Tesis Doctoral

Distribuciones de probabilidad alternativas para la gestión de riesgo en mercados financieros

José Alfredo Jiménez Moscoso

Valencia, España
2014
Doctorado en Banca y Finanzas Cuantitativas

Tesis Doctoral

Distribuciones de probabilidad alternativas para la gestión de riesgo en mercados financieros

Autor:

José Alfredo Jiménez Moscoso

Vo. Bo. de los Directores

Gregorio M. Serna C. V. Arunachalam

Valencia, diciembre de 2014
El doctorando José Alfredo Jiménez Moscoso y los directores de la tesis Gregorio Manuel Serna Calvo y Arunachalam Viswanathan, al firmar esta tesis doctoral, certifican que el presente trabajo ha sido realizado por el doctorando bajo la dirección de los directores de la tesis y, hasta donde nuestro conocimiento alcanza, en la realización del trabajo, se han respetado los derechos de otros autores al ser citados, cuando se han empleado sus resultados o publicaciones. Además, certificamos que

- El doctorando es coautor de todos y cada uno de los artículos publicados o aceptados para publicación, que se anexan al final de esta tesis.

- El doctorando es autor principal en todos ellos y, por tanto, la elaboración de todos y cada uno de los trabajos ha sido parte de su formación como investigador.

- Todos y cada uno de los artículos anexados en esta tesis son originales y no se han utilizado ni se utilizarán por ninguno de los autores en otras tesis doctorales.

Doctorando

José Alfredo Jiménez Moscoso

Directores de la Tesis

Gregorio M. Serna C. V. Arunachalam

Valencia, diciembre de 2014
Agradecimientos

La lista de agradecimientos es amplia debido a todo el apoyo y ánimo que me han brindado distintas personas e instituciones durante estos años de investigación.

En primer lugar, agradezco a mi Dios todopoderoso de quien he recibido fortaleza a lo largo de mi vida.

De forma muy especial, también agradezco a mis familiares, que siempre han creído en mí, entre ellos mis padres. A mi esposa e hija, quienes me han brindado incondicionalmente cariño, compañía y sacrificio durante estos años, estas manifestaciones me sirvieron de impulso para culminar mi tesis.

Asimismo, deseo agradecer a mis directores de tesis, Dr. Gregorio Manuel Serna Calvo, por la colaboración brindada, sus comentarios y sugerencias fueron invaluables; al Dr. Arunachalam Viswanathan, por su colaboración, dedicación y conocimientos, los cuales fueron importantes en el desarrollo de este trabajo.

Al Cuerpo Docente del Máster en Banca y Finanzas Cuantitativas, por sus aportes en mi formación profesional.

A la Universidad Nacional de Colombia, por el respaldo institucional y financiero recibido para realizar este programa en el exterior.
Índice general

Índice general ix

Lista de siglas xiii

Índice de tablas xv

Índice de figuras xvii

Resumen xxiv

1 Preliminares 1

1.1 Introducción 1

1.2 Modelos de valoración de opciones 3

1.2.1 Modelo de Black-Scholes 5

1.2.2 Modelos alternativos a Black-Scholes 6

1.2.2.1 Modelo de Jarrow y Rudd 6

1.2.2.2 Modelo de Corrado y Su 7

1.3 Medidas de Riesgo 8

1.4 Notación y Definiciones 10

1.4.1 Medidas estadísticas 10

1.4.1.1 Medidas de localización y escala 10

1.4.2 Medidas de asimetría y curtosis 11

1.4.3 Otras medidas de asimetría y curtosis 11

1.4.3.1 Medidas cuantiles para determinar asimetría 12

1.4.3.2 Medidas cuantiles para determinar curtosis 13

1.5 Funciones de densidad de probabilidad 16
ÍNDICE GENERAL

1.5.1 Distribuciones clásicas 16
1.5.2 Familia de distribuciones \(g - h \) de Tukey 20
1.5.3 Distribuciones Simétricas Sesgadas 21
1.6 Series Especiales 23
 1.6.1 Serie hipergeométrica 23
 1.6.2 Aproximación Cornish-Fisher 24

2 La distribución generalizada \(g-h \) de Tukey 27
 2.1 Introducción 27
 2.2 Familia de distribuciones generalizadas \(g - h \) de Tukey 29
 2.2.1 Definición 29
 2.2.2 Propiedades Estadísticas 31
 2.2.2.1 Función de densidad de probabilidad 31
 2.2.2.1.1 Gráficas de las funciones de densidad de probabilidad 32
 2.2.2.2 Función de distribución acumulada (cdf) 33
 2.2.2.3 Momentos de la familia generalizada \(g - h \) de Tukey. 34
 2.2.2.4 Casos especiales 35
 2.2.2.5 Medidas de asimetría y curtosis. 39
 2.3 Estimación de parámetros 41
 2.3.1 Método de cuantiles 41
 2.3.2 Método de momentos 43
 2.4 Distribución generalizada \(g \) de Tukey 43
 2.4.1 Casos especiales de la distribución generalizada \(g \) de Tukey 45
 2.4.2 Momentos de la distribución generalizada \(g \) de Tukey 46
 2.4.2.1 Casos Especiales de los momentos ordinarios 48
 2.5 Ejemplo 50
 2.6 Apéndices 52

3 Valoración de Opciones usando la distribución de Tukey 57
 3.1 Introducción 57
 3.2 Valoración de opciones europeas 58
ÍNDICE GENERAL

3.2.1 Fórmulas de valoración de opciones Europeas 58
3.2.2 Precio de opciones bajo distribuciones asimétricas 61
3.2.3 Valoración de opciones bajo distribuciones simétricas 64
3.3 Las letras Griegas 66
3.4 Una aplicación numérica 68
3.5 Apéndices 74

4 Valoración de Opciones usando la distribución Normal Sesgada 93
4.1 Introducción 93
4.2 Distribución normal sesgada 95
4.2.1 Función de densidad de probabilidad 95
4.2.1.1 Gráficas de las funciones de densidad de probabilidad 96
4.2.2 Propiedades Estadísticas 97
4.2.2.1 Función de distribución acumulada (cdf) 97
4.2.3 Otras propiedades de la distribución SN. 98
4.2.4 Distribución Log-Skew-Normal 99
4.3 Mixtura de normales sesgadas 100
4.3.1 Función de densidad de probabilidad 100
4.3.2 Propiedades de la mixtura de normales sesgadas 100
4.4 Valoración de opciones europeas 102
4.4.0.1 Casos Especiales 103
4.5 Las letras Griegas 104
4.6 Una aplicación numérica 107
4.7 Apéndices 112

5 Valor en Riesgo y Valor en Riesgo Condicional 119
5.1 Introducción 119
5.2 Aproximación al cálculo del VaR 121
5.2.1 Método varianza-covarianza 121
5.3 Aproximación del VaR por una distribución arbitraria 122
5.3.1 Aproximación de Cornish-Fisher 123
ÍNDICE GENERAL

5.3.2 Aproximación por la distribución g-h de Tukey 124
5.3.3 Aproximación mediante la distribución Normal sesgada 125
5.4 Medidas Coherentes de Riesgo 126
5.5 Valor en Riesgo Condicional 128
 5.5.1 Aproximación por Cornish-Fisher 130
 5.5.2 Aproximación por la distribución g-h de Tukey 131
 5.5.2.1 Casos Especiales 132
 5.5.3 Aproximación por la distribución Normal sesgada 133
5.6 Una aplicación 135

6 Conclusiones 139

Bibliografía 143

Apéndice 153
Lista de siglas

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdf</td>
<td>Función de densidad acumulada</td>
</tr>
<tr>
<td>edf</td>
<td>Función de distribución empírica</td>
</tr>
<tr>
<td>pdf</td>
<td>Función de distribución de probabilidad</td>
</tr>
<tr>
<td>fgm</td>
<td>Función generadora de momentos</td>
</tr>
<tr>
<td>ATM</td>
<td>At the money - En el dinero</td>
</tr>
<tr>
<td>ITM</td>
<td>In the money - Dentro del dinero</td>
</tr>
<tr>
<td>OTM</td>
<td>Out of the money - Fuera del dinero</td>
</tr>
<tr>
<td>VaR</td>
<td>Valor en Riesgo</td>
</tr>
<tr>
<td>CVaR</td>
<td>Valor en Riesgo Condicional</td>
</tr>
<tr>
<td>SK</td>
<td>Skewness - Asimetría</td>
</tr>
<tr>
<td>KR</td>
<td>Kurtosis - Curtosis</td>
</tr>
<tr>
<td>Mo</td>
<td>Moda</td>
</tr>
<tr>
<td>Mdn</td>
<td>Mediana</td>
</tr>
</tbody>
</table>
Índice de tablas

2.1 Parámetros de la pdf de la variable aleatoria U 48
2.2 Parámetros de las pdf de la variable aleatoria $V = \ln(X)$ 49
2.3 Resumen de estadísticas para el Diamond Offshore 50
2.4 Comparación de Estadísticas 52

3.1 Comparación de precios de la opción de compra (venta) y los valores de las Griegas usando BS 68
3.2 Resumen descriptivo de la distribución generalizada $g - h$ de Tukey 68
3.3 Comparación de precios de opciones de compra (venta) con $X_0 = 90$ 69
3.4 Comparación de precios de opción de compra (venta) con $X_0 = 100$ 69
3.5 Comparación de precios de opción de compra (venta) con $X_0 = 110$ 70

4.1 Resumen de estadísticas descriptivas 107
4.2 Estimaciones para ajustar la $SNMIX (\Lambda)$ 108
4.3 Comparación de precios de opción de compra por BS para el SP. 109
4.4 Comparación de precios de opción de compra por CS para el SP. 109
4.5 Comparación de precios de opción de compra por SNMIX para el SP. 109

5.1 Comparación de metodologías VaR 123
5.2 Resumen de modelos para el cálculo de VaR y $CVaR$ 134
5.3 Estadísticas Descriptivas 137
5.4 Comparación de las metodologías VaR 137
5.5 Comparación de metodologías $CVaR$ 138
Índice de figuras

2.1 Algunas funciones de densidad $g - h$ de Tukey con $g > 0$ 32
2.2 Algunas funciones de densidad $g - h$ de Tukey con $g < 0$ 32
2.3 Coeficientes de asimetría $\beta_1(Y)$ y curtosis $\beta_2(Y)$ 38
2.4 Coeficientes de asimetría $\beta_1(Y)$ y curtosis $\beta_2(Y)$ 38
2.5 Nivel de precios y retornos para el Diamond Offshore 50
2.6 Histograma de frecuencias para el Diamond Offshore 51
2.7 Comparación de densidades ajustadas para la serie DO 52

3.1 Opción de compra usando $g - h$ de Tukey para diferentes moneyness 71
3.2 Opción de venta usando $g - h$ de Tukey para diferentes moneyness 71
3.3 Delta para la opción de compra usando $g - h$ de Tukey con distintos moneyness 72
3.4 Gamma para la opción de compra usando $g - h$ de Tukey con distintos moneyness 72
3.5 Theta para la opción de compra usando $g - h$ de Tukey con distintos moneyness 73
3.6 Vega para la opción de compra usando $g - h$ de Tukey con distintos moneyness 73
3.7 Rho para la opción de compra usando $g - h$ de Tukey con distintos moneyness 74

4.1 Comparación de pdf's con $\lambda > 0$ 96
4.2 Comparación de pdf's con $\lambda < 0$ 96
4.3 Coeficiente de asimetría, β_1, de la distribución skew-normal 97
ÍNDICE DE FIGURAS

4.4 Coeficiente de exceso de curtosis, $(\beta_2 - 3)$, de la distribución skew-normal 97

4.5 Gráfico de la edf vs distribución normal vs mixtura de skew-normal para los retornos del S&P500 108

4.6 Opción de compra para distintos moneyness para el SP 110

4.7 Opción de compra para distintos vencimientos para el SP 111

4.8 Volatilidad implícita 111

5.1 Portafolio vs. Distribución Normal y Distribución $g - h$ de Tukey 136

5.2 Comparación de las metodologías VaR 137

5.3 Comparación de metodologías CVaR 138
Resumen

El carácter no experimental en el análisis de datos financieros, obliga a fijar restricciones o supuestos de naturaleza estadística sobre las distribuciones asociadas en el modelamiento de los datos financieros. La teoría financiera se basa en el modelamiento de la naturaleza estadística de las fluctuaciones de las variables financieras. Una estrategia común en esta área es ajustar la función de distribución empírica (\hat{f}) de los datos mediante una distribución Normal. Dicha estrategia conlleva a simplificar cálculos pero, a su vez, presenta una deficiente capacidad de pronóstico de la \hat{f} de los datos. Una de las razones de esta deficiencia es que los riesgos financieros ocurren principalmente en los eventos extremos y no quedan bien representados por la estrategia usual. En este trabajo se propone una alternativa para el modelamiento de datos no-normales, que consiste en determinar la función de densidad de probabilidad (pdf) y de esa manera se logra incorporar de forma más adecuada los eventos extremos.

Para el manejo de datos financieros no-normales se han planteado distintos métodos alternativos. Uno de ellos son los modelos semiparamétricos estándar que involucran expansiones en series de Edgeworth y Gram-Charlier, entre los que se encuentran los propuestos por Corrado & Su (1996, 1997), Jarrow & Rudd (1982) y Rubinstein (1998), tienen la ventaja que permiten incorporar la existencia de asimetría y colas pesadas, sin embargo, a pesar de su popularidad en finanzas, han sido considerados como ineficaces debido a que pueden generar probabilidades negativas y no poseen mucha flexibilidad (Jurczenko et al. (2002)). Estas fallas
se logran superar asumiendo las distribuciones que se estudian en este trabajo: la familia de distribuciones generalizadas $g-h$ de Tukey y la familia de distribuciones simétricas sesgadas.

En la teoría financiera existen tres temas de análisis principales: la optimización de portafolios, el precio de los derivados y el control del riesgo. En esta tesis se estudian los dos últimos temas, es decir:

- Determinar los precios de los derivados.
- Calcular el Valor en Riesgo (VaR) y el Valor en Riesgo Condicional ($CVaR$), o Expected Shortfall (ES).

Esquema y aportes de la tesis

Esta tesis se constituye de seis Capítulos y está organizada de la siguiente manera: el primer Capítulo tiene carácter introductorio al tema, se presentan los aspectos preliminares de la investigación, incluyendo los elementos básicos de la teoría financiera. El Capítulo se divide en dos temas: los modelos de valoración de derivados y los cálculos del VaR y $CVaR$. Adicionalmente en este Capítulo se introducen las familias de distribuciones que se usarán en sus formas estándar con media cero y varianza uno, y se presentan algunas de sus propiedades estadísticas teóricas. Estas familias de distribuciones presentan la ventaja de ser muy flexibles y de ilustrar muchas propiedades de interés en el análisis de las $edf’s$ asociadas a los datos, tales como la unimodalidad, el tipo de sesgoamiento (positivo o negativo) y la curtosis. Las distribuciones de colas pesadas recogen de manera más adecuada estas propiedades, lo cual permite obtener mejores estimaciones para el cálculo del VaR.

En el Capítulo 2, se presenta una generalización de la distribución $g-h$ de Tukey, suponiendo que la transformación propuesta por Tukey se realiza a una distribución de error generalizada (GED), esto permite que sea muy flexible. Se encuentra una fórmula de conexión entre los momentos ordinarios de esta nueva distribución y el teorema de convolución en la frecuencia de Fourier, procedimiento que es novedoso ya que, aunque existía una demostración constructiva para los
momentos ordinarios cuando la variable aleatoria de la transformación de Tukey es normal estándar, se encontró un método diferente para obtener los momentos en otros casos. Los resultados de este Capítulo, bajo el título “A generalization of Tukey’s $g-h$ family of distributions”, fueron publicados en el *Journal of Statistical Theory and Applications* (ver Anexo).

Los Capítulos 3 y 4, se dedican a los precios de opciones, los cuales están motivados por las expansiones de Gram-Charlier y Edgeworth. Estas series han sido utilizadas en el campo de las finanzas para incorporar la existencia de asimetría y colas pesadas, y permitieron obtener fórmulas alternativas al modelo de valoración de opciones de Black-Scholes. En estos dos Capítulos, se asume *a priori* la distribución de probabilidades que describe el comportamiento del precio (retorno) futuro de la acción y a partir de este supuesto se obtienen fórmulas cerradas para valorar opciones.

Usando la generalización previamente obtenida para la distribución $g-h$ de Tukey, en el Capítulo 3, se proponen nuevas fórmulas analíticas de valoración de opciones suponiendo que el activo subyacente se puede modelar mediante esta familia de distribuciones. Estas fórmulas para determinar los precios de compra y venta de opciones europeas son cerradas e involucran funciones hipergeométricas, como caso particular se obtiene la fórmula de valoración de Black & Scholes (1973). El modelo de valoración de opciones que se encuentra usando esta familia de distribuciones involucra el sesgo y el exceso de curtosis, los precios de opciones obtenidos con este modelo se comparan numéricamente con los que se encuentran usando el modelo de valoración dado en Jarrow & Rudd (1982) que también incluye el sesgo y la curtosis del precio del activo. Los resultados obtenidos fueron publicados en el *International Journal of Financial Markets and Derivatives* bajo el título “Option pricing based on the generalised Tukey distribution” (ver Anexo). Asimismo, se obtiene una expresión analítica para los parámetros de cobertura (o Griegas), que no presentan las anomalías de otros modelos de valoración semiparamétricos.

En el Capítulo 4, se obtienen resultados similares a los del tercer capítulo que permiten valorar opciones. Para establecer la nueva fórmula de valoración se
supone que el retorno del activo subyacente sigue una mixtura de distribuciones normales-sesgadas (skew-normal). Es decir, el precio del activo subyacente se modela mediante una mixtura de distribuciones log-normales-sesgadas (log-skew-normal). Las expresiones obtenidas en esta tesis permiten deducir los modelos de precios de opciones dados en Bahra (1997), Black & Scholes (1973) y Corns & Satchell (2007), como casos particulares. La distribución normal sesgada tiene un parámetro que controla el sesgo y que influye de manera directa en el coeficiente de curtosis. El modelo de valoración obtenido se ajusta a datos del mercado y se compara con los precios de opciones que se encuentran mediante Corrado & Su (1996, 1997) que también involucra el sesgo y la curtosis del retorno del activo.

El Capítulo 5 se dedica al estudio del Valor en Riesgo (VaR). Dado que esta medida de riesgo no cumple con los axiomas de coherencia establecidos por Artzner et al. (1997), se revisa otra medida de riesgo que cumpla estos axiomas y por ello, se trabaja con una medida más consistente, el Valor en Riesgo Condicional (CVaR), discutida por Rockafellar & Uryasev (2002). Debido a que en el cálculo del VaR, se da poca importancia a las pérdidas extremas, una solución dada en Zangari (1996) es incluir estos valores extremos mediante la expansión de Cornish-Fisher (CF). Empleando las metodologías de CVaR y CF, se establece una fórmula que permite calcular el CVaR usando la aproximación CF. Adicionalmente, se encuentra una fórmula cerrada para calcular VaR y CVaR, suponiendo que la distribución del activo sigue la distribución $g - h$ de Tukey y se comparan las estimaciones del VaR y CVaR con otros modelos estándar del mercado (normal, histórico, aproximación Cornish-Fisher). Se muestra la mejora de las medidas de riesgo VaR y CVaR bajo el modelo planteado. Cada uno de los resultados mencionados constituye un aporte original. Se ha publicado parte de los resultados obtenidos en este capítulo en el Journal of Risk bajo el título “Using Tukey’s g and h family of distributions to calculate value-at-risk and conditional value-at-risk” (ver Anexo). Además, en este capítulo suponiendo que la distribución del activo sigue otras distribuciones conocidas (t-student, valor extremo) se presentan modelos univariados para calcular VaR y CVaR.
En el Capítulo 6, se presentan las conclusiones de esta tesis, los principales aportes realizados y algunos de los futuros trabajos de investigación que se derivan de la tesis doctoral.
Capítulo 1

Preliminares

Resumen 1.1. En este capítulo, se introducen los conceptos básicos y las respectivas propiedades de las distribuciones que se consideran en este trabajo para la familia de distribuciones $g - h$ de Tukey y la familia de distribuciones simétricas sesgadas. Además se especifica y se unifica la notación que se usará en el desarrollo de los capítulos siguientes. Aunque en la literatura financiera aparecen muchos otros temas, es suficiente los tratados en este capítulo para poder entender los temas desarrollados en esta tesis.

1.1 Introducción

En el marco de valoración del modelo de Black-Scholes (BSM) se presentan varias deficiencias, por ejemplo, existe evidencia empírica de que la distribución de probabilidad de los retornos de las acciones financieras no tienen distribución normal, por lo general presentan asimetría y exceso de curtosis. Por otra parte, la asimetría y el exceso de curtosis de la función de distribución empírica (edf, por sus siglas en inglés “empirical distribution function”) del precio de las opciones, son medidas que contribuyen de manera significativa al fenómeno de la sonrisa de volatilidad (Das & Sundaram (1999)).

Con base en los hechos mencionados anteriormente se han planteado modelos de valoración alternativos que permiten que la distribución de probabilidad de los rendimientos del subyacente incorpore efectos de asimetría y exceso de curtosis.
En los últimos años en varios artículos se pone de manifiesto que las distribuciones de probabilidad incondicionales de las rentabilidades de los activos financieros no son normales. Una forma de conseguir que los rendimientos reflejen estos aspectos es por medio de las conocidas mixturas de distribuciones (normales, lognormales). En concreto, estas distribuciones tienden a tener colas más pesadas (leptocurto-sis) y asimetría (generalmente la cola izquierda es más pesada que la derecha, al menos en el caso de las acciones). Por ello, se han propuesto en la literatura varias alternativas a la distribución normal para modelar el comportamiento de la rentabilidad de los activos financieros. Así, por ejemplo, podemos citar la distribución t no central, que proponen Harvey & Siddique (1999), la mixtura de distribuciones normales (Ritchey (1990)), la mixtura de distribuciones Lognormales (Bahra (1997), Melick & Thomas (1997) y Mercurio (2010)), la distribución “heavy-tailed” propuesta por Politis (2004), o las distribuciones basadas en expansiones en serie de la distribución normal, introducidas a partir del trabajo pionero de Jarrow & Rudd (1982), en otros modelos se incluyeron las distribuciones basadas en expansiones de Gram-Charlier tipo A, por ejemplo, Corrado & Su (1996, 1997), la expansión de Gram-Charlier para la log-normal de Jarrow & Rudd (1982) y la expansión de Edgeworth dada en Rubinstein (1998).

En la metodología empleada en esta tesis, es necesario especificar una pdf para describir el comportamiento del precio (retorno) del activo subyacente. Existen técnicas estadísticas para determinar si una distribución teórica, entre las conocidas, es la adecuada para representar un conjunto de datos a través de pruebas de hipótesis que permiten comprobar la bondad de ajuste de la distribución elegida. Las estrategias usualmente empleadas cuando se dispone de datos reales, para determinar las distribuciones son: simulación histórica, generar la edf o ajustar una pdf teórica. La simulación histórica tiene sentido sólo en el caso que se disponga de un elevado número de datos que representen bien el comportamiento del precio (retorno) del activo subyacente. La simulación histórica tiene un defecto obvio, y es que el comportamiento futuro generado es casi idéntico al pasado; no obstante, este método puede ser útil para llevar a cabo un modelo de validación o para comparar el modelo realizado con el comportamiento real, aunque no es posible
1.2 Modelos de valoración de opciones

Los modelos de valoración de precios de opciones de Black & Scholes (1973) y Merton (1973) han sido ampliamente utilizados para establecer los precios de los activos financieros. Estas fórmulas de valoración de opciones se basan en el supuesto de que los rendimientos tienen distribución lognormal, es decir, el precio del subyacente sigue un movimiento Browniano geométrico.

Los supuestos básicos de la teoría clásica del precio de opciones es que el precio de la opción $V(t)$ en el tiempo t es una función continua del tiempo y del precio del activo subyacente, es decir

$$V(t) = F (S_t, t),$$ \hspace{1cm} (1.1)

donde S_t denota el precio del activo subyacente en el tiempo t y se asume que sigue un movimiento Browniano geométrico. Según Harrison & Pliska (1981), en ausencia de arbitraje los precios de las opciones europeas se pueden determinar como el valor esperado de la ganancia neta (Pay-off) al momento del vencimiento.
1. Preliminares

(o expiración), actualizado al tipo de interés libre de riesgo, es decir

\[V_j(t) = \mathbb{E}[e^{-r\tau} G_j(S_T, T)], \quad (1.2) \]

donde \(T = t + \tau \) denota la fecha de vencimiento, \(\mathbb{E}[\cdot] \) es el operador de esperanza neutral al riesgo condicionado a cualquier información disponible en el momento \(t \) y \(G_j(S_T, T) \) denota las respectivas ganancias netas de las opciones de compra (venta), las cuales se definen por la siguiente fórmula:

\[G_j(S_T, T) = \max \{ (-1)^{j-1}(S_T - K), 0 \} \quad \text{para} \quad j = 1, 2. \quad (1.3) \]

Al sustituir esta fórmula en la expresión (1.2) se obtiene que:

- Si \(j = 1 \), se tiene el precio de una opción de compra

\[e^{r\tau} C_t(K) = \mathbb{E}[G_1(S_T, T)] = \int_{K}^{\infty} (S_T - K) g(S_T) dS_T, \quad (1.4) \]

donde \(C_t(K) \) denota la prima (precio) de la opción de comprar el activo subyacente a un precio pactado \((K) \).

- Cuando \(j = 2 \), se tiene el precio de una opción de venta

\[e^{r\tau} P_t(K) = \mathbb{E}[G_2(S_T, T)] = \int_{-\infty}^{K} (K - S_T) g(S_T) dS_T, \quad (1.5) \]

donde \(P_t(K) \) denota la prima (precio) de la opción de vender el activo subyacente a un precio pactado \((K) \).

En ambas expresiones \(g(S_T) \) es la función de densidad neutral al riesgo \((DNR) \) del activo subyacente en la fecha de vencimiento. La forma de la distribución asociada a \(S_T \) es fundamental, de ahí la importancia que adquieren los coeficientes de asimetría y curtosis.

En el caso que la función de densidad de probabilidad \((pdf) \) sea neutral al riesgo se satisface la relación de paridad put-call desarrollada en Stoll (1969). Nótese que restando las expresiones (1.4) y (1.5), se obtiene la relación de paridad
1.2. Modelos de valoración de opciones

La ecuación en derivadas parciales de Black-Scholes es dada por

$$\frac{\partial}{\partial t} F(S, t) + rS \frac{\partial}{\partial S} F(S, t) + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2}{\partial S^2} F(S, t) - rF(S, t) = 0,$$

donde $F(S, T) = G_j(S_T, T)$. La ecuación (1.8) combinada con las ganancias netas dadas en (1.3) permiten obtener las fórmulas de Black-Scholes para valorar opciones europeas sobre activos que no pagan dividendos. En este modelo se calcula el precio de la opción asumiendo que

1. La variable subyacente (S) es distribuída lognormal en el vencimiento de la opción con una desviación estándar de $\sigma \sqrt{T}$.

2. El valor esperado de S en el vencimiento de la opción es el valor futuro de S en el momento inicial $t = 0$, es decir, $F_0 = \mathbb{E}(S_T)$.

