A Comment on Form Factor Mass Singularities in Flavor-Changing Neutral Currents

M.A. Sanchis

Departamento de Física Teórica
and
Instituto de Física Corpuscular (IFIC)
Centro Mixto Universidad de Valencia-CSIC

Dr. Moliner 50, E-46100 Burjassot, Valencia (Spain)

June 21, 1991

Abstract
Flavor-changing effective vertices $q_0 V^0$, where V^0 represents a neutral gauge boson (γ, Z^0, ρ), involving a heavy external quark, are discussed within the standard model at one-loop level and second-order approximation in external momenta and masses: the logarithmic singular terms in the form factors at vanishing mass of the internal quark in the loop have to be replaced by pieces coming from next order in external momenta. Implications in the $b \rightarrow d + X$ penguin transitions are commented.
The possibility of testing the standard model (SM) of the electroweak interactions and its possible extensions, as well as non-conventional physics, has increased in recent years the interest in rare decays of particles. The fact that such processes occur via diagrams involving particles like the gauge boson W and its possible extensions, or the yet undiscovered top quark, makes them especially suitable as complementary tests of other searches like those performed at collider physics. In particular, neutral gauge bosons (γ, Z^0 and g) couple to quarks with different flavors at lowest order through one-loop level diagrams, giving rise to flavor-changing neutral current (FCNC) transitions.

Among rare processes, FCNC decays of B mesons have the intrinsic advantage over others (like kaon decays) of the relative large mass of the constituent B quark, offering the reasonable option of neglecting QCD effects at a first approximation and rendering credible a spectator model. Furthermore, in the usual low energy limit, one neglects external fermion masses and momenta whenever and as early as possible to simplify the calculation. However, although such approximation is in general well-founded, a logarithmic singularity arises in the flavor-changing (FC) vertex amplitude when the mass of the internal fermion of the loop is set to zero. In fact as we shall see this a manifestation of a careless low energy limiting process performed at second-order in external momenta.

In our discussion we will essentially follow the framework and notation employed in the Barroso and Soares' paper [2], where they present an exact calculation within the SM of the FC vertices $q_B q^B$ with $V^C = \gamma$, Z^0 in the 't Hooft-Feynman gauge at one-loop level using the on-shell renormalization scheme. Throughout this paper we will not discuss QCD corrections to the effective vertex, and we will impose the following constraints: i) on shell external quarks, ii) the mass of the light external quark (q) is set to zero. Then, both FC renormalized vertices $q_B q^B$, $q_B q^B Z^0$ can be expressed as

$$\Sigma_{\text{real-world}} = C [\alpha_1 q^2 + \alpha_2 q^3 + \alpha_3 q^4 + \alpha_4 q^5] \bar{L}$$ (1)

where

$$\alpha_1 = \frac{m_B^2}{2} A_3 + m_q A_4 + A_{11} - \frac{1}{2} A_{12} + A_{21}$$

$$\alpha_2 = \frac{m_B^2}{2} A_3 + A_4 + A_5 A_7 + \frac{m_B^2 q^2 - q^4}{2} A_4 + \frac{m_B^2}{2} A_{12}$$

$$\alpha_3 = -\frac{m_B^2}{2} A_3 - A_{11} - \frac{1}{6} A_{12}$$

and

$$C = \left[\frac{\alpha}{\cos \theta_W} \right] \frac{e^2}{16 \pi^2} V_i$$

the upper(lower) line corresponding to the γ(Z^0) case, and L stands for the left projection operator. We denote by q and ρ the incoming momenta of the light q.

The piece containing the F_1 form factor represents an electric (charge-radius) transition and does not contribute for a real photon ($q^2 = 0$). The piece containing the F_2 form factor corresponds to a magnetic transition and contributes in the latter process. In the limit of vanishing external masses and momenta, one recovers the well-known result of Imai-Lim [5] at lowest (second) order in external momenta and mass for the effective $g \gamma q$ vertex. Introducing $z_i = m_i^2/M_W^2$, where m_1 and M_W stand for the mass of the internal fermion and the mass of the W gauge boson respectively, F_1 and F_2 are given in the 't Hooft-Feynman gauge by:

$$F_1(q^2 = 0) = Q'[\frac{1}{121 - z_i} + \frac{13}{12} \frac{1}{(1 - z_i)^2} + \frac{11}{2} \frac{1}{(1 - z_i)^3}] \frac{1}{z_i} + \frac{1}{2} \frac{1}{3(1 - z_i)} \frac{1}{1 - \frac{1}{3(1 - z_i)^2}}$$

