P_{\text{CP}} = -0.035 \pm 0.014(\text{stat}) \pm 0.037(\text{syst})$$

in the CP conserving scenario, and

$$\alpha_L P_{\text{CPV}} = 0.020 \pm 0.016(\text{stat})^{+0.013}_{-0.017}(\text{syst})$$

in the CP violating scenario. The polarization in both scenarios agrees with the SM prediction of negligible polarization. The fitted $\sigma_{\ell\bar{\ell}}$ is in good agreement with the SM prediction as obtained from NNLO QCD calculations.

In conclusion, the first measurement of top quark polarization in $t\bar{t}$ events has been performed for two different scenarios with 4.7 fb$^{-1}$ of proton–proton collision data at 7 TeV center-of-mass energy with the ATLAS detector at the LHC. Single-lepton and dilepton final states have been used and no deviation from the SM prediction of negligible polarization is observed for either the CP conserving or CP violating scenario.
FIG. 2. The result of the full combined fit to the data with the CP violating polarization hypothesis in (a) the single-lepton channel and (b) the dilepton channel, adding together electrons and muons. It is compared to the polarization templates used and the SM prediction of no polarization. Positively charged leptons are on the left, and negatively charged leptons on the right.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFSN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[18] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $η = −\ln \tan(θ/2)$. The transverse energy E_T is defined as $E \sin θ$, where E is the energy associated to the calorimeter cell or energy cluster. Similarly, p_T is the momentum component transverse to the beam line.

1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Gazi University, Ankara; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Universidad Técnica Federico Santa María, Valparaíso, Chile

Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy

(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Also at Department of Physics, King’s College London, London, United Kingdom
Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Novosibirsk State University, Novosibirsk, Russia
Also at Department of Physics, University of Coimbra, Coimbra, Portugal
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Department of Physics, Middle East Technical University, Ankara, Turkey
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
Also at Institut Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
Also at Department of Physics, University of Cape Town, Cape Town, South Africa
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at CERN, Geneva, Switzerland
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Manhattan College, New York NY, United States of America
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at DESY, Hamburg and Zeuthen, Germany
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America
Also at Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
Deceased