Sea $C_t(K)$ el precio de la opción de compra europea dado en (1.4), entonces

$$C_t^{BS}(K) = S_t \Phi(d_1) - Ke^{-rt} \Phi(d_2),$$

(1.9)
donde \[d_1 = \frac{1}{\sigma \sqrt{T}} \ln \left(\frac{\mathbb{E}[S_T]}{K} \right) + \frac{1}{2} \sigma \sqrt{T} \quad \text{y} \quad d_2 = d_1 - \sigma \sqrt{T}. \quad (1.10) \]

En Merton (1976) se define el grado del dinero (moneyness) como la razón entre el precio del activo subyacente y el precio de ejercicio descontado a la tasa de interés libre de riesgo:

\[\eta = \frac{S_t}{K e^{-rT}} = \frac{\mathbb{E}[S_T]}{K}. \quad (1.11) \]

 Nótese que si \(\eta \) mide el moneyness de una opción de compra: \(\eta = 1 \) representa una opción en el dinero, \(\eta > 1 \) se refiere a una dentro del dinero y \(\eta < 1 \) representa una fuera del dinero.

1.2.2 Modelos alternativos a Black-Scholes

Algunos modelos de valoración de opciones ajustan el modelo de Black & Scholes (1973) teniendo en cuenta los momentos de tercer y cuarto orden, los cuales se utilizan para medir la asimetría y curtosis, respectivamente. Estas medidas permiten caracterizar la edf y por ello se justifica ajustar el precio del derivado usando estos coeficientes, los cuales están relacionados con las sonrisas de volatilidad.

1.2.2.1 Modelo de Jarrow y Rudd

Este modelo ajusta directamente la asimetría y curtosis de la edf asociada a los precios de los activos, pero no ajusta estas medidas para la edf del retorno. En Jarrow & Rudd (1982) se plantea un modelo de valoración de opciones que ajusta asimetría y curtosis para distribuciones distintas a la Lognormal. En este modelo con base en la expansión de Gram-Charlier (Charlier 1905) se establece

\[\varphi (x, 0, 1) = \varphi (x) \quad \text{y} \quad \Phi (x, 0, 1) = \Phi (x), \]

las cuales denotan la pdf y cdf de una normal estándar, respectivamente.

1 Una notación matemática unificada utilizada en este documento es
el precio de la opción de compra como:

\[C_{iJR}(K) = C_{iBS}(K) + \eta_1 Q_3 + \eta_2 Q_4, \quad (1.12) \]

donde \(\eta_1 = \beta_1(F) - \beta_1(L) \) y \(\eta_2 = \beta_2(F) - \beta_2(L) \), aquí \(\beta_1(L), \beta_2(L) \) denotan la asimetría y la curtosis de la distribución Lognormal, mientras que \(\beta_1(F), \beta_2(F) \) son la asimetría y la curtosis de la \(\text{edf} \) que se quiere aproximar, respectivamente, \(C_{iJR}(K) \) es el precio de la opción de compra usando el modelo Jarrow & Rudd, \(C_{iBS}(K) \) es el precio de la opción de compra dado en (1.9) y los coeficientes vienen dados por

\[Q_3 = -\frac{1}{6} (S_t e^{rT})^3 q^3 e^{-rT} a'(K) \quad \text{y} \quad Q_4 = \frac{1}{24} (S_t e^{rT})^4 q^4 e^{-rT} a''(K), \]

donde \(q = \sqrt{\omega - 1}, \omega = \exp\{\sigma^2 T\} \), y \(a'(\cdot), a''(\cdot) \) denotan la primera y segunda derivada, respectivamente, (evaluadas en \(S_t = K \)) de la función dada a continuación

\[a(S_t) = \sqrt{2\pi} \left[\frac{S_t}{K} \right]^{\frac{d_2}{\sigma \sqrt{T}}} \log \mathcal{N} \left(S_t; \ln(K), \sigma^2 T \right) \varphi \left(d_2 \right), \]

aqui, \(d_1 \) y \(d_2 \) son dados en (1.10) y \(\log \mathcal{N} \left(S_t; \ln(K), \sigma^2 T \right) \) denota la \(\text{pdf} \) de la lognormal con \(\mathbb{E} \left[\ln \left(S_t \right) \right] = \ln(K) \) y \(\text{Var} \left[\ln \left(S_t \right) \right] = \sigma^2 T \), es decir

\[\log \mathcal{N} \left(S_t; \ln(K), \sigma^2 T \right) = \frac{1}{\sqrt{2\pi S_t \sigma \sqrt{T}}} \exp \left\{ -\frac{1}{2} \left[\frac{\ln \left(S_t \right) - \ln(K)}{\sigma \sqrt{T}} \right]^2 \right\}. \]

1.2.2.2 Modelo de Corrado y Su

Este modelo ajusta directamente la asimetría y curtosis de la \(\text{edf} \) asociada a los retornos de los activos y tiene la ventaja que los parámetros son invariables en el tiempo para el retorno, aunque no para los niveles de precios.

En Corrado & Su (1996, 1997) se presenta una aproximación de la \(\text{edf} \) del retorno usando una expansión de Gram-Charlier para la función de densidad normal estándar, la serie obtenida la truncan después del cuarto término, lo cual para fines prácticos tiene ventajas ya que con los primeros cuatro momentos de la distribución del subyacente se pueden capturar la mayoría de los efectos sobre
los precios de opciones. En otras palabras, el modelo de valoración de opciones dado en Corrado & Su (1996) ajusta asimetría y curtosis para distribuciones no normales, en este caso el precio de la opción de compra se expresa como sigue

\[C_{CS}^t(K) = C_{BS}^t(K) + \beta_1(X)Q_3 + \gamma_2(X)Q_4, \]

(1.13)
donde \(\beta_1(X) \) es el coeficiente de asimetría y \(\gamma_2(X) \) es el exceso de curtosis del rendimiento del activo subyacente \((X = \ln S) \). \(C_{CS}^t(K) \) denota el precio de la opción de compra usando el modelo Corrado & Su, \(C_{BS}^t(K) \) denota el precio de la opción de compra dado en (1.9) y los coeficientes vienen dados por

\[Q_3 = \frac{\sigma \sqrt{T}}{6} S_t \Phi(d_1) \left[d_3 \psi(d_1) + \sigma^2 T \right] \quad \text{y} \quad Q_4 = \frac{\sigma \sqrt{T}}{4} \left[Q_3 + \frac{1}{6} S_t \left(d_2^2 - 1 \right) \varphi(d_1) \right], \]

con \(d_3 = d_2 - \sigma \sqrt{T} \), aquí \(d_1 \) y \(d_2 \) son dados en (1.10). La función score2 de la distribución \(\Phi(x) \) viene dada por

\[\psi(x) = - \frac{d}{dx} \ln [\Phi(x)] = - \frac{\varphi(x)}{\Phi(x)}. \]

1.3 **Medidas de Riesgo**

Las pérdidas ocasionadas en los últimos años en distintas inversiones financieras han producido un interés tanto académico como práctico por gestionar este tipo de riesgo, una medida utilizada es el Valor en Riesgo (\(VaR \)) el cual es una estimación de la cantidad que se puede perder en una operación financiera durante un intervalo de tiempo específico. Los horizontes temporales que se utilizan para calcularlo van desde un día hasta un mes, o un año, para un nivel de confianza predeterminado. Por lo tanto, el \(VaR \) es un método que permite cuantificar la exposición al riesgo de mercado mediante técnicas estadísticas. Los artículos de Rockafellar & Uryasev (2000), Bengtsson & Olsbo (2003), Pritsker (1997) ofrecen una visión general de las herramientas estándar para medir el riesgo financiero mediante el \(VaR \) (Jorion (1996)).

2Esta terminología sigue la introducción clásica de R.A. Fisher de la expresión “score".
1.3. Medidas de Riesgo

El VaR se puede calcular utilizando los siguientes métodos:

- Métodos no paramétricos o de simulación histórica que utiliza la edf de los datos históricos. En otras palabras, esta metodología utiliza una serie histórica de la posición en riesgo de las inversiones (cartera) y construye una serie temporal de precios o rendimientos simulados con el supuesto de que la composición de la cartera no cambia durante el período de tiempo. Para utilizar este procedimiento, primero se deben identificar las componentes de los activos de la cartera y recoger los datos diarios de los precios históricos teniendo en cuenta un período que oscila entre 250 y 500 días. El histograma de frecuencias de los rendimientos simulados se calcula utilizando el cuantil correspondiente del histograma (por ejemplo, se usa el primer percentil si el nivel de confianza es de 99%).

Hay tres tipos de simulación histórica en función de cómo se obtiene la serie de tiempo de los retornos de los precios: por crecimientos absolutos, relativos o logarítmicos.

- En los métodos paramétricos se asume que los retornos de los diferentes activos (acciones, bonos cupón cero, los precios, los tipos de cambio, opciones y futuros) siguen una distribución normal con media cero y varianza σ^2. Este supuesto de normalidad se utiliza para simplificar los cálculos y es una fuente de error en la medición del VaR ya que la edf de los precios presenta tanto asimetría como exceso de curtosis. En este caso, el VaR obtenido por métodos paramétricos es tan solo una aproximación.

- El método Monte Carlo, mediante este enfoque el cálculo del VaR implica un alto consumo de tiempo, porque el valor de la cartera debe ser recalculado en cada simulación. Este enfoque es ampliamente utilizado en composición de carteras cuando los activos tienen pagos no lineales en las variables del mercado, como las opciones. En otras palabras, no hay estimaciones precisas para el cálculo del VaR, ya que generalmente se consideran las simulaciones Monte Carlo.
El Valor en Riesgo Condicional \((CVaR)\) es una medida de Valor en Riesgo para cuantificar las pérdidas que exceden el \(VaR\), actúa como un límite superior para el \(VaR\), y satisface todas las propiedades necesarias para ser una medida de riesgo coherente (ver Artzner et al. (1997)). En los últimos años ha aparecido mucha literatura relacionada con el \(VaR\) y \(CVaR\) (Bali et al. (2008), Engle & Manganelli (2004) y Hallerbach (2003), entre otros).

1.4 Notación y Definiciones

La siguiente lista de términos y símbolos son usados en este documento.

<table>
<thead>
<tr>
<th>Símbolos</th>
<th>Términos</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_r'(X))</td>
<td>(E[X^r])</td>
<td>(r)-ésimo momento ordinario</td>
</tr>
<tr>
<td>(\mu_r(X))</td>
<td>(E[(X - \mu)^r])</td>
<td>(r)-ésimo momento central</td>
</tr>
<tr>
<td>(M_X(z))</td>
<td>(E[e^{zX}])</td>
<td>función generadora de momentos</td>
</tr>
<tr>
<td>(\Gamma(x))</td>
<td>(\int_0^\infty u^{x-1}e^{-u}du)</td>
<td>Función Gamma</td>
</tr>
<tr>
<td>(</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td>(\text{sign}(x))</td>
<td>(\left{\begin{array}{ll}</td>
<td>x</td>
</tr>
</tbody>
</table>

1.4.1 Medidas estadísticas

En esta sección se describen las características de algunas medidas estadísticas que son empleadas en este trabajo.

1.4.1.1 Medidas de localización y escala

Si \(F_X(x)\) es la función de distribución acumulada \((cdf)\) de una variable \(X\), al introducir un parámetro de localización \(\alpha\) y un parámetro de escala \(\beta\), se define \(F_X\left(\frac{x-\alpha}{\beta}\right)\). Estos parámetros \(\alpha\) y \(\beta\) por lo general son la media y la desviación estándar de \(X\), respectivamente, excepto en los siguientes casos:

a) Cuando la media y la desviación estándar no son finitas, en este caso, se pueden tomar \(\alpha = \) mediana y \(\beta = \) rango intercuartil.
b) Si la pdf de X es cero para $X < x_0$, en estos casos, se asigna $\alpha = x_0$ en vez de la media.

1.4.2 Medidas de asimetría y curtosis

Las medidas más comunes de asimetría y curtosis son el tercer momento central y cuarto momento central de la variable X, estandarizados, respectivamente

\[
SK_1(X) = \beta_1(X) = \frac{\mu_3(X)}{\sqrt{\mu_2(X)}} \quad \text{Coeficiente de asimetría}
\]
\[
KR_1(X) = \beta_2(X) = \frac{\mu_4(X)}{\mu_2^2(X)} \quad \text{Coeficiente de curtosis}
\]

Para distribuciones simétricas tales como la normal, Laplace, Logística y cosecante hiperbólica, se tiene asimetría igual a cero. Una variable aleatoria X con distribución normal tiene $\beta_2(X) = 3$, independientemente de sus parámetros. Lo que a veces se denota por $\gamma_2(X) = \beta_2(X) - 3$ se conoce como el “exceso de curtosis”. Existe cierta controversia en cuanto a lo que realmente significa curtosis, pero una distribución con $\beta_2 < 3$ por lo general es más plana (“platicúrtica”) y a pesar que alcanza su máximo en el centro, sus colas son más livianas que la distribución normal con igual desviación estándar, mientras que una distribución con $\beta_2 > 3$ suele ser más puntiaguda (“leptocúrtica”) y su punto máximo también lo alcanza en el centro pero sus colas son más pesadas que la distribución normal con igual desviación estándar. En Stuart & Ord (1994) se establece que cualquier distribución debe satisfacer la siguiente desigualdad

\[
\beta_2(X) - \beta_1^2(X) - 1 \geq 0. \quad (1.14)
\]

1.4.3 Otras medidas de asimetría y curtosis

Aunque $\beta_1(X)$ y $\beta_2(X)$ son las principales medidas de asimetría y curtosis, existen otras medidas empleadas cuando los datos poseen uno o más valores extremos, las cuales se denominan medidas cuantiles porque emplean los cuantiles de la variable aleatoria X.
1.4.3.1 Medidas cuantiles para determinar asimetría

El primer coeficiente de asimetría basado en cuantiles fue propuesto por Bowley (1920) y luego generalizado en Hinkley (1975) como sigue

$$SK_2(p) = \frac{UHS_p(X) - LHS_p(X)}{UHS_p(X) + LHS_p(X)}, \quad 0.5 < p < 1, \quad (1.15)$$

donde

$$UHS_p(X) = F_X^{-1}(p) - F_X^{-1}(0.5) \quad \text{y} \quad LHS_p(X) = F_X^{-1}(0.5) - F_X^{-1}(1 - p), \quad (1.16)$$

denotan el exceso del p-ésimo cuantil superior sobre la mediana y el exceso de la mediana sobre el p-ésimo cuantil inferior, respectivamente, estas medidas son dadas en Hoaglin et al. (1985). Si X es simétrica respecto a la mediana entonces $UHS_p(X) = LHS_p(X)$. El coeficiente propuesto por Bowley (1920) se obtiene asumiendo que $p = 0.75$ en (1.15).

El coeficiente de asimetría dado en Groeneveld & Meeden (1984) es

$$SK_3(X) = \frac{\int_{0.5}^{1} (UHS_p(X) - LHS_p(X)) \, dp}{\int_{0.5}^{1} (UHS_p(X) + LHS_p(X)) \, dp} = \frac{\mu_X - F_X^{-1}(0.5)}{\mathbb{E} \left| X - F_X^{-1}(0.5) \right|}, \quad (1.17)$$

Si en esta expresión se reemplaza el denominador por la desviación estándar se llega a la siguiente medida de asimetría

$$SK_4(X) = \frac{\mu_X - F_X^{-1}(0.5)}{\sigma_X},$$

la cual multiplicada por 3 coincide con el segundo método propuesto por Pearson para calcular el coeficiente de asimetría. Esta medida se interpreta como sigue:

- Si $SK_4(X) > 0$, la distribución de X es sesgada a la derecha (sesgo positivo).
- Si $SK_4(X) = 0$, la distribución de X es simétrica.
- Si $SK_4(X) < 0$, la distribución de X es sesgada a la izquierda (sesgo negativo).
1.4.3.2 Medidas cuantiles para determinar curtosis

El coeficiente de curtosis basado en cuantiles se puede generalizar de la siguiente manera

\[KR_2(p; q) = \frac{(UHS_p(X) + LHS_p(X)) - (UHS_q(X) + LHS_q(X))}{UHS_r(X) + LHS_r(X)}, \]

(1.18)

donde \(0.5 < q < p < 1\), \(r = \frac{p+q}{2}\), \(UHS_p(X)\) y \(LHS_p(X)\) son dados en (1.16).

Si \(X \sim N(0, 1)\), por la simetría de su pdf se satsface que

\[\varphi(-x) = \varphi(x) \quad \text{y} \quad \Phi(-x) = 1 - \Phi(x), \]

(1.19)

y la inversa de la cdf de la normal cumple que

\[\Phi^{-1}(1 - p) = -\Phi^{-1}(p), \]

(1.20)

luego al sustituir en la expresión (1.18) se obtiene que

\[KR_2^N(p; q) = \frac{\Phi^{-1}(p) - \Phi^{-1}(q)}{\Phi^{-1}(\frac{p+q}{2})}, \]

\[0.5 < q < p < 1. \]

El coeficiente dado en (1.18) centrado queda

\[KR_2^*(p; q) = KR_2(p; q) - KR_2^N(p; q) \]

\[= \frac{(UHS_p(X) + LHS_p(X)) - (UHS_q(X) + LHS_q(X))}{UHS_r(X) + LHS_r(X)} - \frac{\Phi^{-1}(p) - \Phi^{-1}(q)}{\Phi^{-1}(\frac{p+q}{2})}. \]

Si se asume en (1.18) que \(p = \frac{7}{8}\) y \(q = \frac{5}{8}\), se obtiene el coeficiente de curtosis dado en Moors (1988):

\[\tilde{KR}_2 \left(\frac{7}{8}; \frac{5}{8} \right) = \frac{F_X^{-1} \left(\frac{7}{8} \right) - F_X^{-1} \left(1 - \frac{7}{8} \right) - (F_X^{-1} \left(\frac{5}{8} \right) - F_X^{-1} \left(1 - \frac{5}{8} \right))}{F_X^{-1} \left(\frac{5}{8} \right) - F_X^{-1} \left(1 - \frac{5}{8} \right)}. \]
cuando $X \sim N(0, 1)$ el coeficiente de Moors viene dado por

$$K_R^N \left(\frac{7}{5}; \frac{5}{8} \right) = \frac{\Phi^{-1} \left(\frac{7}{5} \right) - \Phi^{-1} \left(\frac{5}{8} \right)}{\Phi^{-1} \left(\frac{5}{8} \right)} = 1.2331.$$

Luego, el coeficiente de curtosis de Moors centrado se establece como

$$K_R^* \left(\frac{7}{5}; \frac{5}{8} \right) = \frac{\left(F_X^{-1} \left(\frac{5}{8} \right) - F_X^{-1} \left(\frac{1}{2} - \frac{7}{5} \right) \right) - \left(F_X^{-1} \left(\frac{5}{8} \right) - F_X^{-1} \left(\frac{1}{2} - \frac{5}{8} \right) \right)}{F_X^{-1} \left(\frac{5}{8} \right) - F_X^{-1} \left(1 - \frac{5}{8} \right)} \cong 1.2331.$$

Si en la expresión (1.18) se asume $q = 0.5$ se llega a

$$K_R^3 \left(p; \frac{5}{8} \right) = \frac{U_p - L_p}{U_q - L_q},$$

donde

$$U_p = \frac{1}{p} \int_{1-p}^{1} F_X^{-1} (v) \, dv = \frac{1}{p} \int_{\Phi^{-1} \left(1 - \frac{p}{2} \right)}^{\infty} v f_X (v) \, dv \quad \text{y} \quad L_p = \frac{1}{p} \int_{0}^{p} F_X^{-1} (v) \, dv = \frac{1}{p} \int_{-\infty}^{\Phi^{-1} \left(\frac{p}{2} \right)} v f_X (v) \, dv.$$

Si $X \sim N(0, 1)$ se tiene que

$$U_p = \frac{1}{p} \int_{1-p}^{1} \Phi^{-1} (v) \, dv = \frac{1}{p} \varphi \left[\Phi^{-1} \left(1 - \frac{p}{2} \right) \right] = \frac{1}{p} \varphi \left[\Phi^{-1} \left(\frac{p}{2} \right) \right]$$

$$L_p = \frac{1}{p} \int_{0}^{p} \Phi^{-1} (v) \, dv = - \frac{1}{p} \varphi \left[\Phi^{-1} \left(\frac{p}{2} \right) \right] = - \frac{1}{p} \varphi \left[\Phi^{-1} \left(1 - \frac{p}{2} \right) \right],$$

luego al sustituir en la expresión (1.21) se obtiene

$$K_R^N \left(p; q \right) = \frac{q \varphi \left[\Phi^{-1} \left(1 - \frac{p}{2} \right) \right]}{p \varphi \left[\Phi^{-1} \left(\frac{p}{2} \right) \right]} = \frac{q \varphi \left[\Phi^{-1} \left(p \right) \right]}{p \varphi \left[\Phi^{-1} \left(\frac{p}{2} \right) \right]}.$$
Si X es una variable aleatoria simétrica respecto al origen, entonces $L_p = -U_p$, en este caso, la medida dada en (1.21) queda como sigue

$$KR_3(p; q) = \frac{U_p}{U_q},$$

asumiendo en esta última expresión $p = 0.05$ y $q = 0.5$ se obtiene

$$KR_3(0.05; 0.5) = 10 \int_{0.5}^{1.0} F_X^{-1}(v) \, dv \int_0^{0.5} F_X^{-1}(v) \, dv,$$

por otra parte

$$KR_3^N(0.05; 0.5) = 10 \frac{\varphi[\Phi^{-1}(0.95)]}{\varphi[0]} = 2.5852,$$

luego, al centrar esta medida queda

$$KR_3^*(0.05; 0.5) = 10 \int_{\Phi^{-1}(0.95)}^{\infty} v f_X(v) \, dv - 10 \frac{\varphi[\Phi^{-1}(0.95)]}{\varphi[0]}.$$

La medida propuesta en Crow & Siddiqui (1967) se puede generalizar como sigue

$$KR_4(p; q) = \frac{UHS_p(X) + LHS_p(X)}{UHS_q(X) + LHS_q(X)} = \frac{F_X^{-1}(p) - F_X^{-1}(1 - p)}{F_X^{-1}(q) - F_X^{-1}(1 - q)}, \quad p > q > 0.5$$

para el caso $X \sim N(0, 1)$ se tiene que

$$KR_4^N(p; q) = \frac{\Phi^{-1}(p)}{\Phi^{-1}(q)}, \quad p > q > 0.5.$$
Asumiendo en esta última expresión los percentiles $p = 0.975$ y $q = 0.75$ se llega a la medida de curtosis planteadas en Crow & Siddiqui (1967)

$$KR^*_4(.975; 0.75) = \frac{F_X^{-1}(0.975) - F_X^{-1}(1 - 0.975)}{F_X^{-1}(0.75) - F_X^{-1}(1 - 0.75)} - \frac{\Phi^{-1}(0.975)}{\Phi^{-1}(0.75)}.$$

1.5 Funciones de densidad de probabilidad

En esta sección se presentan las distribuciones que se emplean con mayor frecuencia en esta tesis, para más detalles consultar Johnson & Kotz (1970).

1.5.1 Distribuciones clásicas

Existen un conjunto de distribuciones que se han utilizado tradicionalmente en la modelación del comportamiento del precio (retorno) del activo subyacente, dentro de las que se destacan las distribuciones: Normal, Lognormal, entre otras.

Definición 1.1. Distribución Normal

Si X sigue una distribución normal con parámetros μ y σ^2, denotada por $X \sim N(\mu, \sigma^2)$, entonces la pdf está dada por

$$\varphi(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left\{ -\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right\} \quad x \in \mathbb{R}, \sigma > 0. \quad (1.22)$$

La cdf de una variable normal viene dada por

$$\Phi(x, \mu, \sigma) = \int_{-\infty}^{x} \varphi(u, \mu, \sigma) \, du.$$

En este caso, la función generadora de momentos (fgm) es

$$M_X(t) = e^{\mu t + \frac{1}{2} t^2 \sigma^2}. \quad (1.23)$$
Los momentos centrales de orden n se definen como sigue

$$
\mu_n = \begin{cases}
0 & \text{si } n \text{ es impar} \\
\frac{n! \sigma^n}{2^n \left(\frac{n}{2}\right)!} & \text{si } n \text{ es par}
\end{cases}
$$

Haciendo el cambio de variable

$$
z = \frac{x - \mu}{\sigma},
$$
se dice que Z tiene distribución normal estándar, es decir, $Z \sim N(0, 1)$.

Definición 1.2. Distribución de Laplace

Si X sigue una distribución de Laplace con parámetros $a \in \mathbb{R}$, $b > 0$, denotada por $X \sim \text{Laplace}(a, b)$, la pdf está dada por

$$
f_X(x; a, b) = \frac{1}{2b} \exp \left\{ -\frac{|x - a|}{b} \right\}, \quad x \in \mathbb{R}.
$$

La cdf viene dada por

$$
F_X(x; a, b) = \frac{1}{2} \left[1 + \text{sign}(x - a) \left(1 - \exp \left\{ -\frac{|x - a|}{b} \right\} \right) \right].
$$

El parámetro b corresponde a la desviación media absoluta, es decir

$$
b = \int_{-\infty}^{\infty} |x - a| f_X(x)dx.
$$

La fgm es dada por

$$
M_X(t) = \frac{\exp\{at\}}{1 - b^2 t^2}, \quad \text{para} \quad |t| < \frac{1}{b}.
$$

Los momentos centrales de orden n vienen dados por

$$
\mu_n = \begin{cases}
0 & \text{si } n \text{ es impar} \\
n!b^n & \text{si } n \text{ es par}
\end{cases}
$$
Definición 1.3. Distribución de error generalizada

Si X sigue una distribución de error generalizada con parámetros μ, σ y α, denotada por $X \sim GED(\mu, \sigma, \alpha)$, entonces su pdf viene dada por

$$f_X(x; \mu, \sigma, \alpha) = \frac{\beta}{2\sigma \Gamma(\alpha + 1)} \exp \left\{ - \left(\frac{\beta |x - \mu|}{\sigma} \right)^{\frac{1}{\alpha}} \right\}, \quad x \in \mathbb{R}, \quad (1.28)$$

donde $\alpha (0 < \alpha \leq 1)$, es un parámetro que controla el grosor de la cola y

$$\beta = \sqrt{\frac{\Gamma(3\alpha)}{\Gamma(\alpha)}}.$$

Si $\mu = 0$ y $\sigma = 1$, entonces X se dice que tiene distribución de error generalizada estándar, es decir, $X \sim GED(\alpha)$.

La cdf de una variable $GED(\mu, \sigma, \alpha)$ está dada por

$$F_X(x; \mu, \sigma, \alpha) = \frac{1}{2} \left[1 + \text{sign}(x - \mu) \gamma \left(\left(\frac{\beta |x - \mu|}{\sigma} \right)^{\frac{1}{\alpha}}, \alpha \right) \right], \quad (1.29)$$

donde $\gamma(z, \alpha)$ con $\alpha > 0$ denota la función gamma incompleta y viene dada por

$$\gamma(z, \alpha) = \frac{1}{\Gamma(\alpha)} \int_0^z t^{\alpha-1} e^{-t} dt. \quad (1.30)$$

Los momentos centrales de orden n están dados por

$$\mu_n = \begin{cases}
0 & \text{si } n \text{ es impar} \\
\frac{\Gamma((n+1)\alpha)}{\Gamma(\alpha)} \left(\frac{\sigma}{\beta} \right)^n & \text{si } n \text{ es par}
\end{cases}$$

aquí se puede usar la “fórmula de multiplicación de Gauss” dada por

$$\frac{\Gamma((n+1)\alpha)}{\Gamma(\alpha)} = (2\pi)^{-\frac{n}{2}} (n+1)^{(n+1)\alpha-1/2} \prod_{k=1}^n \Gamma \left(\alpha + \frac{k}{n+1} \right).$$

Casos especiales: cuando $\alpha = \frac{1}{2}$ entonces $X \sim N(\mu, \sigma^2)$ y cuando $\alpha = 1$ entonces $X \sim \text{Laplace} \left(\mu, \frac{\sqrt{2}}{2} \right)$. Estas variables aleatorias tienen pdf simétricas,
con coeficientes de asimetrías iguales a cero y coeficientes de curtosis iguales a 3 y 6, respectivamente.