$$+ \frac{1}{6} \frac{1}{5(1 - z_i)^3} \frac{1}{1 - \frac{1}{5(1 - z_i)^3}} \frac{1}{z_i}$$

$$F_2(q^2 = 0) = -Q'[\frac{1}{21 - z_i} + \frac{3}{12(1 - z_i)^2} + \frac{3}{2} \frac{1}{(1 - z_i)^3}] \frac{1}{z_i} + \frac{1}{2} \frac{1}{z_i} \frac{1}{1 - \frac{1}{2(1 - z_i)^3}}$$

where Q' stands for the electric charge of the internal quark running inside the loop.

Attention should be paid to the "$1/\alpha(1 - z_i)$" term standing in the F_1 form factor, which would diverge logarithmically as $z_i \to 0$, that is, if we let the mass of the internal quark "$i" tend to zero. As we shall see in the limit: $M_W^2 > > m_i^2 > 0$, such term has to be substituted by another one dominated by the piece: $\ln \left(\frac{-q^2}{M_W^2} \right)$ [6] [7] [8].
The mathematical origin of this singularity can be traced to lie in the A_4, A_6 and A_7 coefficients, as we shall show below (it is worth to mention that such divergence comes from diagram 1.b).

In the coefficients A_4 and A_7 one deals (among other pieces of regular behavior in the massless internal fermion limit) with parametric Feynman integrals of the type:

$$ I(p^2, (p + q)^2, q^2, m^2) = \int_0^1 du_1 \int_0^1 du_2 \int_0^1 \frac{f(u_1, u_2)}{\Delta'} dx $$

with $f(u_1, u_2) = (u_1 - u_2)(1 + u_2 - u_1)$, and

$$ \Delta' = 1 - u_1 + \frac{m^2}{M_W^2} u_1 + \frac{q^2}{M_W^2} (u_2 - u_1)(1 + u_2 - u_1) + \frac{2pq}{M_W^2} (1 - u_1)(u_2 - u_1) $$

where we have taken $p^2 = m^2 = 0$. Moreover, let us point out henceforth that it is possible to forget about the term "2pq" since it leads, by expanding $1/\Delta'$, to a convergent integral (when $x_i \to 0$) because of the "$(1 - u_1)^2" factor (notice that "$q^2/m^2 - q^2/m^2'^2" in (3) already provides the required second order in external momenta). Therefore, we write

$$ 1/\Delta' \approx \frac{1}{1 - (1 - x_1)u_1 + \beta(x_2 - u_1)(1 + u_2 - u_1)} + O(\varepsilon^2) $$

where we have defined $\beta = q^2/M_W^2$.

Let us observe that, in the limit $x_i \to 0$, if we drop the β term in the denominator, we are confronted to a divergent integral. Hence, under this circumstance, one is compelled to keep such term, perform the integral and then take the limit $x_i \to 0$. On the other hand, if there is an overall multiplicative x_i factor (as in those parametric integrals coming from diagram 1.c) there is no problem of convergence and it is legitimate to drop the q^2-dependent term in Δ'. The same happens if the numerator is defined as $f(u_1, u_2) = (u_1 - u_2)(1 + u_2 - u_1)$. Furthermore, those parametric integrals in the A_4 and A_7 coefficients involving

$$ \Delta = u_1 + x_i(1 - u_1) + \beta(u_2 - u_1)(1 + u_2 - u_1) $$

in the denominator of the integrand instead of Δ', have a regular behavior even when $x_i \to 0$. Finally, those integrals involving $\delta = 1 - (1 - x_1)u_1 - \beta x_1(1 - u_1)$ are not problematic because of either a "$(1 - u_1)^2" factor in the integrand, or an overall multiplicative x_i factor which cancels the singularity.

By means of the change of one of the integration variables: $z = u_1 - u_2$ and reversing the order of integration one gets for such parametric integrals in the A_4 and A_7 coefficients

$$ I = \int_0^1 dx \int_0^1 du_1 \frac{z(1 - z)}{1 - (1 - x_1)u_1 - \beta x(1 - x_1)} $$

After integrating over u_1, one gets

$$ I = \frac{1}{1 - x_i} [(K_i - 1_i) - (K_i - 2_i)] $$

where

$$ J_n = \int_0^1 dx \frac{z^n}{[x_i - \beta x(1 - z)]} $$

$$ K_n = \int_0^1 dx \frac{z^n}{[1 - (1 - x)z - \beta x(1 - z)]} $$

Explicit evaluation of these integrals are given in the Appendix at the end of the paper.