Definición 1.4. Distribución Log-normal

Si X sigue una distribución Lognormal con parámetros μ, σ^2, entonces la pdf está dada por

$$
Log N(x; \mu, \sigma) = \frac{1}{x\sigma \ln C} \varphi \left(\frac{\ln C x - \mu}{\sigma} \right), \quad x > 0, \sigma > 0, \quad (1.31)
$$

donde $\ln C x$ es el logaritmo de x, en base C ($C > 1$) y $\varphi(\cdot)$ es la pdf de una normal estándar. La media y la varianza están dadas por

$$
\mu_X = C^{\mu + \frac{1}{2} \sigma^2 \ln C} \quad \text{y} \quad \sigma^2_X = C^{2\mu + 2\sigma^2 \ln C} \left(C^{\sigma^2 \ln C} - 1\right),
$$

en la mayoría de textos se presenta esta distribución asumiendo $C = e$. La cdf de una variable Log-normal está dada por

$$
F(x; \mu, \sigma) = \Phi \left(\frac{\ln C x - \mu}{\sigma} \right).
$$

Los momentos ordinarios de orden n vienen dados por

$$
\mu'_n = C^{n\mu + \frac{1}{2} n^2 \sigma^2 \ln C}.
$$

Tipos de distribución lognormal: En Aitchison & Brown (1957) se discuten cuatro formas de la distribución lognormal:

(a) La distribución de dos parámetros $\mathcal{LN}(\mu, \sigma^2)$, la cual representa datos de sesgo positivo con un umbral más bajo de cero. La pdf fue dada en (1.31).

(b) La distribución de tres parámetros $\mathcal{LN}(\lambda, \mu, \sigma^2)$, que describe datos de sesgo positivo con un umbral inferior de λ. Esta se puede reducir al caso de dos parámetros mediante la sustitución $X' = X - \lambda$. La pdf es dada por

$$
Log N(x; \lambda, \mu, \sigma) = \frac{1}{\sigma (x - \lambda)} \varphi \left\{ \frac{\ln (x - \lambda) - \mu}{\sigma} \right\}, \quad x > \lambda, \sigma > 0. \quad (1.32)
$$
(c) La distribución de tres parámetros $\mathcal{LN}(\delta, \mu, \sigma^2)$, útil para describir datos que siguen una distribución con sesgo negativo y que no exceden el umbral fijado de δ. Esta se puede reducir al caso de dos parámetros mediante la sustitución $X' = \delta - X$. La pdf viene dada por

$$
\log N(x; \delta, \mu, \sigma) = \frac{1}{\sigma (\delta - x)} \varphi \left\{ \frac{\mu - \ln(\delta - x)}{\sigma} \right\}, \quad x < \delta, \sigma > 0.
$$

(d) La distribución de cuatro parámetros $\mathcal{LN}(\delta, \lambda, \mu, \sigma^2)$, la cual describe datos sesgados con umbrales superior e inferior de δ y λ, respectivamente.

$$
\log N(x; \delta, \lambda, \mu, \sigma) = \frac{\delta - \lambda}{\sigma (x - \lambda) (\delta - x)} \varphi \left\{ \frac{1}{\sigma} \left[\ln \left(\frac{x - \lambda}{\delta - x} \right) - \mu \right] \right\},
$$

donde $\lambda < x < \delta, \sigma > 0$.

1.5.2 Familia de distribuciones $g - h$ de Tukey

En Tukey (1977) se introdujo una familia de distribuciones mediante dos transformaciones no lineales, llamada la distribución $g - h$.

Definición 1.5. Sea Z una variable aleatoria con distribución normal estándar, g y h dos constantes (parámetros). La variable aleatoria Y dada por

$$
Y = T_{g,h}(Z) = \frac{1}{g} (\exp\{gZ\} - 1) \exp\{hZ^2/2\},
$$

tiene distribución $g - h$ de Tukey. Los parámetros g y h representan el sesgo y el alargamiento de las colas de la distribución $g - h$ de Tukey, respectivamente.

En Martínez & Iglewicz (1984), se establecen los momentos ordinarios de orden n de la familia de distribuciones $g - h$ de Tukey, para $h < \frac{1}{n}$, como sigue

$$
\mu'_n = \mathbb{E} (Y^n) = \begin{cases}
\frac{1}{g^n \sqrt{1 - nh}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \exp \left\{ \frac{1}{2} \left(\frac{n-k}{\sqrt{1-nh}} g \right)^2 \right\} & g \neq 0 \\
0 & n \text{ impar} \\
\frac{n!}{2^{\frac{n}{2}} \left(\frac{n}{2} \right)! \sqrt{(1-nh)^{n+1}}} & n \text{ par} \quad g = 0
\end{cases}
$$

(1.34)
los “momentos centrales” de orden n de la variable aleatoria Y son menos atractivos debido al álgebra tediosa involucrada.

1.5.3 Distribuciones Simétricas Sesgadas

Esta clase de distribuciones contienen la distribución de la cual provienen y poseen varias propiedades que coinciden o están cerca de las propiedades de la distribución original. Esta clase incluye un parámetro de asimetría que hace que sea posible tener un modelo razonable para una distribución sesgada de la población proporcionando así un modelo más flexible, que permite representar los datos de la manera más adecuada posible.

Definición 1.6. Sea X una variable aleatoria estándar continua, es decir, con media 0 y varianza 1, tal que su pdf, $f_X(x)$, es simétrica con respecto al origen y con cdf, $F_X(x)$, entonces

$$g_X(x, \lambda) = 2f_X(x)F_X(\lambda x), \quad x \in \mathbb{R}, \lambda \in \mathbb{R},$$

se dice que tiene distribución simétrica sesgada. La característica principal de esta clase de distribuciones es que el parámetro λ, que se introduce, controla la asimetría y la curtosis. Nótese que si $\lambda = 0$ se obtiene la pdf inicial.

La moda (Mo) de esta familia de distribuciones, es el valor x que satisface la siguiente ecuación

$$\frac{f_X'(x)}{f_X(x)} = -\lambda \frac{f_X(\lambda x)}{F_X(\lambda x)}. \quad (1.36)$$

A continuación se presenta la distribución normal sesgada (skew-normal) dada por Azzalini (1985), la cual se obtiene asumiendo $f_X(x) = \varphi(x)$ y $F_X(x) = \Phi(x)$, respectivamente, en la expresión (1.35).

Definición 1.7. Distribución Normal Sesgada

La distribución Normal Sesgada fue introducida por Azzalini (1985) y estudiada en detalle por Arnold et al. (1993). Una variable aleatoria X tiene distribución
Normal Sesgada con parámetro de asimetría $\lambda \in \mathbb{R}$, denotada como $X \sim SN(\lambda)$, si su pdf tiene la siguiente forma:

$$f_X(x; \lambda) = 2\varphi(x)\Phi(\lambda x), \quad x \in \mathbb{R},$$

(1.37)

donde $\varphi(x)$ y $\Phi(x)$ denotan la pdf y cdf de una normal estándar, respectivamente.

La cdf viene dada por

$$F_X(x; \lambda) = \Phi(x) - 2T(x; \lambda),$$

(1.38)

donde la función $T(x; \lambda)$ es dada por

$$T(x; \lambda) = \text{sign}(\lambda) \left[\frac{\arctan(|\lambda|)}{2\pi} - \int_0^x \int_0^{|\lambda|u} \varphi(u)\varphi(v)dvdu \right],$$

(1.39)

aquí $\text{sign}(\cdot)$ es la función signo. Las propiedades de la función $T(x; \lambda)$ se estudiaron en Owen (1956). La fgm viene dada por

$$M_X(t) = 2 \exp \left\{ \frac{1}{2} t^2 \right\} \Phi(\rho t) \quad \text{con} \quad \rho = \frac{\lambda}{\sqrt{1 + \lambda^2}}.$$

La moda (Mo) de esta familia de distribuciones es la solución de

$$x = \lambda \frac{\varphi(\lambda x)}{\Phi(\lambda x)},$$

(1.40)

este valor se establece por métodos numéricos. Por otra parte, la mediana (Mdn) de esta familia de distribuciones es el valor x que satisface la siguiente expresión

$$\Phi(x) + 2 \int_0^x \int_0^{|\lambda|u} \varphi(u)\varphi(v)dvdu = \frac{1}{2} + \frac{1}{\pi} \arctan(\lambda).$$

(1.41)

Cuando $\lambda > 0$ entonces $\mathbb{E}(X) > Mdn(X) \geq Mo(X)$ y si $\lambda < 0$ entonces $\mathbb{E}(X) < Mdn(X) \leq Mo(X)$.
1.6. Series Especiales

Definición 1.8. Transformada de Laplace

Sea \(f(t) \) una función continua para \(t \geq 0 \) y un parámetro \(s \in \mathbb{R} \), entonces la transformada de Laplace-Stieltjes de \(f(t) \), denotada por \(\mathcal{L}\{f(t)\} \), se define como

\[
\mathcal{L}\{f(t)\} = \mathcal{F}(s) = \int_{0}^{\infty} e^{-st} f(t) dt. \tag{1.42}
\]

Definición 1.9. Transformada de Esscher

Dada una variable aleatoria \(X \) con pdf, \(f_X(\cdot) \), y fgm dada por \(M_X(t) \), la transformada de Esscher con parámetro \(\theta \) se define mediante la cdf

\[
\overline{F}_X(x; \theta) = \frac{1}{M_X(\theta)} \int_{-\infty}^{x} e^{\theta v} f_X(v) dv, \tag{1.43}
\]

cuando \(\theta \) tiende a 0, entonces \(\overline{F}_X(x; 0) = F_X(x) \).

La fgm de la transformada de Esscher viene dada por

\[
M_X(t; \theta) = \frac{M_X(t + \theta)}{M_X(\theta)}. \]

1.6 Series Especiales

1.6.1 Serie hipergeométrica

Una “serie hipergeométrica” es una serie de potencias donde el \(n \)-ésimo coeficiente de la serie es una función racional de \(n \). Si la serie es convergente, define una función hipergeométrica cuyo dominio es algún subconjunto de los números complejos. Generalmente, estas funciones hipergeométricas se representan mediante la notación \(_pF_q(a_1, a_2, \ldots; b_1, b_2, \ldots; z) \).

Definición 1.10. La forma general de la función hipergeométrica es una serie de potencias de \(z \) con \(p + q \) parámetros, la cual se obtiene incluyendo \(p \) parámetros en el numerador y \(q \) parámetros en el denominador, y se define de la siguiente
manera:
\[pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; z) = pF_q \left[\begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} ; z \right] = \sum_{k=0}^{\infty} \frac{(a_1)_k \ldots (a_p)_k}{(b_1)_k \ldots (b_q)_k} \frac{z^k}{k!} \] (1.44)
donde
\[(\alpha)_k = \frac{\Gamma(\alpha + k)}{\Gamma(\alpha)} \quad \text{con} \quad \alpha \in \mathbb{R} \quad y \quad k = 0, 1, 2, \ldots, \] (1.45)
denota el símbolo de Pochhammer dado en Abramowitz & Stegun (1965).

El primer caso estudiado de esta serie se le atribuye a Gauss y se denomina “función hipergeométrica ordinaria” o “gaussiana” y se denota por \(_2F_1(a, b; c; z) \), las propiedades básicas de esta función se dan en Andrews et al. (1999). La representación integral de esta función viene dada por
\[_2F_1(a, b; c; z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 \frac{t^{b-1}(1-t)^{c-b-1}}{(1-tz)^a} dt, \] (1.46)
donde \(\text{Re}(c) > \text{Re}(b) > 0 \). Muchas de las funciones especiales empleadas en matemática aplicada se pueden expresar en términos de la función hipergeométrica de Gauss.

1.6.2 Aproximación Cornish-Fisher

Un enfoque muy utilizado en finanzas es la aproximación Cornish-Fisher. Esta se basa en la expansión dada en Fisher & Cornish (1960), la cual permite determinar los percentiles de las distribuciones que están cerca de la normal. Esta expansión ofrece un factor de ajuste que se puede utilizar para estimar los percentiles de las distribuciones no normales. Este ajuste es confiable cuando las desviaciones a la normal son “pequeñas”.

Si \(x_\alpha \) y \(z_\alpha \) denotan los cuantiles de orden \(\alpha \) de una variable aleatoria \(X \) y una normal estándar, respectivamente, entonces las correspondientes \(cdf \) evaluadas en
estos cuantiles son iguales, es decir

\[F_X(x_\alpha) = \Phi(z_\alpha) = \alpha \quad \alpha \in [0, 1]. \quad (1.47) \]

El interés se centra en despejar \(x_\alpha \) de esta ecuación, en términos de \(z_\alpha \), por la definición de la cdf de la normal estándar, se tiene que

\[\Phi(x_\alpha) = \Phi(z_\alpha) - \int_{x_\alpha}^{z_\alpha} \varphi(u)du, \]

al determinar \(x_\alpha \) mediante la expansión dada en Fisher & Cornish (1960), se obtiene\(^3\)

\[x_\alpha = F_X^{-1}(\Phi(z_\alpha)) = z_\alpha + \frac{1}{6} (z_\alpha^2 - 1) \beta_1(X) + \frac{1}{24} (z_\alpha^3 - 3z_\alpha) \gamma_2(X) \]
\[- \frac{1}{36} (2z_\alpha^3 - 5z_\alpha) \beta_1^2(X) - \frac{1}{24} (z_\alpha^4 - 5z_\alpha^2 + 2) \beta_1(X) \gamma_2(X), \quad (1.48) \]

donde \(\beta_1(X) \), \(\beta_2(X) \) denotan el coeciente de asimetría y curtosis de la distribución de \(X \), respectivamente. Nótese que cuando el coeciente de asimetría, \(\beta_1(X) \), y exceso de curtosis, \(\gamma_2(X) \), ambos son cero, se obtiene el cuantil de la variable \(N(0, 1) \).

Si se considera que los términos de orden superior son insignificantes, lo cual equivale a asumir que las desviaciones a la normal son “pequeñas”, este truncamiento conlleva a

\[x_\alpha = z_\alpha + \frac{1}{6} (z_\alpha^2 - 1) \beta_1(X) + \frac{1}{24} (z_\alpha^3 - 3z_\alpha) \gamma_2(X) - \frac{1}{36} (2z_\alpha^3 - 5z_\alpha) \beta_1^2(X). \quad (1.49) \]

Para utilizar esta expansión, simplemente se reemplaza el término \(x_\alpha \) obtenido en la expresión (1.49) como el percentil estimado. Esto es equivalente a ajustar el cuantil \(z_\alpha \) de la variable aleatoria normal estándar por asimetría y/o curtosis.

\(^3\)Expresión dada en Abramowitz & Stegun (1965).
Capítulo 2

La distribución generalizada g-h de Tukey

Resumen 2.1. En este capítulo, se presenta una generalización de la familia de distribuciones \(g - h \) de Tukey, esta se obtiene realizando la transformación no lineal dada en (1.33) a una variable aleatoria continua \(U \) con media 0 y varianza 1, también, se presentan sus propiedades estadísticas: función de densidad de probabilidad (pdf), función de distribución acumulada (cdf), momentos y medidas de asimetría y curtosis basados en cuantiles. Como caso especial se considera el caso cuando \(h = 0 \) lo cual permite definir la distribución generalizada \(g \) de Tukey y sus respectivos momentos.

2.1 Introducción

En este Capítulo se estudia en detalle la distribución \(g - h \) de Tukey, la cual se define en términos de los cuantiles, sus propiedades estadísticas se pueden encontrar en Hoaglin (1983, 1985), Martínez & Iglewicz (1984), MacGillivray & Balanda (1988) y MacGillivray (1992). Una característica importante y útil de la familia de distribuciones \(g - h \) de Tukey es que esta familia cubre la mayor parte de la familia de distribuciones de Pearson y también incluye varias distribuciones conocidas, por ejemplo, la Normal, Lognormal, Cauchy, Exponencial y Chi-cuadrado entre otras (ver Martínez & Iglewicz (1984)).

La familia de distribuciones \(g - h \) de Tukey se ha utilizado en finanzas por varios autores. En Badrinath & Chatterjee (1988), Mills (1995) fue empleada para estudiar mercados financieros, en el trabajo de Badrinath & Chatterjee (1991) utilizan la distribución \(g - h \) de Tukey para modelar tanto la rentabilidad de un índice bursátil como el retorno sobre las acciones en varios mercados. En Dutta

Dadas las numerosas ventajas de la distribución $g-h$ de Tukey, en este Capítulo se presenta una generalización de esta familia de distribuciones, cuando la transformación no se realiza a la normal estándar sino a una variable aleatoria continua U con media 0 y varianza 1, de esta manera se obtiene una distribución más flexible para modelar datos reales. Puesto que esta distribución incorpora los coeficientes de asimetría y curtosis, entonces los datos de mercado se pueden modelar de una manera más adecuada. Una característica interesante de esta nueva familia de distribuciones es que a partir de la pdf de una variable aleatoria simétrica, se puede generar una amplia clase de distribuciones variando los parámetros g y h. En este Capítulo, la variable aleatoria U se asumirá con las siguientes distribuciones: Error generalizada estándar, Logística, Secante Hiperbólica (HyperSec), Cosecante Hiperbólica (HyperCsc). En consecuencia, si el parámetro $h = 0$ se pueden generar las siguientes clases de modelos sesgados (Logsimétricos):

- Distribuciones Log-normales, si U es una variable aleatoria normal con media 0 y varianza 1.
- Distribuciones Log-Laplace, cuando U es una variable aleatoria Laplace con media 0 y varianza 1.

El Capítulo esta organizado de la siguiente manera: en la sección 2.2 se introduce la familia de distribuciones generalizadas $g-h$ de Tukey y se establecen sus propiedades estadísticas: pdf, cdf, momentos, las medidas de asimetría y curtosis basadas en cuantiles. En la sección 2.3 se explican los métodos de estimación de parámetros. En la sección 2.4 se presenta brevemente la distribución g generalizada y sus momentos. En la sección 2.5 se explica la metodología de ajuste con datos reales.
2.2 Familia de distribuciones generalizadas $g - h$ de Tukey

2.2.1 Definición

Como se mencionó en el Capítulo 1, Tukey (1977) introdujo una familia de distribuciones usando dos transformaciones no lineales, llamada distribución $g - h$, que se define por

$$Y = T_{g,h}(Z) = \frac{1}{g} (\exp\{gZ\} - 1) \exp\{hZ^2/2\} \quad \text{con } g \neq 0, h \in \mathbb{R} \quad (2.1)$$

donde la distribución de Z es normal estándar. Al aplicar estas dos transformaciones a una variable aleatoria continua U, con media 0 y varianza 1, cuya pdf, $f_U(\cdot)$, es simétrica con respecto al origen; la transformación obtenida $T_{g,h}(U)$, en adelante denominada distribución generalizada $g - h$ de Tukey, viene dada por:

$$Y = T_{g,h}(U) = \frac{1}{g} (\exp\{gU\} - 1) \exp\{hU^2/2\} \quad \text{con } g \neq 0, h \in \mathbb{R}. \quad (2.2)$$

Los parámetros g y h siguen representando el sesgo y el alargamiento de las colas de la distribución generalizada $g - h$ de Tukey.

En esta tesis, para $h \neq 0$, se asume una variable aleatoria $U \sim GED(\alpha)$, con pdf dada por

$$f_U(u; \alpha) = \frac{1}{2\lambda \Gamma(\alpha + 1)} \exp \left\{ -\left| \frac{u}{\lambda} \right|^\alpha \right\}, \quad u \in \mathbb{R}, \ 0 < \alpha \leq 1, \quad (2.3)$$

donde $\lambda = \sqrt{\frac{\Gamma(\alpha)}{\Gamma(3\alpha)}}$. Nótese que cuando $\alpha = \frac{1}{2}$ entonces $U \sim N(0,1)$ y cuando $\alpha = 1$ entonces $U \sim \text{Laplace}\left(0, \frac{\sqrt{2}}{\pi}\right)$. Por otra parte, para $h = 0$ se presentan cinco casos especiales de la distribución generalizada g de Tukey, cuando $U \sim GED\left(\frac{1}{2}\right), \ U \sim GED\left(1\right), \ U \sim \text{Logística}\left(0, \frac{\sqrt{3}}{\pi}\right), \ U \sim \text{sech}\left(0, \frac{2}{\pi}\right)$ y $U \sim \text{csch}\left(0, \frac{\sqrt{2}}{\pi}\right)$.

Al asumir en la expresión (2.2) que $h = 0$, la distribución generalizada $g - h$ de Tukey se reduce a

$$T_{g,0}(U) = G(U) = \frac{1}{g} (\exp\{gU\} - 1), \quad (2.4)$$
la cual se dice que tiene distribución generalizada g de Tukey. Cuando $U \sim GED^{(1/2)}$ esta distribución es también conocida como la familia de distribuciones lognormales, porque se obtiene un mayor alargamiento de las colas que la distribución normal estándar.

De manera similar, cuando g tiende a 0, la distribución generalizada $g-h$ de Tukey viene dada por

$$T_{0,h}(U) = H(U) = U \exp\{hU^2/2\} \quad (2.5)$$

conocida como la distribución generalizada h de Tukey, esta distribución tiene la característica de ser simétrica y leptocurtica, sus colas son más pesadas que la distribución de la variable aleatoria U a medida que aumenta el valor del parámetro h.

Si se desea modelar una variable aleatoria arbitraria X mediante la transformación dada en (2.1), Hoaglin & Peters (1979) introducen dos nuevos parámetros uno de localización (A) y otro de escala (B) y plantean el siguiente modelo

$$X = A + BY \quad \text{con} \quad Y = T_{g,h}(Z). \quad (2.6)$$

De manera análoga, se usa esta relación con $Y = T_{g,h}(U)$ para modelar a X mediante (2.2) y para estimar los cuatro parámetros que satisfacen la relación (2.6) se considera un conjunto de cuantiles simétricos alrededor de la mediana, es decir, cuantiles x_p y x_{1-p}, para valores apropiados de $p > 0.5$, que satisfacen

$$x_p = A + By_p \quad \text{o} \quad x_{1-p} = A - B \exp\{-gu_p\}y_p, \quad (2.7)$$

donde x_p denota el $p-$ésimo cuantil de la variable aleatoria X, es decir

$$x_p = \inf \{x | P[X \leq x] > p\} = \sup \{x | P[X < x] \leq p\}.$$

Cuantiles de orden p son la mediana, cuartiles, quintiles, deciles y dígito octavo, entre otros. En Hoaglin et al. (1985) determinan los cuantiles muestrales de la forma $p = 2^{-k}$, $k \in \mathbb{Z}^+$ y se refieren a estos como los valores de las letras, respectivamente, por sus siglas en inglés: M (mediana), F (cuartiles), E (octavos), etc.
2.2.2 Propiedades Estadísticas

En esta sección se discuten las propiedades estadísticas de la familia de distribuciones generalizadas $g – h$ de Tukey.

2.2.2.1 Función de densidad de probabilidad

En Jiménez (2004) usando el teorema de la función inversa se establece la siguiente relación

$$
(F_U^{-1})' (F_U(u_p)) = \frac{d}{dp} u_p = \frac{1}{F_U'(u_p)} = \frac{1}{f_U(u_p)},
$$

(2.8)

donde u_p es el menor número que satisface $F_U(u_p) = p$ y $f_U(\cdot)$ denota la pdf de la variable aleatoria continua U. La función de densidad de la distribución generalizada $g – h$ de Tukey, que será denotada por $t_{g,h}(y)$, se obtiene empleando este último resultado y se llega a la siguiente expresión

$$
t_{g,h}(y_p) = \frac{f_U(u_p)}{T_{g,h}'(u_p)} \text{ siempre que } |h| u_p e^{-g u_p} - 1 < 1,
$$

(2.9)

donde y_p denota el p–ésimo cuantil de la transformación $Y = T_{g,h}(U)$, u_p denota el p–ésimo cuantil de la variable aleatoria continua U y $T_{g,h}'(U)$ satisface la siguiente Ecuación Diferencial Ordinaria (EDO):

$$
UT_{g,h}'(U) = \begin{cases}
1 + (g + hU) G(U) & \text{si } g \neq 0 \\
(1 + hU^2) H(U) & \text{si } g = 0
\end{cases}
$$

(2.10)

sujeta a la condición inicial: $T_{g,h}(0) = 0$. Además, satisface la siguiente EDO de segundo orden

$$
T_{g,h}''(U) - hUT_{g,h}'(U) = \begin{cases}
\left[h + (g + hU) \frac{G'(U)}{G(U)} \right] T_{g,h}(U), & \text{si } g \neq 0 \\
2hH(U), & \text{si } g = 0
\end{cases}
$$

ésta última EDO se encuentra sujeta a las condiciones iniciales

$$
T_{g,h}(0) = 0 \quad \text{y} \quad T_{g,h}'(0) = 1.
$$
De la ecuación (2.7) y el uso de la expresión (2.8) se puede obtener la pdf de la variable aleatoria X de la siguiente manera:

$$f_X(x_p) = f_X(A + By_p) = \frac{1}{|B|}t_{g,h}(y_p),$$

(2.11)

Esta expresión relaciona las pdf's de X y $Y = T_{g,h}(U)$ en los cuantiles.

2.2.2.1.1 Gráficas de las funciones de densidad de probabilidad

Algunas gráficas de las pdf's de la distribución $t_{g,h}(u)$ que se obtienen cuando se varía el parámetro g o el parámetro h se muestran en las figuras 2.1 y 2.2. Se consideran los casos donde $U \sim GED(\frac{1}{2})$ y $U \sim GED(1)$.

Figura 2.1: Algunas funciones de densidad $g - h$ de Tukey con $g > 0$

Figura 2.2: Algunas funciones de densidad $g - h$ de Tukey con $g < 0$
Nótese que en ambos casos el parámetro g controla la asimetría, la cual es positiva cuando $g > 0$ y negativa cuando $g < 0$.

2.2.2.2 Función de distribución acumulada (cdf)

La siguiente proposición nos proporciona una expresión analítica para evaluar la cdf de la familia de distribuciones generalizadas $g - h$ de Tukey.

Proposición 2.1. La cdf de la distribución generalizada $g-h$ de Tukey, denotada por $F_{g,h}(y)$, satisface lo siguiente:

$$
\int_a^b t_{g,h}(u)\,du = \int_{T_{g,h}^{-1}(a)}^{T_{g,h}^{-1}(b)} f_U(v)\,dv = F_U(T_{g,h}^{-1}(b)) - F_U(T_{g,h}^{-1}(a)),
$$

(2.12)

donde $T_{g,h}^{-1}(\cdot)$ denota la función inversa de la transformación dada en (2.2).

Demostración. Por la expresión (2.9) se tiene que

$$
\int_a^b t_{g,h}(y)\,dy = \int_a^b \frac{f_U(T_{g,h}^{-1}(y))}{T'_{g,h}(T_{g,h}^{-1}(y))}\,dy,
$$

haciendo el siguiente cambio de variable

$$
v = T_{g,h}^{-1}(y) \quad \quad \quad \quad \quad \quad \quad \quad \quad dv = \frac{dy}{T'_{g,h}(T_{g,h}^{-1}(y))},
$$

(2.13)

se llega a

$$
\int_{T_{g,h}^{-1}(a)}^{T_{g,h}^{-1}(b)} f_U(v)\,dv = F_U(T_{g,h}^{-1}(b)) - F_U(T_{g,h}^{-1}(a)).
$$

En otras palabras, la cdf depende de la inversa de la transformación $T_{g,h}(U)$ y de la cdf de la variable U. □

No existe una forma explícita para determinar la inversa de la transformación $T_{g,h}(U)$, sin embargo, a continuación se presenta la transformación inversa para los casos en que $h = 0$ o $g = 0$, como sigue:

(i) Si $G(U)$ es dada por (2.4), entonces

$$
G^{-1}(y) = \frac{\text{sign}(g)}{|g|} \ln \left\{ 1 + |\text{sign}(g)|g| \right\} , \quad \text{sign}(g)|g|y > -1,
$$

(2.14)

donde $|\cdot|$ denota el valor absoluto y $	ext{sign}(\cdot)$ la función signo.
(ii) Si $H(U)$ es dada por (2.5), entonces

$$hY^2 = h[H(U)]^2 = hU^2 \exp\{hU^2\}, \quad (2.15)$$

nótese que la expresión (2.15) tiene la forma $z = w \exp\{w\}$ y por comparación, con la función de Lambert, $w = W(z)$, donde $W(z)$ denota la función de Lambert, la solución de (2.15) viene dada por

$$hU^2 = W(hY^2) \quad \Rightarrow \quad H^{-1}(Y) = \sqrt{\frac{1}{h} W(hY^2)}. \quad (2.16)$$

Las propiedades básicas de la función $W(z)$ son dadas en Olver et al. (2010).

Cuando la inversa de la transformación $T_{g,h}(U)$ no pueda ser evaluada analíticamente, se puede determinar numéricamente.

2.2.2.3 Momentos de la familia generalizada $g - h$ de Tukey.

Las siguientes dos proposiciones y cuyas pruebas aparecen en el Apéndice B, al final de este capítulo, permiten obtener los momentos de la familia generalizada $g - h$ de Tukey. En la primera proposición se establece que la m-ésima potencia de la transformación $T_{g,h}(U)$ se puede expresar como una combinación lineal de m transformaciones no lineales de Tukey.

Proposición 2.2. La m-ésima potencia de la transformación dada en (2.2), cuando $g \neq 0$, viene dada por

$$Y^m = T_{g,h}^m(U) = \frac{m}{g^{m-1}} \sum_{k=0}^{m-1} c_k T_{\tilde{g},\tilde{h}}(U), \quad m \geq 1, \quad (2.17)$$

donde $c_k = (-1)^k \binom{m-1}{k}$, $\tilde{g} = (m-k)g$ y $\tilde{h} = mh$.

La otra proposición permite calcular los momentos de orden n de una variable aleatoria empleando los respectivos cuantiles de la variable aleatoria.

Proposición 2.3. Sean $f_U(u)$ y $F_U(u)$ la pdf y cdf de una variable aleatoria continua U. Si $F_U(u)$ nunca es cero, entonces $F_U^{-1}(u)$ es diferenciable y satisface que

$$\mu'_n = \mathbb{E}(U^n) = \int_0^1 [F_U^{-1}(q)]^n dq = \int_{-\infty}^{\infty} z^n f_U(z) dz, \quad (2.18)$$

donde q es el único número que cumple que $F_U(u_q) = q$.

Estas dos proposiciones permiten obtener uno de los resultados principales de este trabajo, el cual se enuncia a continuación:

Proposición 2.4. Sea \(Y = T_{g,h}(U) \) la transformación dada en (2.2), entonces el \(n-\)ésimo momento de la variable aleatoria \(Y \) viene dado por

\[
\mu'_n = \begin{cases}
\frac{2}{g^n} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \int_{0}^{\infty} \cosh(\tilde{g}u) \exp\left\{ \frac{1}{2} \tilde{h}u^2 \right\} f_U(u) du & \text{si } g \neq 0, \\
[1 + (-1)^{n}] \int_{0}^{\infty} u^n \exp\left\{ \frac{1}{2} \tilde{h}u^2 \right\} f_U(u) du & \text{si } g = 0,
\end{cases} \tag{2.19}
\]

donde \(\tilde{g} = (n-k)g \) y \(\tilde{h} = nh \).

Demostración. Empleando la expresión (2.18) cuando \(g \neq 0 \) se obtiene

\[
E(Y^n) = \int_{0}^{1} y^n dq = \int_{-\infty}^{\infty} y^n t_{g,h}(y) dy = \int_{-\infty}^{\infty} y^n \frac{f_U(T_{g,h}^{-1}(y))}{T_{g,h}'(T_{g,h}^{-1}(y))} dy,
\]

usando el cambio de variable dado en (2.13) y la expresión (2.17) se tiene

\[
E(Y^n) = \frac{n}{g^{n-1}} \sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} \int_{-\infty}^{\infty} T_{g,h}(u) f_U(u) du
\]

\[
\quad \quad \quad \quad \quad = \frac{2}{g^n} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \int_{0}^{\infty} \cosh(\tilde{g}u) \exp\left\{ \frac{1}{2} \tilde{h}u^2 \right\} f_U(u) du,
\]

donde \(\tilde{g} = (n-k)g \) y \(\tilde{h} = nh \), en la última expresión se uso el hecho de que \(f_U(u) \) es simétrica con respecto al origen. Si \(g = 0 \) se obtiene que

\[
E(Y^n) = [1 + (-1)^{n}] \int_{0}^{\infty} u^n \exp\left\{ \frac{1}{2} \tilde{h}u^2 \right\} f_U(u) du,
\]

para este caso todos los momentos de orden impar son nulos.

El “\(n-\)ésimo momento central” de la variable aleatoria \(Y = T_{g,h}(U) \) no es de fácil cálculo, sin embargo, en esta tesis se obtienen en términos de los momentos ordinarios de \(Y \) usando la siguiente expresión

\[
\mu_n = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \mu_Y^k \mu'_{n-k}. \tag{2.20}
\]

2.2.2.4 Casos especiales

En general, cuando la variable aleatoria continua \(U \) es distribuida simétricamente alrededor del origen, si su función generadora de momentos existe, se puede
2. La distribución generalizada g-h de Tukey

Para establecer la siguiente manera

\[M_U(t) = E(e^{tU}) = 2 \int_0^{\infty} \cosh(tu) f_U(u)du, \quad (2.21) \]

y la función característica de la variable aleatoria \(U \) viene dada por

\[\Psi_U(t) = E(e^{itU}) = 2 \int_0^{\infty} \cos(tu) f_U(u)du, \quad (2.22) \]

donde \(i \) se denomina unidad imaginaria y satisface que \(i^2 = -1 \). Puesto que \(f_U(u) \) es una función par, entonces la representación integral de Fourier de \(f_U(u) \) se puede escribir como

\[f_U(u) = \int_0^{\infty} A(t) \cos(ut) dt, \quad \text{con} \quad A(t) = \frac{1}{\pi} \Psi_U(t). \]

De acuerdo con el teorema de convolución en la frecuencia para la transformada de Fourier, se tiene lo siguiente

\[2 \int_0^{\infty} \cos(gt) f_U(t) \exp\left\{-\frac{|h|t^2}{2}\right\} dt = \mathcal{F} \left[f_U(t) \exp\left\{-\frac{|h|t^2}{2}\right\} \right] \]

\[= \frac{1}{\sqrt{2\pi|h|}} \exp\left\{-\frac{g^2}{2|h|}\right\} * \mathcal{F}[f_U(t)], \]

donde \(* \) denota convolución. La expresión (2.21) nos permite obtener los momentos de la distribución generalizada \(g-h \) de Tukey. Sin embargo, los momentos de algunos órdenes no existen para un cierto rango de valores del parámetro \(h \), considerando esta restricción se tienen los siguientes casos:

1. Si \(U \sim GED(1/2) \) y \(h < \frac{1}{n} \), se tiene que

\[E(Y^n) = \begin{cases}
\frac{1}{g^n \sqrt{1-nh}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} M_U \left(\frac{n-k}{\sqrt{1-nh}} g \right) & \text{si } g \neq 0 \\
\frac{1}{1+(-1)^n} \Gamma(n) & \text{si } g = 0 \\
2^{\frac{n}{2}} \left[1-\tilde{h} \right]^{n+1} \frac{n!}{\Gamma(n/2)} & \end{cases} \quad (2.23) \]

donde \(M_U(\cdot) \) es la \(fgm \) de la normal dada en (1.23) y \(\Gamma(\cdot) \) es la función Gamma. Esta expresión coincide con la dada en (1.34), ya que \(U \sim N(0,1) \), luego estos resultados son consistentes con los obtenidos en Martínez & Iglewicz (1984).
2. Cuando \(U \sim GED(1) \) y \(h < 0 \), se obtiene que\(^4\)

\[
\mu'_n = \begin{cases}
\frac{1}{g^2 \sqrt{n|n|}} \left\{ \sum_{k=0}^{n-1}(-1)^k \binom{n}{k} \left[\exp \left\{ \frac{\alpha_n^2}{2n|n|} \right\} \Phi(-\alpha_{n,k}) + \exp \left\{ \frac{\beta_{n,k}^2}{2} \right\} \Phi(\beta_{n,k}) \right] + 2(-1)^n e^{n|n|} \Phi\left(\sqrt{-2\frac{1}{n|n|}}\right) \right\}, & g \neq 0 \\
\frac{1+(-1)^n}{2\sqrt{n|n|}} \left\{ \frac{1}{\sqrt{n|n|}} \sum_{k=0}^{n}(-1)^k \binom{n}{k} [\Gamma(k+1) \Phi(k+1, 2) - \frac{1}{3} \int_0^{\frac{1}{n|n|}} v^{2(k-1)} e^{-v} dv] \right\}, & g = 0,
\end{cases}
\]

(2.24)

donde \(\alpha_{n,k} \) y \(\beta_{n,k} \) son las raíces reales mayor y menor, respectivamente, de la ecuación cuadrática

\[
n |h| r^2 - 2(n - k) \sqrt{n|h|} gr + (n - k)^2 g^2 - 2 = 0. \]

(2.25)

La expresión (2.24) se calculó erróneamente en Klein & Fischer (2002).

Usando las expresiones (2.23) y (2.24) se pueden derivar los siguientes momentos ordinarios de la variable aleatoria \(Y \):

1. Si \(U \sim GED(1/2) \) y \(h < \frac{1}{n} \), sustituyendo \(n = \{1, 2, 3, 4\} \) en la expresión (2.23), se llega a

\[
E[Y] = \mu_{g,h}^N = \frac{1}{g \sqrt{1 - h}} \left[M_U\left(\frac{g}{\sqrt{1 - h}}\right) - 1 \right], \quad \text{si } g \neq 0 \tag{2.26}
\]

\[
E(Y^2) = \begin{cases}
\frac{1}{g^2 \sqrt{1 - 3h}} \left[M_U\left(\frac{2g}{\sqrt{1 - 3h}}\right) - 2M_U\left(\frac{g}{\sqrt{1 - 2h}}\right) + 1 \right] & \text{si } g \neq 0 \\
\frac{1}{(1 - 2h)^2} & \text{si } g = 0,
\end{cases}
\]

con estos primeros momentos se puede establecer la varianza y para encontrar la asimetría y curtosis se usan respectivamente los siguientes momentos

\[
E(Y^3) = \frac{1}{g^3 \sqrt{1 - 3h}} \left[M_U\left(\frac{3g}{\sqrt{1 - 3h}}\right) - 3M_U\left(\frac{2g}{\sqrt{1 - 3h}}\right) + 3M_U\left(\frac{g}{\sqrt{1 - 3h}}\right) - 1 \right]
\]

con \(g \neq 0 \), y

\[
E(Y^4) = \begin{cases}
\frac{1}{g^4 \sqrt{1 - 4h}} \left[M_U\left(\frac{3g}{\sqrt{1 - 4h}}\right) - 4M_U\left(\frac{3g}{\sqrt{1 - 4h}}\right) \right. & \text{si } g \neq 0 \\
+ 6M_U\left(\frac{2g}{\sqrt{1 - 4h}}\right) - 4M_U\left(\frac{g}{\sqrt{1 - 4h}}\right) + 1 \right] & \text{si } g = 0,
\end{cases}
\]

\(^4\)El Apéndice C contiene la prueba respectiva de esta expresión.
Para un valor fijo de g y valores suficientemente pequeños de $\beta_2(Y)$ se pueden tener dos valores correspondientes de h para la misma $\beta_2(Y)$, como se ilustra en los gráficos 2.3 y 2.4.

Figura 2.3: Coeficientes de asimetría $\beta_1(Y)$ y curtosis $\beta_2(Y)$

Figura 2.4: Coeficientes de asimetría $\beta_1(Y)$ y curtosis $\beta_2(Y)$

2. Cuando $U \sim GED(1)$, $g \neq 0$ y $h < 0$, reemplazando $n = \{1, 2\}$ en la expresión (2.24), se obtiene que
2.2. Família de distribuciones generalizadas $g - h$ de Tukey

\[
\mu_{g,h}^t = \frac{1}{g} \sqrt{\frac{\pi}{|h|}} \left[\exp \left\{ \frac{1}{2} \left[\frac{g + \sqrt{2}}{\sqrt{|h|}} \right]^2 \right\} \Phi \left(-\frac{g + \sqrt{2}}{\sqrt{|h|}} \right) + \exp \left\{ \frac{1}{2} \left[\frac{\sqrt{2} - g}{\sqrt{|h|}} \right]^2 \right\} \right] \\
- \exp \left\{ \frac{1}{2} \left(\frac{\sqrt{2} - g}{\sqrt{|h|}} \right)^2 \right\} \Phi \left(\frac{\sqrt{2} - g}{\sqrt{|h|}} \right) - 2 \exp \left\{ \frac{1}{|h|} \right\} \Phi \left(-\sqrt{\frac{2}{|h|}} \right). \tag{2.27}
\]

\[
\mathbb{E} (Y^2) = \frac{1}{g^2} \frac{\pi}{2|h|} \left[\exp \left\{ \frac{1}{2} \left[\frac{2g + \sqrt{2}}{\sqrt{2|h|}} \right]^2 \right\} \Phi \left(-\frac{2g + \sqrt{2}}{\sqrt{2|h|}} \right) + \exp \left\{ \frac{1}{2} \left[\frac{\sqrt{2} - 2g}{\sqrt{2|h|}} \right]^2 \right\} \right] \\
- \exp \left\{ \frac{1}{2} \left(\frac{\sqrt{2} - 2g}{\sqrt{2|h|}} \right)^2 \right\} \Phi \left(\frac{\sqrt{2} - 2g}{\sqrt{2|h|}} \right) - 2 \exp \left\{ \frac{1}{2|h|} \right\} \Phi \left(-\sqrt{\frac{2}{|h|}} \right) + 2 \exp \left\{ \frac{1}{2|h|} \right\} \Phi \left(\sqrt{\frac{2}{|h|}} \right) \\
- 2 \exp \left\{ \frac{1}{2} \left(\frac{g - \sqrt{2}}{\sqrt{2|h|}} \right)^2 \right\} \Phi \left(\frac{g - \sqrt{2}}{\sqrt{2|h|}} \right) + 2 \exp \left\{ \frac{1}{2|h|} \right\} \Phi \left(-\sqrt{\frac{1}{|h|}} \right). \tag{2.28}
\]

Las expresiones (2.23) y (2.24) también permiten obtener cualquier momento central de la variable aleatoria U en términos de los momentos ordinarios de ésta, usando la expresión dada en (2.20)

\[
\mu_n = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \mu_{U_k}^k \mu_{n-k}. \tag{2.28}
\]

Por otra parte, al tomar valor esperado en la expresión (2.6), se obtiene

\[
\mathbb{E} [X] = A + B \mathbb{E} [Y],
\]

esto permite establecer el n–ésimo momento central de la variable aleatoria X como sigue

\[
\mathbb{E} [(X - \mathbb{E} [X])^n] = B^n \mathbb{E} [(Y - \mathbb{E} [Y])^n]. \tag{2.29}
\]

Los momentos centrales de X sólo se ven afectados por los cambios de escala de la variable aleatoria $Y = T_{g,h}(U)$.

2.2.2.5 Medidas de asimetría y curtosis.

Dado que la transformación presentada en (2.2) es simplemente una distribución de los cuantiles de la variable aleatoria U, entonces para calcular tanto la asimetría como la curtosis se usan las medidas cuantiles dadas en la Sección 1.4.3, en este
caso la medida propuesta por Hinkley y dada en la expresión (1.15) queda

\[SK_2(p) = \frac{UHS_p(Y)/LHS_p(Y) - 1}{UHS_p(Y)/LHS_p(Y) + 1} = \frac{\exp\{gu_p\} - 1}{\exp\{gu_p\} + 1} = \tanh \left\{ \frac{g}{2} u_p \right\}. \]

(2.30)

donde \(UHS_p(Y) \) y \(LHS_p(Y) \) son dadas en (1.16). Nótese que esta expresión sólo depende del parámetro \(g \). Cuando \(U \sim GED(1/2) \) el coeficiente de asimetría propuesto en Groeneveld & Meeden (1984) y dado en (1.17) queda

\[SK_3(Y) = \frac{1 - \exp \left\{ -\frac{1}{2} \frac{g^2}{1-h} \right\}}{2\Phi \left(\frac{g}{\sqrt{1-h}} \right) - 1} = \frac{1 - \exp \left\{ -\frac{1}{2} \frac{g^2}{1-h} \right\}}{\tanh \left\{ \sqrt{\frac{2}{\pi}} \frac{g}{\sqrt{1-h}} \right\}}, \]

aquí se uso la expresión dada en Toccher (1964), nótese que esta última expresión depende de ambos parámetros \(g, h \) y cuando \(g = 0 \) vale cero, lo cual indica que en dicho caso la distribución es simétrica.

Por otra parte, para medir la curtosis se emplean dos de las medidas dadas en la sección 1.4.3.2. Si \(U \sim GED(1/2) \) el coeficiente de curtosis propuesto en Hogg (1974) y dado en (1.21) viene dado por

\[KR_3(p; q) = \frac{U_p - T_p}{U_q - T_q}, \]

donde

\[U_r - T_r = \frac{1}{r} \left[\mu_{g,h} \Phi(\delta_{2r}) + \Phi(\delta_{2r}) - \Phi(\delta_{1r}) \right] + \frac{1}{1-h} \left[\Phi(\delta_{2r}) - \Phi(\delta_{1r}) \right] \]

\[= \frac{\mu_{g,h}}{r} \left[\Phi(\delta_{2r}) - \Phi(\delta_{1r}) \right] + \frac{1}{1-h} \left[\Phi(\delta_{2r}) - \Phi(\delta_{1r}) \right], \]

con \(r = \{p, q\} \) y

\[\delta_{1r} = \sqrt{1-h} z_r, \quad \delta_{2r} = \delta_{1r} + \frac{g}{\sqrt{1-h}}, \quad \delta_{2r} = \delta_{1r} - \frac{g}{\sqrt{1-h}}. \]

La medida dada en Crow & Siddiqui (1967) para \(p > q > 0.5 \) queda

\[KR_4(p; q) = \begin{cases} \frac{\sinh(gu_p)}{\sinh(gu_q)} \exp \left\{ \frac{h}{2} \left(u_p^2 - u_q^2 \right) \right\} & \text{si } g \neq 0, \\
\frac{u_p}{u_q} \exp \left\{ \frac{h}{2} \left(u_p^2 - u_q^2 \right) \right\} & \text{si } g = 0. \end{cases} \]

Esta medida se puede expresar en términos de la transformación \(T_{g,h}(U) \) haciendo

\[2\sinh(gu_p) \exp \left\{ \frac{h}{2} u_p^2 \right\} = g(T_{g,h}(u_p) - T_{g,h}(u_{1-p})). \]

(2.31)
2.3 Procedimientos para estimar los parámetros de la familia generalizada de distribuciones g y h de Tukey.

Ahora brevemente se presentan dos métodos para la estimación de los parámetros de la familia de distribuciones g y h de Tukey.

2.3.1 Método de cuantiles

El método de estimación de cuantiles propuesto en Hoaglin (1985) y McCulloch (1986) se aplica comúnmente para la estimación de los parámetros de la familia de distribuciones $g-h$ de Tukey, ya que emplea la información de las colas de la edf asociada a los datos y no solo la información del centro de esta distribución como lo realiza el método de momentos o máxima verosimilitud, apreciación dada en Hoaglin (1985).

Para la estimación de los parámetros mediante este método, se consideran las propiedades recopiladas en Dutta & Babbel (2002) para el caso $U \sim GED(1/2)$ y de acuerdo con estas condiciones, se establecen las propiedades para cualquier variable aleatoria estándar U

1. La variable aleatoria $Y = T_{g,h}(U)$ es una transformación estrictamente creciente de la variable aleatoria U. Esto es, la transformación de una variable aleatoria estándar U a una g y h es uno a uno.

2. El parámetro de localización de la distribución generalizada $g-h$ de Tukey, es estimado por la mediana de los datos; es decir, $A = u_{0.5}$.

3. Al modelar una variable aleatoria X mediante la distribución generalizada $g-h$ de Tukey, la estimación del parámetro g, generalmente se estima por la mediana de los logaritmos de la siguiente expresión:

$$\exp\{gu_p\} = \frac{UHS_p(X)}{LHS_p(X)}$$

para todo $p > 0.5$,

donde $UHS_p(X)$ y $LHS_p(X)$ son las medidas dadas en (1.16).
4. Si existe un número real $\theta \neq x_{0.5}$, tal que

$$(x_p - \theta) + (\theta - x_{0.5}) \neq (x_{0.5} - \theta) + (\theta - x_{1-p})$$

mediante la siguiente regla empírica\(^5\) se puede establecer si el parámetro $h = 0$

$$\frac{x_p - \theta}{x_{0.5} - \theta} = \frac{\theta - x_{0.5}}{\theta - x_{1-p}},$$

para todo $p > 0.5$. \hspace{1cm} (2.32)

En particular, la expresión (2.32) se satisface si

$$\theta = A - \text{sign}(g) \frac{B}{|g|}.$$ \hspace{1cm} (2.33)

Nótese que la constante θ relaciona los parámetros de localización y escala, se denomina “parámetro de umbral” y se obtuvo en Hoaglin (1985).

5. Cuando, $g \neq 0$, el parámetro que controla el alargamiento de las colas (h), se puede estimar condicionado al valor de g mediante la siguiente expresión

$$\ln(x_{0.5} - \theta_p) = \ln\left(\frac{B}{g}\right) + \frac{h}{2} u_p^2,$$ \hspace{1cm} (2.34)

donde $\theta_p < x_{0.5}$ para todo $p > 0.5$ y

$$\theta_p = \frac{x_{0.5}^2 - x_p x_{1-p}}{UHS_p(X) - LHS_p(X)}$$ para todo $p \in (0, 1)$, $p \neq 0.5$, \hspace{1cm} (2.35)

donde $UHS_p(X)$ y $LHS_p(X)$ son dadas en (1.16), nótese que $\theta_p = \theta_{1-p}$. En otras palabras, el valor de h se obtiene mediante la regresión lineal entre $\ln(x_{0.5} - \theta_p)$ y $u_p^2/2$, donde la pendiente estimada de la regresión es el valor de h y el valor del parámetro de escala B se estima multiplicando el valor de g por la exponencial del intercepto de la regresión.

6. Cuando, $g \to 0$, el parámetro h es estimado mediante la siguiente regresión lineal:

$$\ln\left(\frac{UHS_p(X)}{u_p}\right) = \ln(B) + h \frac{u_p^2}{2}.$$ \hspace{1cm} (2.36)

\(^5\)La prueba aparece en el Apéndice A al final de este Capítulo.
2.3.2 Método de momentos

Para estimar por el método de los momentos los parámetros de la distribución generalizada $g-h$ de Tukey, se sigue la propuesta dada en Majumder & Ali (2008), es decir, se establecen tantas ecuaciones como el número de parámetros que se van a estimar. En su trabajo, utilizan las expresiones dadas en (1.34) para los momentos poblacionales de la familia de distribuciones $g-h$ de Tukey y se busca que estas ecuaciones coincidan con los primeros momentos ordinarios de la muestra. En esta tesis los momentos ordinarios de la población se obtienen usando la expresión dada en (2.18). Los parámetros de localización y escala son determinados usando las respectivas expresiones para las medidas de asimetría y curtosis, los cuales también se igualan con la asimetría y curtosis de la muestra, así se obtiene la estimación de g y h. Usando estos valores, se estiman los parámetros A y B de la siguiente manera\(^6\)

$$A = \mu_X - B\mu_{g,h}, \quad (2.37)$$

donde μ_X es la media de la variable aleatoria (X) que se quiere aproximar y $\mu_{g,h}$ es la media de la distribución generalizada $g-h$ de Tukey. El parámetro de escala se estima mediante

$$B = \text{sign}(\beta_1(X)) \frac{\sigma_X}{\sigma_Y},$$

aquí $\beta_1(X)$ denota el coeficiente de asimetría de la variable aleatoria X.

2.4 Distribución generalizada g de Tukey

Cuando los datos empíricos evidencian sesgo, entonces se puede asignar un número al sesgo o considerar el sesgo como el resultado de la acción de un polinomio de grado n deformador de los valores de la variable, el cual se denota por $P_n(u)$ y viene dado por

$$P_n(u) = \sum_{j=1}^{n} c_j u^j, \quad c_j \in \mathbb{R}, \quad (2.38)$$

\(^6\)Tener en cuenta que cualquier distribución satisface la desigualdad dada en (1.14).
con \(c_1 = 1 \). Este polinomio influye sobre los valores positivos y negativos de la variable aleatoria \(U \) de manera diferente, luego, los coeficientes \(c_j \) \((j = 2, 3, \ldots, n)\) deben contener información implícita del sesgo. Por lo tanto, si se denota por \(g \) el respectivo parámetro que produce el sesgo entonces los coeficientes \(c_j \) deben ser funciones de este parámetro. Nótese que la función \(G(U) \) dada en (2.4) cumple las condiciones señaladas, pues si emplea la serie de Taylor para la función exponencial alrededor de cero, se tiene que

\[
\begin{align*}
 e^{gu} &= \sum_{j=0}^{\infty} \frac{(gu)^j}{j!} ,
\end{align*}
\]

(2.39)

por lo tanto, la función \(G(U) \) se puede expresar en serie de potencias como

\[
G(U) = \frac{1}{g} \sum_{j=1}^{\infty} \frac{(gU)^j}{j!} \quad \text{con} \quad g \neq 0 ,
\]

(2.40)

si se considera \(|g| < 1 \), algunos términos de orden superior son insignificantes, luego, se pueden despreciar dichos términos de orden superior, en este caso, la expresión (2.40) se puede aproximar como sigue

\[
G(U) \approx \frac{1}{g} \sum_{j=1}^{n} \frac{(gU)^j}{j!} \quad \text{para} \quad |g| < 1 ,
\]

al comparar con los coeficientes del polinomio dado en (2.38) se tiene que

\[
c_j = \frac{g^{j-1}}{j!} \quad \text{para} \quad j = 1, 2, \ldots .
\]

Luego, si \(0 < g < 1 \) se puede afirmar que el polinomio deformador produce sesgo a la derecha y el sesgo crece a medida que el parámetro \(g \) aumenta. De manera análoga, cuando \(-1 < g < 0 \) se presenta sesgo a la izquierda.

Del análisis anterior se deduce que el parámetro \(g \) fija la cantidad y el \(\text{sign}(g) \) la dirección (derecha o izquierda) del sesgo de la variable aleatoria \(Y = G(U) \).