With respect to the divergent integral in A_6 by an analog procedure as before we write

$$ I = \int_0^1 dx \int_0^1 du_1 \int_0^1 du_2 \ln \Delta'(u_1, u_2) = \int_0^1 dx \int_0^1 du_1 \ln \Delta'(u_1, x) $$

Integrating over u_1 and retaining terms proportional to β, we get

$$ \frac{1}{x_i} [(K_i - 1_i) - (K_i - 2_i)] $$

as for the A_4 and A_7 coefficients, except the overall β factor which provides the required order in external momenta.

In the low energy regime several possible limits are:

- **i) $x_i >> \beta$**
 - In the limit $\beta \to 0$ one gets

 $$ I \approx \frac{1}{1 - x_i} \left(\frac{5}{36} \frac{1}{(1 - x_i)^3} \right) \ln x_i $$

 The relevant term for small x_i will be then

 $$ I \approx -\frac{1}{6} \ln x_i $$

- **ii) $1 >> \beta >> x_i$**
 - In the limit $x_i \to 0$ we have

 $$ I \approx \frac{1}{3 - \beta^2} \left(\frac{1}{6} \frac{1}{2 - \beta^2} \right) \ln (1 - \beta) - \frac{1}{6} \ln (-\beta) $$

 The relevant term for small β will be then

 $$ I \approx -\frac{1}{6} \ln (-\beta) \quad (\beta < 0) $$

 $$ I \approx -\frac{1}{6} \ln (\beta) + \frac{1}{6} \beta \quad (\beta > 0) $$

 Observe that if $\beta > x_i$ $\neq 0$ the stemming imaginary part in the form factor F_1 comes precisely from diagram 1.b as expected since then $q^2 > 4m^2$ and the internal quarks can go on shell.

- **iii) $1 >> x_i, x_i$**

 $$ I \approx \frac{1}{3 - x_i} \frac{1}{2 (x_i^2) \left(\frac{1}{2} \frac{3}{2} \right)} \ln x_i - h(x_i, x_i) $$

 $$ \frac{5}{6} \frac{1}{3 - x_i^2} $$

 (12)
where the A and B functions are defined in the Appendix. In the limit of small x_i the dominant term will be

$$I \approx -\frac{1}{6} \ln x_i.$$ \hspace{1cm} (13)

If the external V^0 is a gluon instead of a γ the effective vertex $\phi q g$ has a similar structure, but now the form factors are: $[5][9]

F_1(q^2 = 0) = \left\{ \begin{array}{ll} \frac{1}{12(1-x_i)} & \text{for } \frac{1}{3} \leq x_i \leq 1 \\ \frac{1}{2(1-x_i)^2} & \text{for } 0 \leq x_i < \frac{1}{3} \end{array} \right.$

\begin{align*}
&+ \left[\frac{2}{1} - \frac{1}{(1-x_i)^2} \right] \ln x_i \\
&+ \left[\frac{1}{1} - \frac{1}{(1-x_i)^2} \right] \frac{1}{2(1-x_i)^3} \ln x_i \\
&+ \left[\frac{1}{1} - \frac{1}{(1-x_i)^2} \right] \frac{1}{2(1-x_i)^3} \ln x_i
\end{align*}

In the low energy limit the charge-radius form factor F_1 contains a divergent term under the assumption of a massless internal quark which comes from diagram 1.b as well. Hence the "rule" also holds for small $|\beta|$ but greater than $x_i = 0$, the dominant piece $-\frac{1}{3} \ln x_i$ in F_1 has to be replaced by $-\frac{1}{3} \ln (-\beta)$.

If the external gauge boson is a Z^0, neglecting all external momenta, only the coefficient A_{Ag} contributes to the effective vertex (since current conservation does not hold now, one is not forced to extract two powers of external momenta as in $V^0 = \gamma, g$). Going to next (second) order, let us focus our attention again in the divergent terms as x_i tends to zero, which would have once more the origin in diagram 1.b. We pick up in a parallel manner as before the troublesome pieces coming from coefficients A_{4g}, A_{Ag} and A_{4Ag}. From (1) and (2) one concludes that they have a common structure "$q^2 q^* - q^* g^*". For $|\beta| > x_i \rightarrow 0$ again a term "$\ln(-\beta)$" would appear. In fact in all these cases discussed so far q^2 plays the role of an infrared cut-off.