La \(pdf \) asociada a la variable aleatoria \(Y = T_{g,0}(U) \) para \(g \neq 0 \), se puede determinar reemplazando en la expresión (2.9) y se llega a

\[
t_{g,0}(y) = \frac{1}{1 + gy} f_U \left(\ln \left(\frac{1 + gy}{g} \right) \right) , \quad gy > -1 .
\]

(2.41)
Por otra parte, si se despeja la variable \(Y = T_{g,h}(U) \) en la ecuación (2.6) y se sustituye en la expresión dada en (2.41), se obtiene
\[
t_{g,0} \left(\frac{x-A}{B} \right) = f_U \left(\frac{1}{g} \ln \left(1 + \frac{x-A}{B/g} \right) \right) \left[1 + \frac{x-A}{B/g} \right]^{-1}, \quad \frac{x-A}{B/g} > -1,
\]
puesto que \(g \in \mathbb{R} \), entonces
\[
t_{g,0} \left(\frac{x-A}{B} \right) = \begin{cases}
\frac{B}{g} f_U \left(\frac{1}{g} \left(\ln (x - \theta) - \ln \left(\frac{B}{g} \right) \right) \right) & \text{si } g > 0 \\
\frac{B}{|g|} f_U \left(\frac{1}{|g|} \left(\ln \left(\frac{B}{|g|} \right) - \ln (\theta - x) \right) \right) & \text{si } g < 0
\end{cases}
\tag{2.42}
\]
donde \(\frac{B}{|g|} > 0 \). Por simplicidad, y sin pérdida de generalidad, se supone que \(g > 0 \), al usar la expresión (2.33) y emplear el resultado dado en (2.11), se puede reescribir (2.42) de la siguiente manera
\[
f_X (x) = \frac{1}{g (x - \theta)} f_U \left(\frac{1}{g} \left(\ln (x - \theta) - \mu^* \right) \right), \quad x > \theta.
\tag{2.43}
\]
donde \(\mu^* = \ln \left(\frac{B}{g} \right) \) y en este caso la variable aleatoria \(X \) tiene una distribución log-simétrica con parámetros de localización, \(\theta \), escala, \(\mu^* \), y forma, \(g \), la cual será denotada por \(X \sim LS(\mu^*, g, \theta) \). Cuando \(\theta = 0 \) se denota simplemente por \(X \sim LS(\mu^*, g) \). La cdf de esta variable aleatoria \(X \) viene dada por
\[
F_X (x) = F_U \left(\frac{1}{g} \left(\ln (x - \theta) - \mu^* \right) \right), \quad x > \theta.
\tag{2.44}
\]
La expresión (2.43) permite obtener las siguientes funciones de densidad asociadas a la distribución generalizada \(g \) de Tukey:

2.4.1 Casos especiales de la distribución generalizada \(g \) de Tukey

1. Si \(U \sim GED(1/2) \) y \(g > 0 \), se tiene que
\[
f_X (x) = \frac{1}{\sqrt{2\pi g (x - \theta)}} \exp \left\{ -\frac{1}{2} \left(\frac{\ln (x - \theta) - \mu^*}{g} \right)^2 \right\}, \quad x > \theta.
\tag{2.45}
\]
2. La distribución generalizada g-h de Tukey

donde \(\mu^* = \ln(\mu_X - \theta) - \frac{1}{2}g^2 \). Nótese que esta última expresión coincide con la pdf de la variable aleatoria Log-Normal dada en (1.32). En este caso, decimos que \(X \) se distribuye Log-Normal con tres parámetros \(\mu_X, g \) y \(\theta \).

2. Cuando \(U \sim GED(1) \) y \(0 < g < \frac{\sqrt{2}}{\pi} \), se obtiene que

\[
f_X(x) = \frac{\beta}{2(\epsilon - \theta)} \begin{cases} \frac{(x - \theta)^{\beta-1}}{\epsilon - \theta}, & \theta < x < \epsilon \\ \frac{(x-\theta)^{\beta+1}}{\epsilon - \theta}, & x \geq \epsilon, \end{cases}
\]

(2.46)

donde \(\beta = \frac{\sqrt{2}}{g} \) y \(\epsilon - \theta = (\mu_X - \theta) \left(1 - \frac{1}{\beta^2} \right) \). Esta expresión coincide con la pdf de la Log-Laplace de tres parámetros \(\mu_X, g \) y \(\theta \).

3. Si \(U \sim \text{Logística} (0, \lambda^{-1}) \), \(0 < g < \frac{\lambda}{\pi} \) y \(\lambda = \frac{\pi}{\sqrt{3}} \), entonces la función de densidad de \(X \) se puede expresar como

\[
f_X(x) = \frac{\pi}{\epsilon - \theta} \left[\frac{\pi x - \theta}{\epsilon} \right]^{\alpha-1} \left[1 + \frac{\pi x - \theta}{\alpha \epsilon - \theta} \right]^{-2\alpha},
\]

(2.47)

donde \(\alpha = \frac{\lambda}{g} \) y \(\epsilon - \theta = (\mu_X - \theta) \text{sen} \left(\sqrt{3}g \right) \). Nótese que esta expresión coincide con la pdf de la Log-Logística de tres parámetros \(\mu_X, g \) y \(\theta \).

2.4.2 Momentos de la distribución generalizada g de Tukey

Para la variable aleatoria \(G(U) \) el \(n \)--ésimo momento ordinario se puede obtener de la expresión (2.19) considerando \(g > 0 \) y \(h = 0 \), al sustituir se obtiene

\[
\mathbb{E}(Y^n) = \frac{1}{g^n} \sum_{k=0}^{n} (-1)^k \binom{n}{k} M_U (\tilde{g}), \quad \text{con} \quad \tilde{g} = (n - k)g,
\]

(2.48)

donde \(M_U (\cdot) \) denota la función generadora de momentos de la variable aleatoria continua \(U \). En este caso, los cuatro primeros momentos ordinarios son

\[
\begin{align*}
\mathbb{E}(Y) & = \frac{1}{g} \left[M_U (g) - 1 \right], \\
\mathbb{E}(Y^2) & = \frac{1}{g^2} \left[M_U (2g) - 2M_U (g) + 1 \right], \\
\mathbb{E}(Y^3) & = \frac{1}{g^3} \left[M_U (3g) - 3M_U (2g) + 3M_U (g) - 1 \right], \\
\mathbb{E}(Y^4) & = \frac{1}{g^4} \left[M_U (4g) - 4M_U (3g) + 6M_U (2g) - 4M_U (g) + 1 \right].
\end{align*}
\]
Luego, los momentos centrales se pueden obtener sustituyendo (2.48) en (2.28). En este caso, para \(n = 1, 2, 3, 4 \), se tiene que

\[
\begin{align*}
\mu_1(Y) &= 0, \\
\mu_2(Y) &= \frac{1}{g^2} \left[M_U(2g) - M_U^2(g) \right], \\
\mu_3(Y) &= \frac{1}{g^3} \left[(M_U(3g) - M_U^3(g)) - 3g^2 \mu_2(Y) M_U(g) \right], \\
\mu_4(Y) &= \frac{1}{g^4} \left[M_U(4g) - 4M_U(3g) M_U(g) + 3M_U^2(2g) \right] - 3\mu_2^2(Y).
\end{align*}
\]

Si se desea modelar una variable aleatoria arbitraria \(X \) mediante la variable aleatoria \(Y = G(U) \), se plantea el modelo dado en (2.6) y los respectivos parámetros se pueden determinar mediante el método de momentos, en este caso

\[
X = \theta + \frac{B}{g} e^{\tilde{g}U} \quad y \quad \mathbb{E}(X) = \theta + \frac{B}{g} M_U(g).
\]

(2.50)

Luego, para determinar el \(n \)-ésimo momento ordinario de la variable aleatoria \(X \) primero empleando el binomio de Newton se encuentra la \(n \)-ésima potencia de \(X \) y se llega a

\[
X^n = \sum_{k=0}^{n} \binom{n}{k} \theta^k \left(\frac{B}{g} \right)^{n-k} \exp\left\{ \tilde{g}U \right\},
\]

donde \(\tilde{g} = (n - k)g \), \(\theta \) es dada en (2.33) y

\[
\frac{B}{g} = \frac{\mathbb{E}(X) - \text{Md}n(X)}{M_U(g) - 1}.
\]

Por lo tanto,

\[
\mathbb{E}(X^n) = \sum_{k=0}^{n} \binom{n}{k} \theta^k \left(\frac{B}{g} \right)^{n-k} M_U(\tilde{g}),
\]

\[
= \left(\frac{B}{g} \right)^n M_U(n\tilde{g}) + \sum_{k=1}^{n} \binom{n}{k} \theta^k \left(\frac{B}{g} \right)^{n-k} M_U(\tilde{g}).
\]

(2.51)

En este caso, reemplazando (2.51) en la expresión (2.29) se obtienen los respectivos momentos centrales como sigue

\[
\mathbb{E}[(X - \mathbb{E}[X])^n] = \mu_n(X) = \left(\frac{B}{g} \right)^n \sum_{k=0}^{n} (-1)^k \binom{n}{k} M_U(\tilde{g}) M_U^k(\tilde{g}).
\]
nótese que estos momentos dependen del parámetro g y no dependen del parámetro θ. Puesto que se deben determinar tres parámetros, entonces se obtienen los tres primeros momentos centrales, los cuales son

\[\mu_1(X) = 0, \quad \mu_2(X) = \left(\frac{B}{g} \right)^2 [M_U(2g) - M_U^2(g)], \]
\[\mu_3(X) = \left(\frac{B}{g} \right)^3 [M_U(3g) - 3M_U(2g)M_U(g) + 2M_U^3(g)]. \]

Luego, el coeficiente de asimetría de la variable aleatoria X se puede determinar mediante la siguiente expresión

\[\beta_1(X) = \frac{(M_U(3g) - M_U^3(g)) - 3(M_U(2g) - M_U^2(g))M_U(g)}{[M_U(2g) - M_U^2(g)]^2}, \quad (2.52) \]

y la curtosis por

\[\beta_2(X) = \frac{M_U(4g) - 4M_U(3g)M_U(g) + 3M_U^2(2g)}{[M_U(2g) - M_U^2(g)]^2} - 3, \]

nótese que estas medidas solo dependen del parámetro g. La expresión (2.52) permite estimar el parámetro g. La Tabla 2.1 muestra los parámetros de la función de densidad y la función generadora de momentos para cada variable aleatoria U, respectivamente, utilizando un conjunto seleccionado de distribuciones simétricas conocidas.

<table>
<thead>
<tr>
<th>Distribución de la v.a. U</th>
<th>Parámetros</th>
<th>función generadora de momentos de la v.a. U</th>
<th>Parámetros</th>
<th>función generadora de momentos de la v.a. U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laplace</td>
<td>μ, α</td>
<td>$\beta > 0$</td>
<td>$</td>
<td>g</td>
</tr>
<tr>
<td>Logística</td>
<td>$\frac{\beta}{\alpha}$</td>
<td>$</td>
<td>g</td>
<td>< \frac{\pi}{\sqrt{n}}$</td>
</tr>
<tr>
<td>Normal</td>
<td>0</td>
<td>$g > 0$</td>
<td>$\exp\left{\frac{1}{2}g^2\right}$</td>
<td></td>
</tr>
<tr>
<td>HyperSec</td>
<td>0</td>
<td>$\frac{\pi}{2}$</td>
<td>$</td>
<td>g</td>
</tr>
<tr>
<td>HyperCsc</td>
<td>0</td>
<td>$\frac{\sqrt{2}}{\pi}$</td>
<td>$</td>
<td>g</td>
</tr>
</tbody>
</table>

Tabla 2.1: Parámetros de la pdf de la variable aleatoria U

2.4.2.1 Casos Especiales de los momentos ordinarios

Si en la expresión (2.51) se asume que $\theta \approx 0$, entonces se tiene simplemente que

\[\mathbb{E}(X^n) = \left(\frac{B}{g} \right)^n M_U(ng), \quad (2.53) \]
esta última expresión permite obtener los momentos de la variable aleatoria X cuando las distribuciones de U son: $GED(\alpha)$, Logística, secante hiperbólica y cosecante hiperbólica, las cuales son distribuciones simétricas.

Como caso particular, se tiene que cuando $U \sim GED(1/2)$ y $g > 0$, la expresión (2.53) queda

$$E(X^n) = \left(\frac{B}{g}\right)^n \exp \left\{\frac{1}{2} n^2 g^2\right\} = \exp \left\{ n \ln \left(\frac{B}{g}\right) + \frac{1}{2} n^2 g^2\right\}, \quad (2.54)$$

esta última expresión coincide con la fgm de una variable aleatoria normal con parámetros $\mu = \ln \left(\frac{B}{g}\right)$ y $\sigma = g$. Por la unicidad de la fgm llegamos a la conclusión de que $V = \ln(X) \sim N \left(\ln \left(\frac{B}{g}\right), g\right)$, es decir, V es una variable aleatoria lognormal con parámetros $\mu = \ln \left(\frac{B}{g}\right)$ y $\sigma = g$. De la misma manera, es posible demostrar la relación entre la variable aleatoria X y las demás variables aleatorias asumidas para U. La tabla 2.2 muestra los parámetros de la pdf de la variable aleatoria X que se obtiene mediante un conjunto seleccionado de distribuciones simétricas conocidas.

Distribución de la v.a. U	Parámetros $\mu, a	\sigma, b	g \neq 0$	Distribución de la v.a. V	Parámetros $\mu, a	\sigma, b$		
Laplace	0	$\sqrt{\frac{a}{2}}$	$	g	< \frac{\sqrt{2}}{n}$	Log-Laplace	$\ln \left(\frac{B}{g}\right), \frac{\sqrt{2}}{2}	g$
Logística	0	$\sqrt{\frac{a}{\pi}}$	$	g	< \frac{\pi}{\sqrt{3} n}$	Loglogística	$\ln \left(\frac{B}{g}\right), \frac{\sqrt{3}}{\pi}	g$
Normal	0	1	$g > 0$	Lognormal	$\ln \left(\frac{B}{g}\right), g$			
HyperSec	0	$\frac{2}{\pi}$	$	g	< \frac{\pi}{2n}$	Log-HyperSec	$\ln \left(\frac{B}{g}\right), \frac{2}{\pi}	g$
HyperCsc	0	$\sqrt{\frac{2}{\pi}}$	$	g	< \frac{\pi}{\sqrt{2} n}$	Log-HyperCsc	$\ln \left(\frac{B}{g}\right), \frac{\sqrt{2}}{\pi}	g$

Tabla 2.2: Parámetros de las pdf de la variable aleatoria $V = \ln(X)$

Las distintas maneras de evaluar los momentos de la distribución generalizada $g - h$ de Tukey que se han discutido en esta sección permiten realizar la estimación de parámetros por el método de momentos, por lo tanto, se puede expresar cualquier variable aleatoria arbitraria X mediante la variable aleatoria $Y = T_{g,h}(U)$, y en el caso de las matemáticas financieras se puede modelar el precio de un activo subyacente ajustando la asimetría y el exceso de curtosis de la edf del precio del activo, esto permite obtener una nueva fórmula para valorar opciones y se discute en el siguiente capítulo.
2.5 Ejemplo

Se analiza las acciones de la empresa Diamond Offshore Drilling Inc. (DO) para el periodo comprendido entre enero de 2002 y diciembre de 2006, en total 1258 observaciones ⁷.

En la figura 4.5 se muestra el nivel de precios y los retornos en el periodo muestral para la serie considerada.

Figura 2.5: Nivel de precios y retornos para el Diamond Offshore

En la Tabla 4.1 se presentan los estadísticos de los retornos de la serie.

<table>
<thead>
<tr>
<th>Estadísticos</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media (%)</td>
<td>0.0008</td>
</tr>
<tr>
<td>Mínimo (%)</td>
<td>-0.0727</td>
</tr>
<tr>
<td>Máximo (%)</td>
<td>4.2041335</td>
</tr>
<tr>
<td>Desv. Est. (%)</td>
<td>0.6185473</td>
</tr>
<tr>
<td>Asimetría</td>
<td>0.0733</td>
</tr>
<tr>
<td>Curtosis</td>
<td>3.1262</td>
</tr>
<tr>
<td>JB</td>
<td>0.8631</td>
</tr>
</tbody>
</table>

Tabla 2.3: Resumen de estadísticas para el Diamond Offshore

Claramente se nota que los retornos de la serie tienen mayor apuntamiento (exceso de curtosis). Este mayor apuntamiento implica una mayor probabilidad para pequeños movimientos en las colas de lo que se esperaría en una distribución normal.

La curtosis, asimetría y el test propuesto por Jarque & Bera (1987), estadísticos reportados en la Tabla 4.1 indican que la hipótesis nula de una distribución normal.

normal puede ser rechazada para la variable en estudio. El histograma de frecuencias (Figura 2.6) también muestra que los retornos de la serie tienen un leve grado de sesgo a la derecha, es leptocúrtica y no sigue la distribución normal.

![Histograma de frecuencias para el Diamond Offshore](image)

Figura 2.6: Histograma de frecuencias para el Diamond Offshore

Para ajustar la distribución propuesta en este capítulo se emplean los siguientes parámetros

\[
[\theta, B, h, g] = [0.0631, 0.0238, 0.0, 0.0223]
\]

(2.55)

donde \(\theta = A - B / g\) relaciona los parámetros de localización y escala de la \(cdf\) de la serie DO, respectivamente.

En la gráfica 2.7 se presentan la distribución normal con parámetros media y desviación estándar iguales a las de la serie DO, una aproximación de la \(cdf\) de la serie\(^8\) y la nueva distribución asumiendo distintas variables \(U\).

Como se nota en la figura 2.7 la nueva función de densidad tiene un comportamiento similar al histograma de los datos históricos de la variable de estudio presentada en la gráfica 2.6, mientras que la distribución normal es la que presenta menos ajuste a los datos históricos.

\(^8\)Esta densidad es obtenida con la instrucción “ksdensity” del programa MATLAB
La distribución generalizada g-h de Tukey

Figura 2.7: Comparación de densidades ajustadas para la serie DO

En la tabla 2.4 se presentan las siguientes medidas: media, dispersión, asimetría y curtosis, las cuales fueron obtenidas para cada una de las distribuciones ajustadas,

<table>
<thead>
<tr>
<th>Estadísticos</th>
<th>Serie</th>
<th>Nuevas densidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media (%)</td>
<td>0.0005</td>
<td>0.0007</td>
</tr>
<tr>
<td>Desv. Est. (%)</td>
<td>0.0160</td>
<td>0.0157</td>
</tr>
<tr>
<td>Asimetría</td>
<td>3.1187</td>
<td>5.7131</td>
</tr>
<tr>
<td>Curtosis</td>
<td>-0.0556</td>
<td>-0.0758</td>
</tr>
</tbody>
</table>

Tabla 2.4: Comparación de Estadísticas

Se obtiene que la media y la desviación estándar de las distribuciones nuevas (ajustada con los parámetros dados en (2.55)) son iguales que los de la serie de retornos, en este caso, la familia de distribuciones g de Tukey ajusta mejor este conjunto de datos y se necesitan estimar tres parámetros.

2.6 Apéndices

A continuación se presentan todos los detalles de las pruebas de cada una de las ecuaciones obtenidas en este capítulo.

Apéndice A: Prueba de la expresión (2.32)

Antes de entrar en los detalles de la prueba de la regla empírica dada en (2.32), se supone que la variable aleatoria X es definida para enteros positivos y modelada
como en (2.6) con \(g > 0 \), además, sus cuantiles satisfacen que
\[
\frac{x_p - \theta}{x_{0.5} - \theta} = \frac{\theta - x_{0.5}}{\theta - x_{1-p}} \iff h = 0 \quad \text{y} \quad \theta = A - \frac{B}{g}.
\]

(\(\Rightarrow \)) Supongamos que \((x_p - \theta) \cdot (x_{1-p} - \theta) = (x_{0.5} - \theta)^2\), de las expresiones dadas en (2.7) se tiene para \(p > 0.5 \) que
\[
x_p = A + By_p \quad \text{y} \quad x_{1-p} = A - B \exp\{-gu_p\}y_p,
\]
si se resta \(\theta \) a ambos lados de estas expresiones y se multiplican entre sí, se obtiene
\[
(x_p - \theta)(x_{1-p} - \theta) = (A - \theta)^2 + (A - \theta)By_p - (A - \theta)Be^{-gu_p}y_p - B^2e^{-gu_p}y_p^2
\]
\[
(x_{0.5} - \theta)^2 = (A - \theta)^2 + (A - \theta)B(e^{gu_p} - 1)e^{-gu_p}y_p - B^2e^{-gu_p}y_p^2
\]
\[
= (A - \theta)^2 + By_p[(A - \theta)gT_{g,0}(u_p) - By_p]e^{-gu_p}
\]
si se reemplaza \(y_p = T_{g,h}(u_p) \), se tiene que
\[
(x_{0.5} - \theta)^2 = (A - \theta)^2 + \left(Be^{\frac{1}{2}hu_p^2}\right)[(A - \theta)g - \left(Be^{\frac{1}{2}hu_p^2}\right)\{T_{g,0}(u_p)\}]^2e^{-gu_p},
\]
dado que \((x_{0.5} - \theta) = (A - \theta) \), para todo \(p > 0.5 \), entonces
\[
\left(Be^{\frac{1}{2}hu_p^2}\right)[(A - \theta)g - \left(Be^{\frac{1}{2}hu_p^2}\right)\{T_{g,0}(u_p)\}]^2e^{-gu_p} = 0 \quad \forall p > 0.5 \quad (2.56)
\]
 Nótese que si \(p > 0.5 \), los dos últimos términos del producto nunca son cero y además \(Be^{\frac{1}{2}hu_p^2} \neq 0, \forall p > 0.5 \), por lo tanto, la única forma que la expresión (2.56) sea cero, es cuando,
\[
Be^{\frac{1}{2}hu_p^2} = (A - \theta)g \quad \Rightarrow \quad e^{\frac{1}{2}hu_p^2} = \frac{(A - \theta)g}{B} \quad \forall p > 0.5
\]
como \(A, B, g \) y \(\theta \) son constantes, entonces la función \(e^{\frac{1}{2}hu_p^2} \) es constante para todo \(p > 0.5 \), pero esto únicamente sucede si \(h = 0 \) y por lo tanto \(\theta = A - \frac{B}{g} \).
\(\Leftarrow \) Supongamos que \(h = 0 \) y \(\theta = A - \frac{B}{g} \), al sustituir \(y_p = T_{g,0}(u_p) \) en las expresiones dadas en (2.7) se obtiene para \(p > 0.5 \)

\[
 x_p = \frac{B}{g} \exp\{gu_p\} + \theta \quad y \quad x_{1-p} = \frac{B}{g} \exp\{-gu_p\} + \theta,
\]

por consiguiente

\[
 \ln(x_p - \theta) = \ln\left(\frac{B}{g}\right) + gu_p \quad y \quad \ln(x_{1-p} - \theta) = \ln\left(\frac{B}{g}\right) - gu_p,
\]

sumando estas expresiones

\[
 \ln(x_p - \theta) + \ln(x_{1-p} - \theta) = 2\ln\left(\frac{B}{g}\right) \quad \forall p > 0.5
\]

\[
 \ln[(x_p - \theta)(x_{1-p} - \theta)] = \ln(x_{0.5} - \theta)^2
\]

al tomar exponencial a ambos lados se llega a

\[
 (x_p - \theta)(x_{1-p} - \theta) = (x_{0.5} - \theta)^2.
\]

\textbf{Apéndice B: Prueba de las proposiciones 2.2 y 2.3}

\textit{Demostración. Proposición 2.2}

Usando el Binomio de Newton se puede establecer la \(m \)--ésima potencia de la expresión (2.2) como sigue,

\[
 Y^m = \frac{1}{g^m} \sum_{k=0}^{m} \binom{m}{k} (-1)^k \exp\left\{ \tilde{g}U + \frac{1}{2} \tilde{h}U^2 \right\}
\]

\[
 = \frac{1}{g^m} \sum_{k=0}^{m-1} \binom{m}{k} (-1)^k \exp\left\{ \tilde{g}U + \frac{1}{2} \tilde{h}U^2 \right\} + \left(\frac{-1}{g^m}\right)^m \left(\frac{1}{2} \tilde{h}U^2\right)
\]

donde \(\tilde{g} = (m-k)g \) y \(\tilde{h} = mh \), agrupando términos

\[
 Y^m = \frac{m}{g^{m-1}} \left[\sum_{k=0}^{m-1} \binom{m-1}{k} \left(\frac{-1}{\tilde{g}}\right)^k \exp\left\{ \tilde{g}U + \frac{1}{2} \tilde{h}U^2 \right\} + \left(\frac{-1}{mg}\right)e^{\frac{1}{2} \tilde{h}U^2} \right]
\]

Por otra parte,

\[
 (-1)^m = - \sum_{k=0}^{m-1} \binom{m}{k} (-1)^k,
\]
entonces reemplazando

\[Y^m = \frac{m}{g^{m-1}} \left[\sum_{k=0}^{m-1} \binom{m-1}{k} (-1)^k \frac{1}{\tilde{g}} \exp \left\{ \tilde{g}U + \frac{1}{2} \tilde{h}U^2 \right\} \right. \]

\[- \frac{1}{mg} \sum_{k=0}^{m-1} \binom{m}{k} (-1)^k e^{\frac{1}{2} \tilde{h}U^2} \]

\[= \frac{m}{g^{m-1}} \left[\sum_{k=0}^{m-1} \binom{m-1}{k} (-1)^k \frac{1}{\tilde{g}} \exp \left\{ \tilde{g}U + \frac{1}{2} \tilde{h}U^2 \right\} \right. \]

\[- \sum_{k=0}^{m-1} \binom{m}{k} (-1)^k e^{\frac{1}{2} \tilde{h}U^2} \]

\[= \frac{m}{g^{m-1}} \left[\sum_{k=0}^{m-1} \binom{m-1}{k} (-1)^k \frac{1}{\tilde{g}} \exp \left\{ \tilde{g}U + \frac{1}{2} \tilde{h}U^2 \right\} \right. \]

\[- \frac{1}{mg} \sum_{k=0}^{m-1} \binom{m}{k} (-1)^k e^{\frac{1}{2} \tilde{h}U^2} \]

\[= \frac{m}{g^{m-1}} \left[\sum_{k=0}^{m-1} \binom{m-1}{k} (-1)^k \frac{1}{\tilde{g}} \left[\exp \{ \tilde{g}U \} - 1 \right] \exp \left\{ \tilde{h}U^2 / 2 \right\} \right] , \]

que es el resultado requerido.

\[\square \]

Demostración. Proposición 2.3

Supongamos que \(u_q \) es el menor número que satisface \(F_U (u_q) = q \), es decir, \(u_q \) corresponde al \(q \)-ésimo cuantil de la variable \(U \), al hacer el cambio de variable

\[z = u_q = F_U^{-1} (q) \]

\[dz = du_q = \frac{dq}{F_U' (u_q)} , \]

aquí se utiliza la expresión dada en (2.8), puesto que \(F_U' (u) = f_U (u) \), y como

\[\lim_{u \to -\infty} F_U (u) = 0 \quad y \quad \lim_{u \to \infty} F_U (u) = 1 , \]

teniendo en cuenta que \(f_U (u) \) es una función con dominio la recta real y contradominio el intervalo infinito \([0, \infty)\), al despejar \(dq \) y reemplazar, se obtiene

\[\int_{-\infty}^{\infty} z^n f_U (z) \, dz = \int_0^1 \left[F_U^{-1} (q) \right]^n \, dq. \]

\[\square \]

Apéndice C: Prueba de la fórmula dada en (2.24)

En este apéndice se dan los detalles de la prueba de la expresión (2.24), para ello se usa la Tabla I de transformadas de Fourier dada en Oberhettinger (1973) (expresión (79)) y después de algunas operaciones y simplificaciones se obtiene
que

\[2 \int_0^\infty \cos (\tilde{g} t) f_U(t) \exp \left\{ -\frac{\tilde{h}}{2} t^2 \right\} dt = \sqrt{\frac{\pi}{n|h|}} \left[\exp \left\{ \left(\frac{\sqrt{2} - i\tilde{g}}{\sqrt{2n|h|}} \right)^2 \right\} \Phi \left(\frac{i\tilde{g} - \sqrt{2}}{\sqrt{n|h|}} \right) \right. \\
+ \exp \left\{ \left(\frac{\sqrt{2} + i\tilde{g}}{\sqrt{2n|h|}} \right)^2 \right\} \Phi \left(\frac{-i\tilde{g} + \sqrt{2}}{\sqrt{n|h|}} \right) \right], \]

donde \(i \) es la unidad imaginaria y \(\Phi(\cdot) \) es la cdf de una variable aleatoria normal estándar, entonces

\[2 \int_0^\infty \cosh (\tilde{g} t) f_U(t) e^{-\frac{\tilde{h}}{2} t^2} dt = \sqrt{\frac{\pi}{n|h|}} \left[\exp \left\{ \left(\frac{\sqrt{2} + \tilde{g}}{\sqrt{2n|h|}} \right)^2 \right\} \Phi \left(\frac{-\tilde{g} + \sqrt{2}}{\sqrt{n|h|}} \right) \right. \\
+ \exp \left\{ \left(\frac{\sqrt{2} - \tilde{g}}{\sqrt{2n|h|}} \right)^2 \right\} \Phi \left(\frac{\tilde{g} - \sqrt{2}}{\sqrt{n|h|}} \right) \right], \]

esto se sigue del hecho de que \(\cos(i\tilde{g}) = \cosh(\tilde{g}) \). Sustituyendo la expresión anterior en (2.19) y simplificando se llega a

\[
\mu'_n = \frac{1}{g^n} \sqrt{\frac{\pi}{n|h|}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \left[\exp \left\{ \frac{1}{2} \left(\frac{\tilde{g} + \sqrt{2}}{\sqrt{n|h|}} \right)^2 \right\} \Phi \left(\frac{-\tilde{g} + \sqrt{2}}{\sqrt{n|h|}} \right) \right. \\
+ \exp \left\{ \frac{1}{2} \left(\frac{\tilde{g} - \sqrt{2}}{\sqrt{n|h|}} \right)^2 \right\} \Phi \left(\frac{\tilde{g} - \sqrt{2}}{\sqrt{n|h|}} \right) \right].
\]

Cuando \(g = 0 \) y \(h < 0 \), se obtiene que

\[
\mu'_n = \frac{1 + (-1)^n}{2\sqrt{n|h|}} \frac{\sqrt{2}}{(n|h|)} e^{\frac{1}{n|h|}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \left[\Gamma \left(\frac{k+1}{2} \right) - \int_{0}^{1/n|h|} u^{k-1} e^{-u} du \right] \\
= \frac{1 + (-1)^n}{2\sqrt{n|h|}} \frac{\sqrt{2}}{(n|h|)} e^{\frac{1}{n|h|}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \left[1 - \gamma \left(\frac{1}{n|h|}, \frac{k+1}{2} \right) \right] \Gamma \left(\frac{k+1}{2} \right),
\]

donde \(\gamma(z, \alpha) \) es la función gamma incompleta dada en (1.30).
Capítulo 3

Modelo de Precios de Opciones usando la distribución generalizada g-h de Tukey

Resumen 3.1. En este capítulo, usando la generalización de la familia de distribuciones $g - h$ de Tukey presentada en el Capítulo 2, se aproxima la \textit{edf} del precio del activo subyacente y se obtienen fórmulas cerradas para la valoración de opciones. Como caso especial se considera el caso cuando $h = 0$ y se establecen los precios de opciones para los modelos logsimétricos estudiados anteriormente.

\textbf{Palabras Claves:} familia de distribuciones $g - h$ de Tukey, precios de opciones, función dilogarítmica, funciones hipergeométricas.

3.1 Introducción

Un supuesto estándar que se hace en la práctica para establecer los precios teóricos de una opción es que el precio de las acciones objeto de estudio sigue una distribución lognormal. La fórmula de Black-Scholes se basa en que la volatilidad es constante y los logaritmos de los retornos tienen distribución normal. Sin embargo, ambas hipótesis no se cumplen en los mercados financieros y además la evidencia empírica muestra que las distribuciones de probabilidad de los rendimientos de las acciones financieras no son distribuciones normales, pues por lo general muestran asimetría y presentan exceso de curtosis.

Como se mencionó en el Capítulo 2 la distribución $g - h$ de Tukey ya se ha utilizado para estudiar los mercados financieros. La familia de distribuciones generalizadas $g - h$ de Tukey posee, en su forma general, dos parámetros, lo que le da una gran flexibilidad; en este capítulo se aproxima la distribución del precio del
3. Valoración de Opciones usando la distribución de Tukey

activos subyacentes mediante la distribución $g - h$ de Tukey y se obtienen fórmulas cerradas para la valoración de opciones. Bajo el supuesto de que el precio del activo sigue una distribución generalizada $g - h$ de Tukey se obtiene una fórmula más general para valorar opciones europeas, ya que con este supuesto tanto asimetrías como excesos de curtosis distintos de cero pueden ser incorporados directamente en la fórmula de valoración.

El modelo de valoración de opciones desarrollado en este Capítulo proporciona gran flexibilidad, cuando la distribución del precio del activo subyacente no se ajusta a la distribución lognormal, ya que incorpora de manera directa la asimetría y el exceso de curtosis de la cdf asociada al precio del activo subyacente.

El Capítulo está organizado de la siguiente manera: Sección 3.2 se presenta el modelo de valoración de opciones usando la familia de distribuciones generalizadas $g - h$ de Tukey y como caso particular se determinan los precios mediante distribuciones log-simétricas. En la sección 3.3 se establecen las sensibilidades de las opciones. En la sección 3.4 se explica la metodología de ajuste con simulación.

3.2 Valoración de opciones europeas

La mayoría de las técnicas modernas de valoración de opciones y modelos utilizados actualmente por los analistas del mercado tienen su origen en el modelo desarrollado por Black & Scholes (1973) y Merton (1973). En esta sección se establece la fórmula de valoración de opciones usando la familia de distribuciones generalizadas $g - h$ de Tukey estudiadas en el capítulo anterior.

3.2.1 Fórmulas de valoración de opciones Europeas

Sea X_t el precio del activo subyacente en el momento t, y supongamos que este sigue una distribución generalizada $g - h$ de Tukey, es decir, X_t se aproxima linealmente por (2.6). Las fórmulas para los precios de una opción de compra (venta) europea en el momento t sobre una acción que no paga dividendos, con precio de ejercicio K vienen dados en la siguiente proposición:
Proposición 3.1. El precio de una opción de compra europea con parámetros adecuados viene dado por

\[
E \left[(X_T - K)_+ \right] = e^{rT} C_t(K) = B \int_{-\delta_1}^{\infty} T_{g,h}(u) f_U(u) \, du - \kappa BF_U(\delta_1), \tag{3.1}
\]

y el precio de una opción de venta europea con parámetros adecuados es dado por

\[
E \left[(K - X_T)_+ \right] = e^{rT} P_t(K) = \kappa BF_U(-\delta_1) - B \int_{-\infty}^{-\delta_1} T_{g,h}(u) f_U(u) \, du, \tag{3.2}
\]

donde \(\delta_1 = -T_{g,h}(\kappa) \) y \(\kappa = \frac{K - A}{B} = \frac{K - E[X_T]}{B} + 2 \int_0^\infty \frac{\cosh(gu) - 1}{g} e^{\frac{1}{2}hu^2} f_U(u) \, du. \) \(\tag{3.3} \)

Demostración. Una prueba se puede encontrar en el Apéndice B.

De manera análoga a la metodología dada en (1.6), restando la fórmula de valoración (3.2) de (3.1), se obtiene la relación de paridad put-call para opciones europeas, analíticamente se tiene lo siguiente

\[
e^{rT} (C_t(K) - P_t(K)) = E[X_T] - K. \tag{3.4}
\]

A partir de la fórmula (3.1) se pueden encontrar algunos casos especiales dependiendo de la variable \(U \) que se asuma en (2.2), los detalles de la obtención de estas fórmulas aparecen también en el Apéndice B.

Caso I. Si en la expresión (2.6) se supone que la variable \(U \sim GED(1/2) \), usando (2.26) se determina \(E[Y] \), por consiguiente

\[
E[X_T] = \begin{cases}
A + \frac{B}{g \sqrt{1-h}} \left(e^{\frac{1}{2} \frac{g^2}{1-h}} - 1 \right), & \text{si } g \neq 0 \\
A & \text{si } g = 0.
\end{cases} \tag{3.5}
\]

Las fórmulas para los precios de una opción de compra (venta) europea en el momento \(t \) sobre una acción que no paga dividendos con precio de ejercicio \(K \) vienen dadas por

\[
E \left[(X_T - K)_+ \right] = e^{rT} C_t(K) = (E[X_T] - K) \Phi(\delta_3^N) + B \kappa \left[\Phi(\delta_3^N) - \Phi(\delta_1^N) \right] + \frac{B}{g \sqrt{1-h}} \left[\Phi(\delta_3^N) - \Phi(\delta_2^N) \right], \tag{3.6}
\]
3. Valoración de Opciones usando la distribución de Tukey

$$\mathbb{E} [(K - X_T)_+] = e^{rT} P_t (K) = (K - \mathbb{E} [X_T]) \Phi (-\delta_3^N)$$

$$+ B\kappa [\Phi (\delta_3^N) - \Phi (\delta_1^N)] + \frac{B}{g \sqrt{1 - h}} [\Phi (\delta_3^N) - \Phi (\delta_2^N)] . \quad (3.7)$$

donde \(\kappa = \frac{K - A}{B}\) y

$$\delta_1^N = - T_{g,h}^{-1} (\kappa), \hspace{1cm} \delta_2^N = \sqrt{1 - h} \delta_1^N, \hspace{1cm} \delta_3^N = \delta_2^N + \frac{g}{\sqrt{1 - h}} . \quad (3.8)$$

Aquí el superíndice denota la variable que se usa en la transformación de Tukey. Las expresiones anteriores (3.6) y (3.7) se calcularon erróneamente en Dutta & Babbel (2005) y en la fórmula de Tunaru et al. (2005) se restringe la solución para un caso particular. El cálculo de las ecuaciones (3.6) y (3.7) corrije la imprecisión de estos modelos. Además, las expresiones dadas en (3.6) y (3.7) permiten calcular fácilmente las “griegas” y también obtener la fórmula de Black-Scholes como un caso particular cuando \(h = 0\).

Caso II. Suponiendo en la expresión (2.6) que la variable \(U \sim GED(1)\) con \(g \neq 0, h < 0\) y usando la expresión (2.24) con \(n = 1\) se calcula \(\mathbb{E} [Y]\), en este caso se tiene

$$\mu_{g,h}^L = \frac{1}{g} \sqrt{\frac{\pi}{|h|}} \left[\exp \left\{ \frac{1}{2} \alpha_{1,0}^2 \right\} \Phi (-\alpha_{1,0}) + \exp \left\{ \frac{1}{2} \beta_{1,0}^2 \right\} \Phi (\beta_{1,0}) \right]$$

$$- 2 \exp \left\{ \frac{1}{|h|} \right\} \Phi \left(-\sqrt{\frac{2}{|h|}} \right) , \quad (3.9)$$

donde \(\alpha_{1,0}\) y \(\beta_{1,0}\) son las raíces reales mayor y menor, respectivamente, de la ecuación cuadrática dada en (2.25). Al denotar \(\kappa = \frac{K - A}{B}\), las fórmulas para los precios de una opción de compra (venta) europea en el momento \(t\) sobre una acción que no paga dividendos con precio de ejercicio \(K\) y \(\kappa < 0\) vienen dadas por

$$\mathbb{E} \left[(X_T - K)_+ \right] = e^{rT} C_t (K) = \mathbb{E} [X_T] - K + \frac{B}{2} \kappa \exp \left\{-\sqrt{2} \delta_1^L \right\}$$

$$- \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \left[\exp \left\{ \frac{1}{2} \alpha_{1,0}^2 \right\} \Phi (-\delta_3^L) - e^{\frac{i}{\pi}} \Phi (-\delta_2^L) \right] . \quad (3.10)$$
3.2. Valoración de opciones europeas

\[E[(K - X_T)_+] = e^{rT} P_t(K) = \frac{B}{2} \kappa e^{-\sqrt{2} \delta_3^L} + \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \Phi (-\delta_2^L) \]

\[- \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{2} \alpha_{1,0}^2 \right\} \Phi (-\delta_3^L), \quad (3.11) \]

donde

\[\delta_1^L = -T^{-1}_{g,h}(\kappa), \quad \delta_2^L = \sqrt{|h|} \left(\delta_1^L + \sqrt{2} \right), \quad \delta_3^L = \delta_2^L + \frac{g}{\sqrt{|h|}} \quad (3.12) \]

De manera análoga para \(\kappa > 0 \) se tiene que

\[E[(X_T - K)_+] = e^{rT} C_t(K) = \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \Phi (\delta_2^L) - \frac{B}{2} \kappa e^{\sqrt{2} \delta_1^L}, \quad (3.13) \]

y

\[E[(K - X_T)_+] = e^{rT} P_t(K) = K - E[X_T] - \frac{B}{2} \kappa \exp \left\{ \sqrt{2} \delta_1^L \right\} \]

\[+ \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \left[\exp \left\{ \frac{1}{2} \beta_{1,0}^2 \right\} \Phi (\delta_3^L) - \exp \left\{ \frac{1}{|h|} \right\} \Phi (\delta_2^L) \right], \quad (3.14) \]

donde

\[\delta_1^L = -T^{-1}_{g,h}(\kappa), \quad \delta_2^L = \sqrt{|h|} \left(\delta_1^L + \sqrt{2} \right), \quad \delta_3^L = \delta_2^L - \frac{g}{\sqrt{|h|}}. \quad (3.15) \]

Las expresiones dadas en (3.10) y (3.11) permiten calcular fácilmente las “griegas”.

3.2.2 Precio de opciones bajo distribuciones asimétricas

En esta sección se establece la fórmula de valoración de opciones empleando la distribución generalizada \(g \) de Tukey la cual fue dada por la ecuación (2.4). Como se mencionó en la Sección 2.4, esta subfamilia es una transformación no lineal de una variable aleatoria continua \(U \) y está parametrizada por \(g \). Además, esta subfamilia contiene distribuciones cuya asimetría incrementa a medida que el valor del parámetro \(g \) aumenta.
Si se despeja en la expresión (2.50) el parámetro de escala se obtiene
\[
\frac{B}{g} = \frac{\mathbb{E}(X) - \theta}{M_U(g)},
\]
(3.16)
donde \(M_U(g)\) es la \(fgm\) de la variable aleatoria \(U\) y el parámetro \(\theta\) es dado en (2.33). En esta sección, de acuerdo con Bingham & Kiesel (2004) la variable aleatoria no negativa
\[
Q(U) = \frac{e^{gU}}{M_U(g)}
g > 0,
\]
es empleada para definir el cambio de medida de probabilidad.

Proposición 3.2. El precio Logsimétrico (LS) de una opción de compra europea en el tiempo \(t\) sobre una acción que no paga dividendos con precio de ejercicio \(K\), viene dado por

\[
e^{rt} C_t(K) = (\mathbb{E}[X_T] - \theta) \left[1 - F_U(-\delta_{L_1}^{LS}; g)\right] - (K - \theta) F_U(\delta_{L_1}^{LS}),
\]
(3.17)
y el precio LS de una opción de venta europea en el tiempo \(t\) sobre una acción que no paga dividendos con precio de ejercicio \(K\), viene dado por

\[
e^{rt} P_t(K) = (K - \theta) F_U\left(-\delta_{L_1}^{LS}\right) - (\mathbb{E}[X_T] - \theta) F_U\left(-\delta_{L_1}^{LS}; g\right),
\]
(3.18)
donde \(F_U(\cdot; g)\) es la transformada Esscher con parámetro \(g\) dada en (1.43) y

\[
\delta_{L_1}^{LS} = -T_{g,0}^{-1}(\kappa) = \frac{1}{g} \ln \left[\frac{\mathbb{E}[X_T] - \theta}{M_U(g)(K - \theta)}\right], \quad \kappa > \theta, \ g \neq 0.
\]
(3.19)

Demostración. Una prueba se puede encontrar en el Apéndice C, al final de este capítulo.

Las expresiones (3.17) y (3.18) permiten obtener los precios de las opciones de compra y venta europeas, respectivamente, para los siguientes casos\(^9\)

1. Suponiendo que la variable \(U \sim GED^{(1/2)}\) y \(g > 0\), se tiene que

\[
e^{rt} C_t(K) = (\mathbb{E}[X_T] - \theta) \Phi(d_{*2}^t) - (K - \theta) \Phi\left(d_{*1}^t\right).
\]
(3.20)

Y usando las expresiones (2.14) y (2.33) se llega a

\[
e^{rt} P_t(K) = (K - \theta) \Phi(-d_{*2}^t) - (\mathbb{E}[X_T] - \theta) \Phi\left(-d_{*1}^t\right).
\]
(3.21)

\(^9\)Los detalles de estas expresiones aparecen en el Apéndice C.
3.2. Valoración de opciones europeas

donde

\[d_1^* = \frac{1}{g} \ln \left(\frac{\mathbb{E}[X_T] - \theta}{K - \theta} \right) + \frac{g}{2} \]
\[y \quad d_2^* = d_1^* - g. \quad (3.22) \]

 Nótese que estas expresiones coinciden con la fórmula de valoración de opciones del modelo Black & Scholes (1973), cuando \(\theta = 0 \) y \(g = \sigma \sqrt{T} \).

2. Cuando la variable \(U \sim GED(1) \) con \(0 < g < \frac{\sqrt{2}}{n} \), si \(\kappa \in \mathbb{R} \) entonces la expresión (3.17) que representa el valor de la opción de compra europea se puede expresar como

\[
e^{rT} C(K) = \begin{cases}
\mathbb{E}(X_T) - K + \frac{1}{2} \frac{K-\theta}{\gamma+1} \left[\frac{\mathbb{E}[X_T] - \theta}{(K-\theta)M_U(g)} \right]^{-\beta}, & \text{si } \kappa < 0 \\
\frac{1}{2} \frac{K-\theta}{\beta+1} \left[\frac{\mathbb{E}[X_T] - \theta}{(K-\theta)M_U(g)} \right]^{-\beta}, & \text{si } \kappa \geq 0.
\end{cases} \quad (3.23)\]

donde \(\beta = \frac{\sqrt{2}}{g} \). Nótese que cuando \(\theta = 0 \) los parámetros de localización y escala no aparecen en estas expresiones. El precio de la opción de venta europea puede determinarse usando la relación de paridad put-call.

3. Si la variable \(U \sim \text{Logística} \left(\frac{1}{\lambda}, \lambda^{-1}\right) \) con \(0 < g < \frac{\lambda}{n} \) y \(\lambda = \frac{\pi}{\sqrt{3}} \), entonces la expresión (3.17) con la cual se determina el valor de la opción de compra europea queda

\[
e^{rT} C(K) = (K - \theta) \left[\frac{e^{\lambda \delta_1 s}}{1 - g/\lambda} 2 F_1 \left(2, 1 - \frac{g}{\lambda}; 2 - \frac{g}{\lambda}; -e^{\lambda \delta_1 s} \right) - \frac{1}{2} \left(1 + \tanh \left(\frac{\lambda \delta_1 s}{2} \right) \right) \right], \quad (3.24)\]

donde \(2 F_1 (a, b; c; z) \) denota la función hipergeométrica. Por otra parte, el valor de la opción de venta europea queda

\[
e^{rT} P(K) = \frac{K - \theta}{2} \left[1 - 2 F_1 \left(1, \frac{g}{\lambda}; 1 + \frac{g}{\lambda}; -e^{-\lambda \delta_1 s} \right) + \frac{g}{\gamma + \lambda} e^{-\lambda \delta_1 s} 2 F_1 \left(1, 1 + \frac{g}{\lambda}; 2 + \frac{g}{\lambda}; -e^{-\lambda \delta_1 s} \right) \right]. \quad (3.25)\]

 Nótese que los parámetros de localización y escala no aparecen en estas expresiones cuando \(\theta = 0 \).
4. Cuando la variable \(U \sim \text{sech}(0, \frac{2}{\pi}) \) y \(0 < g < \frac{\pi}{2n} \), entonces la expresión (3.17) con la cual se determina el valor de la opción de compra europea queda

\[
e^{rt} C(K) = 2(K - \theta) \left[\frac{e^{\frac{\pi}{2}\delta_1 L S}}{\pi - 2g} 2F_1 \left(1, \frac{1}{2} - \frac{g}{\pi}; \frac{3}{2} - \frac{g}{\pi}; -e^{\pi\delta_1 L S} \right) - \frac{1}{\pi} \arctan \left(e^{\frac{\pi}{2}\delta_1 L S} \right) \right]. \tag{3.26}\]

El valor de la opción de venta europea puede obtenerse usando la siguiente fórmula

\[
e^{rt} P(K) = (K - \theta) \left[1 - \frac{2}{\pi} \arctan \left(e^{\frac{\pi}{2}\delta_1 L S} \right) \right] - \frac{2(K - \theta)}{\pi + 2g} e^{-\frac{\pi}{2}\delta_1 L S} 2F_1 \left(1, \frac{1}{2} + \frac{g}{\pi}; \frac{3}{2} + \frac{g}{\pi}; -e^{-\pi\delta_1 L S} \right). \tag{3.27}\]

Nótese que los parámetros de localización y escala no aparecen en estas expresiones cuando \(\theta = 0 \).

5. Si la variable \(U \sim \text{csch}(0, \frac{\sqrt{2}}{\pi}) \) y \(0 < g < \frac{\pi}{\sqrt{2}2n} \), entonces la expresión (3.17) que representa el valor de la opción de compra europea se puede expresar como

\[
e^{rt} C_t(K) = \frac{2(K - \theta)}{\frac{\pi}{\sqrt{2}}} e^{\frac{\lambda}{2}} \left[-\delta_1 L S 2F_1 \left(1, \frac{1}{2} - \frac{g}{\sqrt{2}\pi}; \frac{3}{2} - \frac{g}{\sqrt{2}\pi}; e^{\lambda} \right) + \frac{1}{\sqrt{2}} - \frac{g}{\sqrt{2}} 3F_2 \left(1, \frac{1}{2} - \frac{g}{\sqrt{2}\pi}; \frac{1}{2} - \frac{g}{\sqrt{2}\pi}; \frac{3}{2} - \frac{g}{\sqrt{2}\pi}; e^{\lambda} \right) \right] - \frac{K - \theta}{\pi^2} [2 \text{Li}_2(-\eta) - 2 \text{Li}_2(\eta) + \lambda \ln(-\eta)], \tag{3.28}\]

donde \(\lambda = \sqrt{2\pi\delta_1 L S} \), \(\eta = \tanh \left(\frac{\lambda}{2} \right) \) y \(\text{Li}_2(\cdot) \) denota la función dilogarítmica, esta función está tabulada en Lewin (1981). Nótese que cuando \(\theta = 0 \) los parámetros de localización y escala no aparecen en estas expresiones.

3.2.3 Valoración de opciones bajo distribuciones simétricas

Cuando se asume \(g \to 0 \) todas las distribuciones generalizadas \(h \) de Tukey son simétricas, luego si la variable \(U \sim \text{GED}(1/2) \), empleando las expresiones (2.5)
3.2. Valoración de opciones europeas

y (2.12) se llega a

\[e^{rt} C_t(K) = B \mathbb{E} (Y - \kappa)_+ = B \int_{\mathbb{R}} y t_{0,h}(y) dy - \kappa B [1 - F_{0,h}(\kappa)] \]

\[= B \int_{\mathbb{R}} H(u) \varphi(u) du - \kappa B \left[1 - \Phi \left(H^{-1}(\kappa) \right) \right], \quad h < 1 \]

\[= -B \kappa \Phi(\delta_1^*) - \frac{B}{(1-h)^{\frac{3}{2}}} \int_{H^{-1}(\kappa)} \varphi' \left(u, 0, \frac{1}{\sqrt{1-h}} \right) du \]

\[= \frac{B}{1-h} \varphi(\delta_2^*) - B \kappa \Phi(\delta_1^*), \quad (3.29) \]

donde \(\kappa = \frac{K-A}{B} \) y \(\varphi(x, \mu, \sigma) \) denota la pdf de una variable aleatoria normal con media \(\mu \) y desviación estándar \(\sigma \), y

\[\delta_1^* = -H^{-1}(\kappa) = -\sqrt{\frac{1}{h} W(h\kappa^2)} \quad \text{y} \quad \delta_2^* = \sqrt{1-h} \delta_1^*, \quad (3.30) \]

sustituyendo (2.16) y (3.5) se obtiene

\[e^{rt} C_t(K) = \mathbb{E} [X_T - K] \Phi(\delta_1^*) + \frac{B}{1-h} \frac{1}{\sqrt{2\pi}} \left(\frac{1}{|\kappa|} \delta_1^* \right)^{\frac{1-h}{2}}. \quad (3.31) \]

Del mismo modo se puede establecer la opción de venta europea y se llega a

\[e^{rt} P_t(K) = \mathbb{E} [(K - X)_+] = \kappa B \Phi(-\delta_1^*) + \frac{B}{1-h} \varphi(\delta_2^*) \]

\[= (K - \mathbb{E} [X_T]) \Phi(-\delta_1^*) + \frac{B}{1-h} \frac{1}{\sqrt{2\pi}} \left(\frac{1}{|\kappa|} \delta_1^* \right)^{\frac{1-h}{2}}. \quad (3.32) \]

La variable aleatoria \(t-\text{Student} \), con \(\upsilon \) grados de libertad, es decir, \(t_{(\upsilon)} \), se relaciona con la distribución generalizada \(h \) de Tukey mediante la siguiente ecuación

\[(1-4h)^5 (\upsilon - 2)^2 = (\upsilon - 4)^2 (1-2h)^6 \quad \text{con} \quad \upsilon > 4.\]

Esta ecuación tiene soluciones reales cuando \(0 < h < \frac{1}{4} \). Por ejemplo, si \(\upsilon = 10 \), es decir, \(t_{(10)} \), el valor de \(h \) se puede determinar resolviendo

\[576h^6 + 14656h^5 - 18320h^4 + 8800h^3 - 2020h^2 + 212h - 7 = 0, \]

en este caso, la solución de esta ecuación es \(h = 5.762447495 \times 10^{-2} \).
3.3 Las letras Griegas

Las Griegas son indicadores que nos permiten controlar las variables más importantes que impactan el valor de una opción. Para determinar las sensibilidades de las opciones, para el caso $h \neq 0$, se utilizan las siguientes proposiciones10

Proposición 3.3. Sea $Y \sim T_{g,h}(U)$ con $U \sim GED(1/2)$, si X es la variable aleatoria transformada $X = A + BY$, con parámetros $(A, B) = (localización, escala)$, entonces

$$
\left[E[X_T] - A + \frac{B}{g \sqrt{1 - h}} \right] \varphi \left(\delta_1^N \right) = \frac{B}{\sqrt{1 - h}} \left[\kappa \varphi \left(\delta_1^N \right) + \frac{1}{g} \varphi \left(\delta_2^N \right) \right]. \tag{3.33}
$$

donde δ_1^N, δ_2^N y δ_3^N son dadas en (3.8).