This discussion can be applied to rare decays of particles induced by the quark level process; $q_i - \bar{q}_i l^+ l^-$ and particularly to the QCD-induced decays by the transition $\phi q_\mu - \phi q^*$. If q^* is timelike it leads through the corresponding quark-parton level subprocesses, to $q_i - \bar{q}_i l^+ l^-$ and $q_i - \bar{q}_i l^+ l^-$. Any q^2 range from its minimum up to its maximum value, one can make use of the approximations calculated before. This can be considered as midway between the full expressions of the Appendix (leading to a very complicated evaluation when integrated over the available phase space) and the crude approximations of ignoring the q^2-dependence in the form factors at all. On the other hand, it may happen that q^2 could be more or less fixed as in the exclusive two-body decays. For instance, let us consider the $B^+ - \tau^+ \phi$ decay occurring through a QCD-induced quark-parton transition; $\bar{b} - \bar{d} \bar{s}^*$ (the tree-level diagram is absent). Notice that q^2 would be greater than the masses of both up and charm quarks. Hence there should be a (approximate) cancellation between the dominant pieces of the charge-radius form factors F_1 corresponding to the u and c contributions (both: $\ln(-\beta)$ because $V_{ud}^* V_{cu} = -V_{ub}^* V_{cu}$, leading to a further suppression of this decay mode.

Furthermore, the differential distribution $(1/F) dF/dq^2$ will be similarly suppressed for large q^2 besides the falling of phase space in the decays induced by the $b-d+x$ penguin transitions ($X = \tau^+ l^+ l^-$).

Finally let us point out that these considerations should be also taken into account in $e^+ e^-$ physics, for instance looking for FCNC decays $\gamma(2\gamma) - h\phi (q = d, s)$ below the ϕ threshold, since q^2 should be greater than the mass of the internal up and charm quarks running inside the loop of the FC vertex.
Appendix

In the main text we are involved with the following integrals:

\[J_1 = -1 + \frac{1}{2} \ln x_i + h(x_i, \beta) \]
\[J_2 = \frac{1}{3} \left[-\frac{13}{6} + \frac{2\beta}{\beta} \ln x_i + 2(1 - \frac{x_i}{\beta}) h(x_i, \beta) \right] \]
\[K_1 = -\frac{1}{2} \frac{y}{2\beta} + \left(\frac{1}{2} + \frac{1}{2\beta} - \frac{y^2}{4\beta^2} \right) \ln x_i + \frac{y}{2\beta} H(x_i, \beta) \]
\[K_2 = \frac{1}{3} \left[\frac{2}{3} - \frac{4}{3} \frac{y}{2\beta} - \frac{y^2}{2\beta^2} + (1 + \frac{3y}{2\beta^2} - \frac{y^2}{2\beta^2}) \ln x_i - \frac{1}{2\beta^2} (1 - \frac{y^2}{\beta}) H(x_i, \beta) \right] \]

where we have defined \(y = 1 + \beta - x_i \) and

\[h(x_i, \beta) = \frac{1}{2} \left[\frac{1}{\sqrt{1 - 4x_i/\beta}} \ln \left(\frac{\sqrt{1 - 4x_i/\beta} + 1}{\sqrt{1 - 4x_i/\beta} - 1} \right) \right] \]
\[H(x_i, \beta) = \frac{1}{2} \left[\frac{y - 2 + \sqrt{y^2 - 4\beta}}{y - 2 - \sqrt{y^2 - 4\beta}} \right] \ln \left(\frac{\sqrt{y^2 - 4\beta} + 1}{\sqrt{y^2 - 4\beta} - 1} \right) \]

Remark that the origin of the divergence when \(x_i \to 0 \) stays in the \(J_0 \) (these integrals appear in the familiar vacuum polarization in QED), not in the \(K_n \). Analytic continuation allows to extend the validity of the last expressions even for negative values of the arguments of the root and the logarithm: it was assumed that internal masses had in the propagators a small negative imaginary part, which avoids crossing the respective branch cuts \((x_i/\beta - x_i/\beta - i\epsilon) \).

\(\beta > 4x_i \), an imaginary part stems from \(J_1 \) and \(J_2 \). Conversely, if \(\beta < 4x_i \):

\[h(x_i, \beta) = \frac{1}{\sqrt{4x_i/\beta - 1}} \tan^{-1} \left(\frac{1}{\sqrt{4x_i/\beta - 1}} \right) \]

and no imaginary part stems.