Proposición 3.4. Sea $Y \sim T_{g,h}(U)$ con $U \sim GED(1)$, si X es la variable aleatoria transformada $X = A + BY$, con parámetros $(A, B) = (localización, escala)$, entonces

$$
\exp \left\{ \frac{1}{|h|} \right\} \varphi \left(\delta_2^L \right) = \left\{ \begin{array}{ll}
\exp \left\{ \frac{\alpha_{1,0}}{2} \right\} \varphi \left(\delta_3^L \right) - \frac{\alpha_{1,0}}{2\sqrt{2\pi}} \exp \left\{-\sqrt{2}\delta_1^L \right\} & \text{si } \kappa < 0, \\
\exp \left\{ \frac{\beta_{1,0}}{2} \right\} \varphi \left(\delta_3^L \right) - \frac{\alpha_{1,0}}{2\sqrt{2\pi}} \exp \left\{\sqrt{2}\delta_1^L \right\} & \text{si } \kappa \geq 0.
\end{array} \right. \tag{3.34}
$$

donde δ_1^L, δ_2^L y δ_3^L son dadas en (3.12) y los parámetros $\alpha_{1,0}$ y $\beta_{1,0}$ son las raíces reales mayor y menor, respectivamente, de la ecuación cuadrática dada en (2.25).

Las sensibilidades de las opciones que se presentan a continuación son las derivadas parciales de las fórmulas de valoración dadas en (3.6) y (3.7). El Apéndice D al final de este capítulo contiene más detalles sobre cómo obtener las Griegas.

1. Delta

La tasa de cambio del precio de la opción con respecto al precio del activo subyacente, viene dada por

$$
\Delta_{\text{Compra}} = F_U(\delta_1) \quad y \quad \Delta_{\text{Venta}} = -F_U(-\delta_1).
$$

El valor absoluto de estas expresiones nos proporcionan las probabilidades de ejercer las correspondientes opciones.

2. Theta

10Las respectivas pruebas de estas proposiciones aparecen en el Apéndice A.
La tasa de cambio del valor de la opción con respecto al tiempo, viene dada por

\[e^{rt}\Theta_{\text{compra}} = e^{rt}C_t(K) - r\mathbb{E}[X_T]F_U(\delta_1) + \left[\frac{\mathbb{E}[X_T]}{g} - K F_U(\delta_1) - \frac{e^{rt}}{g} C_t(K) \right] \frac{\partial g}{\partial t} \]

\[- \frac{B}{g} \left[F_U(\delta_1) \int_{-\infty}^{\infty} u T_{g,h}(u)f_U(u)du - \int_{-\delta_1}^{\infty} u e^{-\frac{1}{2}hu^2} f_U(u)du \right] \frac{\partial g}{\partial t}. \]

Nótese que en este caso se satisface que \(\Theta_{\text{venta}} = \Theta_{\text{compra}} + Kr e^{-rt} \).

3. Gamma

La componente que más afecta a la delta son las variaciones del precio del subyacente y esto es lo que se mide con la gamma. Luego, la tasa de cambio de la delta de la opción con respecto al precio del activo subyacente, es dada por

\[\Gamma_{\text{compra}} = \Gamma_{\text{venta}} = -\frac{f_U(\delta_1)}{T'_{g,h}(-\delta_1)} \frac{\partial \kappa}{\partial X} = e^{rt} \frac{f_U(\delta_1)}{B} T''_{g,h}(-\delta_1) = e^{rt} \frac{t_{g,h}(\kappa)}{B}. \]

donde \(t_{g,h}(\cdot) \) es la pdf de la distribución generalizada \(g - h \) de Tukey dada en (2.9).

4. Rho

La tasa de cambio del valor de la opción con respecto a la tasa de interés, viene dada por:

\[\rho_{\text{compra}} = \tau \left[e^{-rt} \mathbb{E}[X_T] F_U(\delta_1) - C_t(K) \right] \quad \rho_{\text{venta}} = \rho_{\text{compra}} - K\tau e^{-rt}. \]

5. Vega

La Vega es la sensibilidad de la opción para un pequeño cambio en la volatilidad del activo subyacente

\[e^{rt} \nu_{\text{compra}} = \left[\frac{\mathbb{E}[X_T]}{g} - K F_U(\delta_1) - \frac{e^{rt}}{g} C_t(K) \right] \frac{\partial g}{\partial \sigma} \]

\[- \frac{B}{g} \left[F_U(\delta_1) \int_{-\infty}^{\infty} u T_{g,h}(u)f_U(u)du - \int_{-\delta_1}^{\infty} u e^{-\frac{1}{2}hu^2} f_U(u)du \right] \frac{\partial g}{\partial \sigma}, \]

la Vega es idéntica para opciones de compra y venta, es decir, \(\nu_{\text{venta}} = \nu_{\text{compra}}. \)
3.4 Una aplicación numérica

En esta sección se muestra mediante simulación numérica cómo se obtiene el precio de la opción de compra (venta) europea usando la distribución generalizada $g-h$ de Tukey y se comparan los resultados con los valores de la opción de compra (venta) del modelo dado en Jarrow & Rudd (1982). Los siguientes valores se suponen para la simulación: $K = 100; r = 0.10; \sigma^2 = 0.4; \tau = \frac{1}{4}$. Se calculan los precios de la opción de compra (venta) para los siguientes subyacentes $X_0 = \{90, 100, 110\}$.

En la Tabla 3.1 se muestran los precios de las opciones de compra (venta) y los valores de las Griegas, usando el modelo Black-Scholes

<table>
<thead>
<tr>
<th></th>
<th>$X_0 = 90$</th>
<th>$X_0 = 100$</th>
<th>$X_0 = 110$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$compra_{BS}$</td>
<td>8.3895</td>
<td>13.6811</td>
<td>20.1940</td>
</tr>
<tr>
<td>$venta_{BS}$</td>
<td>15.9205</td>
<td>11.2121</td>
<td>7.7250</td>
</tr>
<tr>
<td>Δ_{compra}^{BS}</td>
<td>0.4618</td>
<td>0.5937</td>
<td>0.7049</td>
</tr>
<tr>
<td>Γ_{compra}^{BS}</td>
<td>0.0140</td>
<td>0.0123</td>
<td>0.0099</td>
</tr>
<tr>
<td>Θ_{compra}^{BS}</td>
<td>-25.9206</td>
<td>-29.1008</td>
<td>-29.7421</td>
</tr>
<tr>
<td>ρ_{compra}^{BS}</td>
<td>8.2922</td>
<td>11.4232</td>
<td>14.3365</td>
</tr>
<tr>
<td>μ_{compra}^{BS}</td>
<td>17.8699</td>
<td>19.3939</td>
<td>18.9796</td>
</tr>
</tbody>
</table>

Tabla 3.1: Comparación de precios de la opción de compra (venta) y los valores de las Griegas usando BS

La Tabla 3.2 muestra el resumen descriptivo de la pdf generalizada $g-h$ de Tukey para $g = \sigma \sqrt{\tau}$ y variando los valores de h.

<table>
<thead>
<tr>
<th>h</th>
<th>μ_{gh}</th>
<th>σ^2_{gh}</th>
<th>Asimetría</th>
<th>Curtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0915</td>
<td>0.1419</td>
<td>0.8795</td>
<td>0.6890</td>
<td>3.0271</td>
</tr>
<tr>
<td>-0.0732</td>
<td>0.1456</td>
<td>0.9262</td>
<td>0.7375</td>
<td>3.2564</td>
</tr>
<tr>
<td>-0.0549</td>
<td>0.1494</td>
<td>0.9773</td>
<td>0.7922</td>
<td>3.5349</td>
</tr>
<tr>
<td>-0.0366</td>
<td>0.1535</td>
<td>1.0332</td>
<td>0.8543</td>
<td>3.8779</td>
</tr>
<tr>
<td>-0.0183</td>
<td>0.1577</td>
<td>1.0946</td>
<td>0.9252</td>
<td>4.3075</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.1621</td>
<td>1.1623</td>
<td>1.0070</td>
<td>4.8558</td>
</tr>
<tr>
<td>0.0183</td>
<td>0.1668</td>
<td>1.2373</td>
<td>1.1021</td>
<td>5.5713</td>
</tr>
<tr>
<td>0.0366</td>
<td>0.1716</td>
<td>1.3208</td>
<td>1.2140</td>
<td>6.5309</td>
</tr>
<tr>
<td>0.0549</td>
<td>0.1767</td>
<td>1.4140</td>
<td>1.3472</td>
<td>7.8602</td>
</tr>
<tr>
<td>0.0732</td>
<td>0.1821</td>
<td>1.5187</td>
<td>1.5080</td>
<td>9.7775</td>
</tr>
<tr>
<td>0.0915</td>
<td>0.1877</td>
<td>1.6369</td>
<td>1.7055</td>
<td>12.6871</td>
</tr>
</tbody>
</table>

Tabla 3.2: Resumen descriptivo de la distribución generalizada $g-h$ de Tukey

Nótese que para g fijo, tanto la asimetría como la curtosis son positivas y van incrementando a medida que crece el valor de h. Puesto que en Groeneveld &
Meeden (1984) se establece que tanto la asimetría como la curtosis son medidas invariantes a los cambios de escala, entonces, asumimos los valores obtenidos para la asimetría y curtosis en la tabla 3.2 para calcular los precios de las opciones usando el modelo de Jarrow & Rudd (1982).

En las tablas 3.3, 3.4 y 3.5 se comparan los precios de opciones con $X_0 = \{90, 100, 110\}$. La Tabla 3.3 muestra que los precios de las opciones de compra y venta están disminuyendo para diferentes valores de curtosis y asimetría.

<table>
<thead>
<tr>
<th>Generalizada $g - h$ de Tukey</th>
<th>Jarrow & Rudd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra</td>
<td>Venta</td>
</tr>
<tr>
<td>8.8361</td>
<td>16.3671</td>
</tr>
<tr>
<td>8.7584</td>
<td>16.2894</td>
</tr>
<tr>
<td>8.6753</td>
<td>16.2063</td>
</tr>
<tr>
<td>8.5864</td>
<td>16.1174</td>
</tr>
<tr>
<td>8.4913</td>
<td>16.0223</td>
</tr>
<tr>
<td>8.3895</td>
<td>15.9205</td>
</tr>
<tr>
<td>8.2804</td>
<td>15.8114</td>
</tr>
<tr>
<td>8.1635</td>
<td>15.6945</td>
</tr>
<tr>
<td>8.0381</td>
<td>15.5691</td>
</tr>
<tr>
<td>7.9035</td>
<td>15.4345</td>
</tr>
<tr>
<td>7.7590</td>
<td>15.2900</td>
</tr>
</tbody>
</table>

Tabla 3.3: Comparación de precios de opciones de compra (venta) con $X_0 = 90$

Por otra parte, los valores de Black-Scholes indicados en la tabla 3.3 para $X_0 = 90$ indican que la asimetría y curtosis, evidentemente, tienen un impacto significativo en el valor de la opción.

La Tabla 3.4 muestra que los precios de las opciones de compra y venta están disminuyendo para diferentes valores de asimetría y curtosis.

<table>
<thead>
<tr>
<th>Generalizada $g - h$ de Tukey</th>
<th>Jarrow & Rudd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compragh</td>
<td>Venta</td>
</tr>
<tr>
<td>14.3007</td>
<td>11.8316</td>
</tr>
<tr>
<td>14.1918</td>
<td>11.7228</td>
</tr>
<tr>
<td>14.0760</td>
<td>11.6070</td>
</tr>
<tr>
<td>13.9527</td>
<td>11.4837</td>
</tr>
<tr>
<td>13.8213</td>
<td>11.3522</td>
</tr>
<tr>
<td>13.6811</td>
<td>11.2121</td>
</tr>
<tr>
<td>13.5316</td>
<td>11.0626</td>
</tr>
<tr>
<td>13.3720</td>
<td>10.9030</td>
</tr>
<tr>
<td>13.0189</td>
<td>10.5499</td>
</tr>
<tr>
<td>12.8235</td>
<td>10.3545</td>
</tr>
</tbody>
</table>

Tabla 3.4: Comparación de precios de opción de compra (venta) con $X_0 = 100$
3. Valoración de Opciones usando la distribución de Tukey

Por otra parte, los valores del modelo de Black-Scholes indicados en la tabla 3.4 para $X_0 = 100$ muestran que la asimetría y el exceso de curtosis, evidentemente, tienen un impacto significativo en el valor de la opción.

La Tabla 3.5 muestra que los precios de las opciones de compra y venta se están reduciendo para diferentes escogencias de asimetría y curtosis.

<table>
<thead>
<tr>
<th>$g - h$ de Tukey</th>
<th>Jarrow & Rudd</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompraGH</td>
<td>CompraJR</td>
</tr>
<tr>
<td>20.8369</td>
<td>21.6755</td>
</tr>
<tr>
<td>20.7233</td>
<td>21.4922</td>
</tr>
<tr>
<td>20.6028</td>
<td>21.2684</td>
</tr>
<tr>
<td>20.4747</td>
<td>20.9912</td>
</tr>
<tr>
<td>20.3386</td>
<td>20.6421</td>
</tr>
<tr>
<td>20.1940</td>
<td>20.1940</td>
</tr>
<tr>
<td>20.0402</td>
<td>19.6057</td>
</tr>
<tr>
<td>19.8766</td>
<td>18.8124</td>
</tr>
<tr>
<td>19.7025</td>
<td>17.7070</td>
</tr>
<tr>
<td>19.5171</td>
<td>16.1035</td>
</tr>
<tr>
<td>19.3198</td>
<td>13.6567</td>
</tr>
</tbody>
</table>

Tabla 3.5: Comparación de precios de opción de compra (venta) con $X_0 = 110$

Nótese que los valores del modelo de Black-Scholes indicados en la tabla 3.5 para $X_0 = 110$ muestran que la asimetría y el exceso de curtosis, evidentemente, tienen un impacto significativo en el valor de la opción.

La Figura 3.1 representa el precio de la opción de compra usando la familia de distribuciones generalizadas $g - h$ de Tukey para distintos valores del grado de dinero de las opciones: fuera de dinero (OTM), en el dinero (ATM) y dentro de dinero (ITM), en función del valor de h. Para asimetrías y curtosis inferiores a la log-normal el precio de la opción de compra es más alto que los valores del modelo de Black-Scholes y cuando las asimetrías y curtosis son mayores que la log-normal los precios de la opción de compra son inferiores a los valores del modelo de Black-Scholes.
3.4. Una aplicación numérica

La figura 3.2 representa el precio de la opción de venta usando la familia de distribuciones generalizadas $g - h$ de Tukey para opciones fuera de dinero (OTM), en el dinero (ATM) y dentro de dinero (ITM), en función del valor de h. Cuando asumimos asimetrías y curtosis menores que la log-normal los precios de las opciones de venta son más altos que los valores usando Black-Scholes y para asimetrías y curtosis mayores que la log-normal los precios de venta son más bajos que los valores empleando Black-Scholes.

La figura 3.3 representa el comportamiento de la delta usando la familia de distribuciones generalizadas $g - h$ de Tukey, para tres opciones con diferentes valores de h. La figura muestra que una opción dentro de dinero (ITM) será más sensible al precio de la acción que una opción fuera de dinero (OTM).
Figura 3.3: Delta para la opción de compra usando $g - h$ de Tukey con distintos moneyness

La figura 3.4 muestra los gráficos de las gammas para opciones de compra usando la familia generalizada de distribuciones $g - h$ de Tukey, para tres valores diferentes de h. Cuando asumimos asimetrías y curtosis menores que la log-normal las gammas para opciones de compra son superiores a las gammas de Black-Scholes y para asimetrías y curtosis mayores que la log-normal los precios de las gammas son más bajos que los valores de las gammas de Black-Scholes.

Figura 3.4: Gamma para la opción de compra usando $g - h$ de Tukey con distintos moneyness

La figura 3.5 corresponde a los gráficos de la theta para opciones de compra usando la familia generalizada de distribuciones $g - h$ de Tukey para tres valores distintos de h. Para asimetrías y curtosis mayores que la log-normal las thetas para opciones de compra son superiores a las thetas de Black-Scholes y para asimetrías...
y curtosis menores que la log-normal las thetas para opciones de compra son más bajas que los valores de las thetas de Black-Scholes.

Figura 3.5: Theta para la opción de compra usando \(g - h \) de Tukey con distintos moneyness

La figura 3.6 muestra que las vegas para opciones de compra usando la familia generalizada de distribuciones \(g - h \) de Tukey tienden a ser mayores para opciones en el dinero, y también mayores para opciones con moderada curtosis y asimetría. La Vega se expresa como el resultado de una variación porcentual de la volatilidad, es decir, dividiendo la derivada en 100.

Figura 3.6: Vega para la opción de compra usando \(g - h \) de Tukey con distintos moneyness

La figura 3.7 muestra las rho para opciones de compra usando la familia generalizada de distribuciones \(g - h \) de Tukey, para tres valores diferentes de \(h \).
3. Valoración de Opciones usando la distribución de Tukey

Figura 3.7: Rho para la opción de compra usando $g - h$ de Tukey con distintos moneyness

Por otra parte, cabe aclarar que los precios de opciones de compra (venta) europeas usando el modelo Jarrow & Rudd (1982) puede en algunos casos coincidir con los valores de Black & Scholes, nótese que si

$$\eta_1 = \frac{q}{4} (\beta_2(F) - 3) d_4 \frac{\varphi(d_2)}{\varphi(d_1)} - \frac{q^3}{4} d_4 (\omega^3 + 3\omega^2 + 6\omega + 6) \frac{\varphi(d_2)}{\varphi(d_1)}, \quad (3.35)$$

donde

$$d_4 = \frac{d_3^2 - 1}{\sigma \sqrt{t} d_3} - 1 \quad \text{y} \quad d_3 = d_2 - \sigma \sqrt{T},$$

entonces sustituyendo en la expresión (1.12) se tiene que $C_t^{JR}(K) = C_t^{BS}(K)$.

3.5 Apéndices

En este apartado aparecen todas las pruebas de las ecuaciones obtenidas en este capítulo.

Apéndice A: Pruebas de las proposiciones 3.3 y 3.4

Demostración. Proposición 3.3

Evaluando las expresiones dadas en (3.8) en la *pdf* normal se tiene que

$$\varphi(\delta_2^N) = \varphi(\delta_1^N) \exp \left\{ \frac{1}{2} h(\delta_1^N)^2 \right\},$$
\[\varphi(\delta_3^N) = \varphi(\delta_2^N) \exp \left\{ -g\delta_1^N - \frac{g^2}{2(1-h)} \right\}. \]

Luego,

\[\varphi(\delta_2^N) \exp \left\{ -g\delta_1^N \right\} = \varphi(\delta_1^N) \exp \left\{ -g\delta_1^N + \frac{1}{2} h(\delta_1^N)^2 \right\}, \]

reescribiendo esta última en términos de la \(T_{g,h}(\cdot) \)

\[\exp \left\{ -g\delta_1^N + \frac{1}{2} h(\delta_1^N)^2 \right\} \varphi(\delta_1^N) = \left[gT_{g,h}(-\delta_1^N) + e^{\frac{1}{2}h(\delta_1^N)^2} \right] \varphi(\delta_1^N). \]

Por otra parte, usando las expresiones (1.19) y (3.5), y asumiendo \(g \neq 0 \)

\[\frac{Be^{\frac{1}{2} \sigma^2}}{g \sqrt{1-h}} = \mathbb{E}[X_T] - A + \frac{B}{g \sqrt{1-h}}, \quad (3.36) \]

nótese que esta última expresión coincide con la dada en Dutta & Babbel (2005), sustituyendo en \(\varphi(\delta_3^N) \)

\[\frac{1}{g} \exp \left\{ \frac{1}{2} \frac{g^2}{1-h} \right\} \varphi(\delta_3^N) = \kappa \varphi(\delta_1^N) + \frac{1}{g} \varphi(\delta_2^N) \]

\[\left[\mathbb{E}[X_T] - A + \frac{B}{g \sqrt{1-h}} \right] \varphi(\delta_3^N) = \frac{B}{\sqrt{1-h}} \left[\kappa \varphi(\delta_1^N) + \frac{1}{g} \varphi(\delta_2^N) \right]. \]

\[\Box \]

Demostración. Proposición 3.4

Para probar la primera parte, se evalúa en la pdf normal las expresiones dadas en (3.12) y se tiene que

\[\varphi(\delta_3^L) = \varphi(\delta_2^L) \exp \left\{ \frac{1}{|h|} - g\delta_1^L - \frac{\alpha_1^2}{2} \right\}. \]

Entonces,

\[\exp \left\{ \frac{\alpha_1^2}{2} \right\} \varphi(\delta_3^L) = \exp \left\{ \frac{1}{|h|} - g\delta_1^L \right\} \varphi(\delta_2^L), \quad (3.37) \]

por otra parte

\[\exp \left\{ \frac{1}{|h|} - g\delta_1^L \right\} \varphi(\delta_2^L) = \frac{g\kappa}{\sqrt{2\pi}} \exp \left\{ -\sqrt{2\delta_1^L} \right\} + \exp \left\{ \frac{1}{|h|} \right\} \varphi(\delta_2^L). \quad (3.38) \]
Sustituyendo en la expresión (3.37) se obtiene la prueba. De manera análoga se tiene la segunda parte.

Apéndice B: Prueba de las fórmulas para precios de opciones

Si \(X \) es aproximada por (2.6), es decir, \(X = A + BY \) y denotando \(\kappa = \frac{K-A}{B} \)

\[
e^{rt} C_t(K) = E \left[(A + BY - K)_+ \right] = B E \left[(Y - \kappa)_+ \right]
= B \int_{-\delta_1}^{\infty} y t_{g,h}(y) dy - \kappa B \left[1 - F_{g,h}(\kappa) \right],
\]

(3.39)
donde \(F_{g,h}(\cdot) \) fue dada en (2.12). Asumiendo que \(g > 0 \) y sustituyendo (2.2) y (2.12) se tiene

\[
e^{rt} C_t(K) = \frac{B}{g} \int_{-\delta_1}^{\infty} (e^{gu} - 1) e^{\frac{1}{2}hu^2} f_U(u) du - \kappa B \left[1 - F_U(-\delta_1) \right]
= \frac{B}{g} \int_{-\delta_1}^{\infty} (e^{gu} - 1) e^{\frac{1}{2}hu^2} f_U(u) du - \kappa BF_U(\delta_1),
\]
donde \(\delta_1 = -T_{g,h}^{-1}(\kappa) \), en esta expresión se usa que la variable aleatoria \(U \) es simétrica. Por consiguiente

1. Cuando la variable \(U \sim GED(1/2) \), entonces

\[
e^{rt} C_t(K) = B e^{\frac{1}{2}h\delta_1^2} \left[1 - \Phi \left(\sqrt{1 - h} \delta_1 - \frac{g}{\sqrt{1 - h}} \right) \right]
- \frac{B}{g \sqrt{1 - h}} \left[1 - \Phi \left(\sqrt{1 - h} \delta_1 \right) \right] - \kappa B \Phi(\delta_1).
\]

(3.40)

Sustituyendo (3.36) en (3.40), se obtiene que

\[
e^{rt} C_t(K) = E \left[X_T \right] \Phi(\delta_3^N) - K \Phi(\delta_1^N) - A \left[\Phi(\delta_3^N) - \Phi(\delta_1^N) \right]
+ \frac{B}{g \sqrt{1 - h}} \left[\Phi(\delta_3^N) - \Phi(\delta_2^N) \right],
\]
donde
\[\delta_1^N = \delta_1, \quad \delta_2^N = \sqrt{1 - h} \delta_1^N, \quad \delta_3^N = \delta_2^N + \frac{g}{\sqrt{1 - h}}, \]

simplificando se obtiene la fórmula (3.6) para el precio de una opción de compra europea y similarmente se establece la expresión (3.7).