Next let us distinguish some limits in the low energy regime

\[i) \ x_i \gg |\beta| \to 0 \]

When \(\beta \to 0 \) we get

\[J_1 = \frac{1}{2} \ln x_i \quad J_2 = \frac{1}{3} \ln x_i \]
\[K_1 = -\frac{1}{2} + \frac{1}{2(1 - x_i)} + \frac{1}{2} - \frac{1}{2(1 - x_i)^2} \ln x_i \]
\[K_2 = -\frac{1}{3} + \frac{1}{6(1 - x_i)} + \frac{1}{3(1 - x_i)^2} \ln x_i \]

For small values of \(x_i \):

\[K_1 = -\frac{3}{4} \quad K_2 = -\frac{11}{18} \]

\[ii) \ 1 \gg |\beta| \gg x_i \to 0 \]

In the limit \(x_i \to 0 \)

\[J_1 = -1 + \frac{1}{2} \ln (\beta) \quad J_2 = -\frac{13}{18} + \frac{1}{3} \ln (\beta) \]
\[K_1 = -\frac{1}{2} + \frac{1}{2\beta} + \frac{1}{2\beta} - \frac{1}{2\beta^2} \ln (1 - \beta) \]
\[K_2 = -\frac{13}{18} - \frac{1}{6\beta} + \frac{1}{3\beta^2} + \frac{1}{3\beta^2} \ln (1 - \beta) \]

In the limit of small \(\beta \) values

\[K_1 = \frac{3}{4} \quad K_2 = \frac{11}{18} \]

\[iii) \ 1 \gg x_i \gg |\beta| \]

\[J_1 = -1 + \frac{1}{2} \ln x_i + h(x_i, x_i) \quad J_3 = -\frac{1}{18} + \frac{1}{3} \ln x_i \]
\[K_1 = -\frac{1}{2} - \frac{1}{2x_i} + \frac{1}{2} - \frac{1}{2x_i} - \frac{1}{2x_i} \ln x_i + \frac{1}{2x_i^2} H(x_i, x_i) \]
\[K_2 = \frac{1}{3} + \frac{3}{2x_i} + \frac{1}{2x_i^2} + \frac{1}{2x_i^2} - \frac{1}{2x_i^2} \ln x_i - \frac{1}{2x_i^2} (1 - \frac{1}{x_i}) H(x_i, x_i) \]

where

\[h(x_i, x_i) = \frac{1}{2\sqrt{3}} \]
\[H(x_i, x_i) = \frac{1}{2} \sqrt{1 - 4x_i} \ln \left(\frac{1 - \sqrt{1 - 4x_i}}{1 + \sqrt{1 - 4x_i}} \right) \]

For small \(x_i \)

\[K_1 = -\frac{3}{4} \quad K_2 = -\frac{11}{18} \]

\[^{3}\text{In ref. [6] an equivalent evaluation with a slightly different notation can be found.} \]
Acknowledgments
I thank F.J. Botella for suggestions and comments. This work was partially supported by DGICYT under grant PB-88-0064.

References

[6] The q^2 -dependence of the form factor was already taken into account in the $B\rightarrow K^*\ell^+\ell^-$ decay through a penguin transition involving a virtual photon by N.G. Deshpande, G. Eilam, A. Soni and G.L. Kane: Phys. Rev. Lett 57 (1986) 1106. More recently this singularity was considered by W.-S. Hou and R.S. Willey: Nucl. Phys. B320 (1989) 54. They just drop the q^2 dependence and by explicit calculation for the charm internal quark contribution of F_1 to the $B\rightarrow K^*\ell^+\ell^-$ transition, doing the complete phase integral over the square of this term alone, they find that the rate is affected by an error of no more than 20%. However this rough approximation may become more delicate in certain cases, as commented in the main text. See also C.A. Dominguez, N. Paver and Hrazdina: Z. Phys. C-Particles and Fields 48 (1990) 55. A further comment on this subject can also be found in J. Liu and Y.-P. Yao: Phys. Rev. D41 (1990) 2147. The q^2 dependence in the F_1 form factor is also kept in J.-M. Gerard and W.-S. Hou: Phys. Rev. Lett. 62 (1989) 855 in connection with CP violation in B decays.
Figure Captions

Fig. 1: qgV^0 vortex ($q = p' - p$): a) The blob represents 10 one-loop diagrams in the 't Hooft-Feynam gauge for $V^0 = \gamma$, Z^0, and 6 one-loop diagrams for $V^0 = g$; b) and c) two of these diagrams involving the gauge boson W and the charged unphysical Higgs σ respectively; "l" labels the internal flavor.