2. Si la variable \(U \sim GED(1) \) con \(g \neq 0, h < 0 \) y \(\kappa < 0 \), entonces la primera integral de la expresión (3.39) quedaría
\[
\int_{\kappa}^{\infty} y t_{g,h}(y) dy = \int_{\kappa}^{0} y \frac{f\left(T_{g,h}^{-1}(y)\right)}{T_{g,h}'\left(T_{g,h}^{-1}(y)\right)} dy + \int_{0}^{\infty} y \frac{f\left(T_{g,h}^{-1}(y)\right)}{T_{g,h}'\left(T_{g,h}^{-1}(y)\right)} dy = I_1 + I_2,
\]
empleando el cambio de variable dado en (2.13) y sustituyendo en \(I_1 \) se obtiene
\[
I_1 = \int_{-\delta_1}^{0} T_{g,h}(w) f(w) dw = \sqrt{\pi} \int_{-\delta_1}^{0} e^{-gw} e^{\phi_1 u} - 1 e^{-\frac{\sqrt{2}u}{g} - \frac{|h|u^2}{2}} du
\]
\[
= \frac{\sqrt{\pi}}{g} \int_{\delta_1}^{0} e^{-\frac{\sqrt{2}u}{g} - \frac{|h|u^2}{2}} du - \frac{\sqrt{\pi}}{g} \int_{\delta_1}^{0} e^{-gw} e^{-\frac{\sqrt{2}u}{g} - \frac{|h|u^2}{2}} du
\]
\[
= - \frac{1}{g} \sqrt{\frac{\pi}{2}} \exp \left\{ \frac{1}{|h|} \right\} \int_{\delta_1}^{0} \exp \left\{ - \frac{|h|}{2} \left(u + \frac{\sqrt{2}}{|h|} \right)^2 \right\} du
\]
\[
- \frac{1}{g} \sqrt{\frac{\pi}{2}} \exp \left\{ \frac{|h|}{2} \frac{\alpha_1,0}{|h|} \right\} \int_{\delta_1}^{0} \exp \left\{ - \frac{|h|}{2} \left(u + \frac{\alpha_1,0}{\sqrt{|h|}} \right)^2 \right\} du,
\]
donde \(\delta_1 = -T_{g,h}^{-1}(\kappa) \), asumiendo los siguientes cambios de variables
\[
v = \sqrt{|h|} \left(u + \frac{\sqrt{2}}{|h|} \right) \quad dv = \sqrt{|h|} du \quad (3.41)
\]
\[
z = \sqrt{|h|} \left(u + \frac{\alpha_1,0}{\sqrt{|h|}} \right) \quad dz = \sqrt{|h|} du, \quad (3.42)
\]
al sustituir se obtiene que
\[
I_1 = \frac{\sqrt{\pi}}{g} \int_{\delta_1}^{\frac{\sqrt{2}}{|h|}} \frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{1}{|h|} \right\} \int_{\delta_1 + \frac{\alpha_1,0}{|h|}}^{\frac{\sqrt{2}}{|h|}} \exp \left\{ - \frac{1}{2} v^2 \right\} dv
\]
\[
- \frac{\sqrt{\pi}}{g} \int_{\delta_1}^{\alpha_1,0,0} \frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{\alpha_1,0}{2} \right\} \int_{\delta_1 + \frac{\alpha_1,0}{\sqrt{|h|}}}^{\frac{\alpha_1,0}{\sqrt{|h|}}} \exp \left\{ - \frac{1}{2} z^2 \right\} dz
\]
3. Valoración de Opciones usando la distribución de Tukey

\[I_1 = \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \left[\Phi \left(\frac{\sqrt{2}}{\sqrt{|h|}} \right) - \Phi \left(\sqrt{|h|} \left(\delta_1 + \frac{\sqrt{2}}{|h|} \right) \right) \right] \\
- \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\} \left[\Phi (\alpha_{1,0}) - \Phi \left(\sqrt{|h|} \left(\delta_1 + \frac{\alpha_{1,0}}{|h|} \right) \right) \right]. \]

Por otra parte, la otra integral queda

\[I_2 = \int_0^\infty T_{g,h}(u) f(u) du = \sqrt{\pi} \int_0^\infty \frac{e^{gu} - 1 e^{-\sqrt{2}u}}{\sqrt{2\pi}} e^{-\frac{|h|u^2}{2}} du = \int_0^\infty \frac{e^{gu} e^{-\frac{|h|u^2}{2}}}{\sqrt{2\pi}} du - \frac{\sqrt{\pi}}{g} \int_0^\infty \frac{e^{-\frac{|h|u^2}{2}}}{\sqrt{2\pi}} du = \frac{\sqrt{\pi}}{g} \exp \left\{ \frac{|h|}{2} \right\} \int_0^\infty \frac{1}{\sqrt{2\pi}} \exp \left\{ -\frac{|h|}{2} \left(u - \frac{\beta_{1,0}}{\sqrt{|h|}} \right)^2 \right\} du \\
- \frac{\sqrt{\pi}}{g} \exp \left\{ \frac{1}{|h|} \right\} \frac{1}{\sqrt{2\pi}} \int_0^\infty \exp \left\{ -\frac{|h|}{2} \left(u + \frac{\sqrt{2}}{|h|} \right)^2 \right\} du, \]

Sean

\[v = \sqrt{|h|} \left(u + \frac{\sqrt{2}}{|h|} \right) \quad dv = \sqrt{|h|} du \]
\[z = \sqrt{|h|} \left(u - \frac{\beta_{1,0}}{\sqrt{|h|}} \right) \quad dz = \sqrt{|h|} du. \]

Por consiguiente,

\[I_2 = \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{\beta_{1,0}^2}{2} \right\} \frac{1}{\sqrt{2\pi}} \int_{-\beta_{1,0}}^\infty \exp \left\{ -\frac{1}{2} z^2 \right\} dz \\
- \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \frac{1}{\sqrt{2\pi}} \int_{\frac{\beta_{1,0}}{\sqrt{|h|}}}^\infty \exp \left\{ -\frac{1}{2} v^2 \right\} dv = \frac{\sqrt{\pi}}{g \sqrt{|h|}} \left[\exp \left\{ \frac{\beta_{1,0}^2}{2} \right\} \Phi (\beta_{1,0}) - \exp \left\{ \frac{1}{|h|} \right\} \Phi \left(\frac{-\sqrt{2}}{\sqrt{|h|}} \right) \right], \]
aquí se uso la expresión (1.19). Por lo tanto,

\[
I_1 + I_2 = \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{\beta_{1,0}^2}{2} \right\} \Phi \left(\frac{\beta_{1,0}}{2} \right)
- \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \left[\Phi \left(-\frac{\sqrt{2}}{\sqrt{|h|}} \right) - \Phi \left(\frac{\sqrt{2}}{\sqrt{|h|}} \right) \right]
- \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \Phi \left(\sqrt{|h|} \left(\delta_1 + \frac{\alpha_{1,0}}{\sqrt{|h|}} \right) \right)
- \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\} \left[\Phi \left(\alpha_{1,0} \right) - \Phi \left(\sqrt{|h|} \left(\delta_1 + \frac{\alpha_{1,0}}{\sqrt{|h|}} \right) \right) \right]
\]

usando la expresión (3.9) se obtiene

\[
I_1 + I_2 = \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{\beta_{1,0}^2}{2} \right\} \Phi \left(\frac{\beta_{1,0}}{2} \right) + \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\}
- \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\} \left[\Phi \left(\alpha_{1,0} \right) + \Phi \left(\sqrt{|h|} \left(\delta_1 + \frac{\alpha_{1,0}}{\sqrt{|h|}} \right) \right) \right]
- \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \left[2\Phi \left(-\frac{\sqrt{2}}{\sqrt{|h|}} \right) - \Phi \left(-\sqrt{|h|} \left(\delta_1 + \frac{\alpha_{1,0}}{\sqrt{|h|}} \right) \right) \right]
\]

\[= \mu_{gh} + \frac{\sqrt{\pi}}{g \sqrt{|h|}} \left[\exp \left\{ \frac{1}{|h|} \right\} \Phi \left(-\delta_L \right) - \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\} \Phi \left(-\delta_3 \right) \right]\]

donde

\[
\delta_1 = \delta_1 \quad \delta_2 = \sqrt{|h|} \left(\delta_1^L + \frac{\alpha_{1,0}}{\sqrt{|h|}} \right) \quad \delta_3 = \delta_2^L + \frac{g}{\sqrt{|h|}}.
\]

Empleando la cdf dada en (1.26) y puesto que si \(\kappa < 0 \) entonces \(T_{g,h}^{-1} (\kappa) < 0 \), el segundo término de la expresión (3.39) queda

\[B \kappa \left[1 - F_U \left(-\delta_1 \right) \right] = B \kappa \left(1 - \frac{1}{2} e^{-\sqrt{2} \delta_1^L} \right) \]

\[I_3 = K - A - \frac{B \kappa}{2} \exp \left\{ -\sqrt{2} \delta_1^L \right\} .\]

Finalmente sustituyendo \(I_1, I_2 \) y \(I_3 \), en la expresión (3.39) se llega a

\[e^{\tau} C_t (K) = A + B \mu_{gh} - K + \frac{B \kappa}{2} \exp \left\{ -\sqrt{2} \delta_1^L \right\} + \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \left[\exp \left\{ \frac{1}{|h|} \right\} \Phi \left(-\delta_2^L \right) - \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\} \Phi \left(-\delta_3^L \right) \right].\]
3. Valoración de Opciones usando la distribución de Tukey

Puesto que \(\mathbb{E}[X_T] = A + B\mu_{gh} \), se llega a

\[
e^{\tau T} C_t(K) = \mathbb{E}[X_T] - K + \frac{B}{2} \kappa \exp \left\{ -\sqrt{2}\delta_L \right\} + \frac{B\sqrt{\pi}}{g\sqrt{|h|}} \left[\exp \left\{ \frac{1}{|h|} \right\} \Phi (-\delta_L) - \exp \left\{ \frac{\alpha_{1,0}}{2} \right\} \Phi (-\delta_L^3) \right] \]

Para la opción de venta europea (asumiendo \(\kappa < 0 \)), se tiene

\[
e^{\tau T} P_t(K) = \mathbb{E} \left[(K - (A + BY))_+ \right] = B\mathbb{E} \left[(\kappa - Y)_+ \right] = \kappa B \int_{\infty}^{\kappa} t_{g,h}(y)dy - B \int_{-\infty}^{\kappa} y t_{g,h}(y)dy, \tag{3.43}
\]

en este caso la primera integral quedaría

\[
I_4 = -\int_{-\infty}^{\kappa} y t_{g,h}(y)dy = -\int_{-\infty}^{\kappa} y \frac{f(T_{g,h}^{-1}(y))}{T_{g,h}'(T_{g,h}^{-1}(y))}dy
\]

empleando el cambio de variable dado en (2.13) y sustituyendo en \(I_4 \) se obtiene

\[
I_4 = -\int_{-\infty}^{\delta_1} T_{g,h}(w) f(w)dw.
\]

Al hacer la sustitución \(w = -u \), se llega a

\[
I_4 = \int_{\delta_1}^{\infty} T_{g,h}(-u) f(-u)du = \int_{\delta_1}^{\infty} e^{-gu}T_{g,h}(u)f(u)du
\]

\[
= \sqrt{\pi} \int_{\delta_1}^{\infty} e^{-gu} \frac{e^{gu} - 1 - e^{-\sqrt{2u}} - \frac{|h|}{\sqrt{2\pi}}u^2}{\sqrt{2\pi}}du
\]

\[
= \frac{\sqrt{\pi}}{g} \int_{\delta_1}^{\infty} e^{-\sqrt{2u}} \frac{1}{\sqrt{2\pi}}e^{-\frac{|h|}{\sqrt{2\pi}}u^2}du - \frac{\sqrt{\pi}}{g} \int_{\delta_1}^{\infty} e^{-gu} \frac{e^{-\sqrt{2u}} - \frac{|h|}{\sqrt{2\pi}}u^2}{\sqrt{2\pi}}du
\]

\[
= \frac{\sqrt{\pi}}{g} \frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{1}{|h|} \right\} \int_{\delta_1}^{\infty} \exp \left\{ -\frac{|h|}{2} \left(u + \frac{\sqrt{2}}{|h|} \right)^2 \right\}du
\]

\[
- \frac{\sqrt{\pi}}{g} \frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\} \int_{\delta_1}^{\infty} \exp \left\{ -\frac{|h|}{2} \left(u + \frac{\alpha_{1,0}}{\sqrt{|h|}} \right)^2 \right\}du
\]
3.5. Apéndices

usando los cambios de variable dados en (3.41) y (3.41) se obtiene

\[I_4 = \frac{\sqrt{\pi}}{g\sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \frac{1}{\sqrt{2\pi}} \int_{\sqrt{|h|}(\delta_1 + \frac{1}{\sqrt{|h|}})}^{\infty} \exp \left\{ -\frac{1}{2}v^2 \right\} dv \]

\[- \frac{\sqrt{\pi}}{g\sqrt{|h|}} \exp \left\{ \frac{|h|}{2} \left(\frac{\alpha_{1,0}}{\sqrt{|h|}} \right)^2 \right\} \frac{1}{\sqrt{2\pi}} \int_{\sqrt{|h|}(\delta_1 + \frac{\alpha_{1,0}}{\sqrt{|h|}})}^{\infty} \exp \left\{ -\frac{1}{2}z^2 \right\} dz \]

\[= \frac{\sqrt{\pi}}{g\sqrt{|h|}} \exp \left\{ \frac{|h|}{2} \right\} \left[1 - \Phi \left(\frac{\sqrt{|h|}(\delta_1 + \frac{\sqrt{2}}{\sqrt{|h|}})}{\sqrt{|h|}(\delta_1 + \frac{\alpha_{1,0}}{\sqrt{|h|}})} \right) \right] \]

Para la segunda integral de la expresión (3.43) se tiene que como \(\kappa < 0 \) entonces

\[T^{-1}_{g,h}(\kappa) < 0 \]

y usando la expresión (1.26) se llega a

\[I_5 = B\kappa F_U \left(T^{-1}_{g,h}(\kappa) \right) = \frac{B\kappa}{2} e^{-\sqrt{2}\delta_L^L}, \]

reemplazando \(I_4, I_5 \) en la expresión (3.43) se llega a

\[e^{rt} P_t(K) = \frac{\sqrt{\pi}}{g\sqrt{|h|}} \left[\exp \left\{ \frac{|h|}{2} \right\} \Phi \left(\delta_L^L \right) - \exp \left\{ \frac{1}{2}\alpha_{1,0}^2 \right\} \Phi \left(\delta_L^L \right) \right] + \frac{B}{2}\kappa e^{-\sqrt{2}\delta_L^L}. \]

Apéndice C: Prueba de las fórmulas de precio de opciones bajo distribuciones asimétricas

Si en la expresión (3.39) se asume que \(h = 0 \), se tiene

\[\mathbb{E} [(A + BY - K)_+] = B \mathbb{E} [(Y - \kappa)_+] = B \int_{\kappa}^{\infty} y t_{9,0}(y) dy - \kappa B \left[1 - F_{9,0}(\kappa) \right] \]

donde \(F_{9,h}(\cdot) \) es dada en (2.12) y \(\kappa = \frac{K - A}{B} \). Asumiendo \(g > 0 \) y reemplazando (2.4), (2.12) y (3.16) se obtiene que

\[e^{rt} C_t(K) = \frac{B}{g} \int_{-\delta_1}^{\infty} (e^{gu} - 1) f(u) du - \kappa B \left[1 - F_U \left(-\delta_1^L \right) \right] \]

\[= \frac{\mathbb{E}(X_T) - \theta}{M_U(g)} \int_{-\delta_1}^{\infty} e^{gu} f(u) du - (K - \theta) F_U \left(\delta_1^L \right), \]
donde
\[
\delta_1^{LS} = -T^{-1}_{g,0} (\kappa) = \frac{1}{g} \ln \left[\frac{\mathbb{E}[X_T] - \theta}{M_U (g) (K - \theta)} \right].
\]
(3.44)

Usando la transformada Esscher se obtiene que
\[
e^{rt} C_t (K) = (\mathbb{E}(X_T) - \theta) \left[1 - \overline{F}_U (-\delta_1^{LS}; g) \right] - (K - \theta) \Phi (\delta_1^{LS}),
\]
(3.45)
aquí \(\overline{F}_U (x; g)\) denota la transformada de Esscher con parámetro \(g\) dada en (1.43).

Así se obtiene la fórmula (3.17) para el precio de una opción de compra europea y del mismo modo la expresión (3.18) para una opción de venta europea.

- Cuando la variable \(U \sim GED^{(1/2)}\) se tiene que la \(fgm\) es
\[
M_U (g) = \exp \left\{ \frac{1}{2} g^2 \right\},
\]
al reemplazar en (1.43), se obtiene
\[
\Phi(x; g) = e^{-\frac{1}{2} g^2} \int_{-\infty}^{x} e^{gw} \varphi (w) \, dw = \frac{e^{-\frac{1}{2} g^2}}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp \left\{ -\frac{1}{2} (w - g)^2 + \frac{1}{2} g^2 \right\} \, dw = \Phi (x - g).
\]

Sustituyendo esto en (3.45), se tiene
\[
e^{rt} C_t (K) = (\mathbb{E}[X_T] - \theta) \Phi \left(g + \delta_1^{LS} \right) - (K - \theta) \Phi (\delta_1^{LS})
\]
\[
= (\mathbb{E}[X_T] - \theta) \Phi \left[g + \frac{1}{g} \ln \left(\frac{\mathbb{E}[X_T] - \theta}{(K - \theta) e^{\frac{1}{2} g^2}} \right) \right] - (K - \theta) \Phi \left[\frac{1}{g} \ln \left(\frac{\mathbb{E}[X_T] - \theta}{(K - \theta) e^{\frac{1}{2} g^2}} \right) \right].
\]
(3.46)

Haciendo las sustituciones
\[
d^*_1 = \frac{1}{g} \ln \left(\frac{\mathbb{E}[X_T] - \theta}{K - \theta} \right) + \frac{g}{2} \quad y \quad d^*_2 = d^*_1 - g,
\]
(3.47)
entonces la expresión (3.46) queda
\[
e^{rt} C_t (K) = (\mathbb{E}[X_T] - \theta) \Phi (d^*_1) - (K - \theta) \Phi (d^*_2).
\]
(3.48)
De manera análoga para una opción de venta europea se obtiene

\[e^{rt} P_t(K) = (K - \theta) \Phi(-\delta_1^{LS}) - \left(\mathbb{E} [X_T] - \theta \right) \Phi(-\delta_1^{LS} + g) \]

\[= (K - \theta) \Phi(-d_2^* - \theta \mathbb{E} [X_T]) \Phi(-d_2^*) \cdot (3.49) \]

- Cuando la variable \(U \sim GED(1) \) y \(0 < g < \sqrt{\frac{\pi}{n}} \), se tiene que su \(fgm \) es

\[M_U(g) = \frac{2}{2 - g^2} \]

al sustituir en (1.43), se tiene

\[F_U(x; g) = \frac{2 - g^2}{2} \int_{-\infty}^{x} e^{gw} e^{-\sqrt{2|w|}dw} \]

\[= \begin{cases}
\frac{\sqrt{2-g} \sqrt{2} \exp\{(g + \sqrt{2}) x\}}{2} & \text{if } x < 0; \\
1 - \frac{\sqrt{2+g} \sqrt{2} \exp\{(g - \sqrt{2}) x\}}{2} & \text{if } x \geq 0.
\end{cases} \]

como \(\kappa < 0 \) implica \(\delta_1^{LS} > 0 \) y viceversa, entonces

\[F_U(-\delta_1^{LS}; g) = \begin{cases}
\frac{\frac{K-\theta}{2+\sqrt{2g} \mathbb{E}[X_T]-\theta} \exp\{-\sqrt{2}\delta_1^{LS}\}}{2+\sqrt{2g} \mathbb{E}[X_T]-\theta} & \text{if } \delta_1^{LS} > 0; \\
1 - \frac{\frac{1}{2-\sqrt{2g} \mathbb{E}[X_T]-\theta} \exp\{\sqrt{2}\delta_1^{LS}\}}{2-\sqrt{2g} \mathbb{E}[X_T]-\theta} & \text{if } \delta_1^{LS} \leq 0.
\end{cases} \]

En este caso, si \(\kappa < 0 \) entonces la expresión (3.45) que representa el precio de la opción de compra europea, se puede expresar como

\[e^{rt} C(K) = \mathbb{E}(X_T) - K + \frac{g}{2} \frac{K - \theta}{\sqrt{2} + g} \exp\{-\sqrt{2}\delta_1^{LS}\}, \]

(3.50)

y si \(\kappa \geq 0 \) sustituyendo esto en (3.45), se tiene

\[e^{rt} C(K) = \frac{g}{2} \frac{K - \theta}{\sqrt{2} - g} \exp\{\sqrt{2}\delta_1^{LS}\}. \]

(3.51)

De manera análoga, se obtiene el precio de la opción de venta europea.

- Cuando la variable \(U \sim \text{Logística}(0, \lambda^{-1}) \) con \(0 < g < \frac{1}{n} \) y \(\lambda = \frac{\pi}{\sqrt{3}} \), su \(cdf \) viene dada por

\[F_U(x) = \frac{1}{2} \left[1 + \tanh\left(\frac{\lambda}{2} x \right) \right], \]

(3.52)
puesto que
\[M_U(g) = \sqrt{3} g \csc \left(\sqrt{3} g \right), \]

al sustituir en (1.43), se tiene
\[
1 - F_U(x; g) = \frac{1}{\sqrt{3} g} \sin \left(\sqrt{3} g \right) \frac{\lambda}{4} \int_x^{\infty} e^{g w} \left[\text{sech} \left(\frac{\lambda}{2} w \right) \right]^2 dw.
\]

Para evaluar la integral, se utiliza la integración por partes con
\[
u = e^{-\lambda w} \quad \text{y} \quad du = -\lambda e^{-\lambda w} dw,
\]
esto da
\[
1 - F_U(x; g) = \frac{\sin \left(\sqrt{3} g \right)}{\sqrt{3} g} \int_0^{e^{-\lambda x}} \frac{z^{-\frac{1}{2}}}{(1 + z)^2} dz
\]
\[
= \frac{\sin \left(\sqrt{3} g \right)}{\sqrt{3} g} e^{\lambda x} \frac{1}{1 - g/\lambda} \, 2F_1 \left(2, 1 - \frac{g}{\lambda}; 2 - \frac{g}{\lambda}; -e^{-\lambda x} \right),
\]
aquí se uso la expresión (3.194) dada en Gradshteyn & Ryzhik (2000), en este caso, la expresión (3.45) que representa el valor de la opción de compra europea se puede expresar como
\[
e^{\tau} C(K) = (K - \theta) \left[\frac{e^{\lambda \Delta_1^{LS}}}{1 - g/\lambda} \, 2F_1 \left(2, 1 - \frac{g}{\lambda}; 2 - \frac{g}{\lambda}; -e^{\lambda \Delta_1^{LS}} \right)
\]
\[
- \frac{1}{2} \left[1 + \tanh \left(\frac{\lambda \Delta_1^{LS}}{2 \theta_1} \right) \right].
\]

Similarmente, la expresión de la opción de venta europea es dada por
\[
e^{\tau} P(K) = \frac{K - \theta}{2} \left[1 - 2F_1 \left(1, \frac{g}{\lambda}; 1 + \frac{g}{\lambda}; -e^{-\lambda \Delta_1^{LS}} \right)
\]
\[
+ \frac{g}{g + \lambda} e^{-\lambda \Delta_1^{LS}} \, 2F_1 \left(1, 1 + \frac{g}{\lambda}; 2 + \frac{g}{\lambda}; -e^{-\lambda \Delta_1^{LS}} \right) \right]. \quad \text{(3.53)}
\]

• Cuando la variable \(U \sim \text{sech} \left(0, \frac{2}{\pi} \right) \) y \(|g| < \frac{\pi}{2\theta} \) su cdf viene dada por
\[
F_U(x) = 1 - \frac{2}{\pi} \arctan \left(\exp \left\{ -\frac{\pi}{2} x \right\} \right), \quad \text{(3.54)}
\]
puesto que
\[M_U(g) = \sec \left(g \right), \]
al sustituir en (1.43), se tiene

\[1 - \overline{F}_U(x; g) = \frac{\cos(g)}{2} \int_x^\infty e^{gw} \text{sech}\left(\frac{\pi}{2}w\right) \, dw = \cos(g) \int_x^\infty \frac{e^{\left(g - \frac{\gamma}{2}\right)w}}{1 + e^{-\pi w}} \, dw. \]

Al hacer el siguiente cambio de variable

\[z = e^{-\pi w}, \quad dz = -\pi e^{-\pi w} \, dw, \]

entonces

\[1 - \overline{F}_U(x; g) = \frac{1}{\pi} \cos(g) \int_0^{e^{-\pi x}} \frac{z^{\mu - 1}}{1 + z} \, dz = \frac{2 \cos(g)}{\pi - 2g} e^{-\pi \mu x} {}_2F_1\left(1, \mu; 1 + \mu; -e^{-\pi x}\right), \]

donde \(\mu = \left(\frac{1}{2} - \frac{g}{\pi}\right) \), de nuevo se usó la expresión (3.194) dada en Gradshteyn & Ryzhik (2000), por lo tanto

\[1 - \overline{F}_U(-\delta_i^{LS}; g) = \frac{2e^{\frac{\pi \delta_i^{LS}}{2}}}{\mathbb{E}[X_T] - \theta} \frac{K - \theta}{\pi - 2g} {}_2F_1\left(1, \mu; 1 + \mu; -e^{\pi \delta_i^{LS}}\right). \]

En este caso, la expresión (3.45) que representa el valor de la opción de compra europea se puede expresar como

\[e^{rt} C_t(K) = \frac{2(K - \theta)}{\pi - 2g} e^{\frac{\pi \delta_i^{LS}}{2}} {}_2F_1\left(1, \mu; \frac{3}{2} - \frac{g}{\pi}; -e^{\pi \delta_i^{LS}}\right) - \frac{2(K - \theta)}{\pi} \arctan\left(e^{\frac{\pi \delta_i^{LS}}{2}}\right). \]

De manera análoga, la expresión para una opción de venta europea viene dada por

\[e^{rt} P_t(K) = (K - \theta) \left[1 - \frac{2}{\pi} \arctan\left(e^{\frac{\pi \delta_i^{LS}}{2}}\right) - \frac{2e^{-\frac{\pi \delta_i^{LS}}{2}}}{\pi + 2g} {}_2F_1\left(1, \mu; \frac{3}{2} + \frac{g}{\pi}; -e^{-\pi \delta_i^{LS}}\right)\right]. \]
• Cuando la variable \(U \sim \text{csch} \left(0, \frac{\sqrt{x}}{\pi} \right) \) con \(|g| < \frac{\pi}{\sqrt{2}n}\), su cdf viene dada por

\[
F_U(x) = \frac{1}{\pi^2} \left[2 \text{Li}_2 \left(\tanh \left(\frac{\pi}{2} \frac{x}{\sqrt{2}} \right) \right) - 2 \text{Li}_2 \left(-\tanh \left(\frac{\pi}{2} \frac{x}{\sqrt{2}} \right) \right) - \sqrt{2} \pi x \ln \left(\tanh \left(\frac{\pi}{2} \frac{x}{\sqrt{2}} \right) \right) \right],
\]

(3.55)
puesto que

\[
M_U(g) = \sec^2 \left(\frac{g}{\sqrt{2}} \right),
\]
al sustituir en (1.43), se tiene

\[
1 - F_U(x; g) = \cos^2 \left(\frac{g}{\sqrt{2}} \right) \int_x^\infty w e^{gw} \cdot \text{csch} \left(\frac{\pi}{\sqrt{2}} w \right) \, dw.
\]

Para evaluar la integral, se utiliza la integración por partes con

\[
u = w \quad \quad \quad \frac{dv}{dw} = - \frac{d}{dw} \left[\frac{\sqrt{2}}{\pi} \int_0^{\exp \left\{-\sqrt{2} \pi w \right\}} \frac{z \exp \left\{-\frac{g}{\sqrt{2}} \pi - \frac{1}{2} \right\}}{1 - z} \, dz \right].
\]

Esto da

\[
1 - F_U(x; g) = \frac{\sqrt{2}}{\pi} \cos^2 \left(\frac{g}{\sqrt{2}} \right) \left[x \int_0^{\exp \left\{-\sqrt{2} \pi x \right\}} \frac{z \exp \left\{-\frac{g}{\sqrt{2}} \pi - \frac{1}{2} \right\}}{1 - z} \, dz \right.
\]

\[
\left. + \int_x^\infty \left(\int_0^{\exp \left\{-\sqrt{2} \pi w \right\}} \frac{z \exp \left\{-\frac{g}{\sqrt{2}} \pi - \frac{1}{2} \right\}}{1 - z} \, dz \right) \, dw \right]
\]

\[
= \frac{\sqrt{2} \cos^2 \left(\frac{g}{\sqrt{2}} \right)}{\frac{\pi}{2} - \frac{g}{\sqrt{2}}} \left[xe \left(g - \frac{\pi}{\sqrt{2}} \right) x \, _2F_1 \left(1, \frac{1}{2} - \frac{g}{\sqrt{2} \pi}, \frac{3}{2} - \frac{g}{\sqrt{2} \pi}; e^{-\sqrt{2} \pi x} \right) \right.
\]

\[
\left. + \int_x^\infty e^{g \cdot \sqrt{\frac{x}{\sqrt{2}}}} w \, _2F_1 \left(1, \frac{1}{2} - \frac{g}{\sqrt{2} \pi}, \frac{3}{2} - \frac{g}{\sqrt{2} \pi}; e^{-\sqrt{2} \pi w} \right) \, dw \right],
\]
aquí se usó la expresión (3.194) dada en Gradshteyn & Ryzhik (2000). Al hacer el siguiente cambio de variable

\[
z = e^{-\sqrt{2} \pi w} \quad \quad \quad \quad \quad \quad dz = -\sqrt{2} \pi e^{-\sqrt{2} \pi w} \, dw,
\]
entonces

\[1 - F_U(x; g) = \frac{2 \cos^2 \left(\frac{g}{\sqrt{2}} \right)}{\pi - g} \left[x e^{\left(\frac{-x}{\sqrt{2}} \right)^2} {}_2F_1 \left(\frac{1}{2}, \frac{1}{2} - \frac{g}{\sqrt{2}}, \frac{3}{2}, -\frac{g}{\sqrt{2}} \right) - \frac{1}{\sqrt{2} \pi} \right] \]

en este caso, la expresión (3.45) que representa el valor de la opción de compra europea se puede expresar como

\[e^{r \tau} C_t(K) = \frac{2(K - \theta)}{\pi - g} e^{\frac{x}{\sqrt{2}}} \left[-\delta \sqrt{2} {}_2F_1 \left(\frac{1}{2}, \frac{1}{2} - \frac{g}{\sqrt{2}}, \frac{3}{2}, -\frac{g}{\sqrt{2}} \right) \right] \]

Apéndice D: Las griegas

En este apéndice se muestra en detalle cómo encontrar algunas de las sensibilidades de las opciones más frecuentes (las Griegas).

- Delta

Derivando la expresión (3.1) respecto a \(X \), se tiene que

\[e^{r \tau} \frac{\partial}{\partial X} C_t(K) = BT_{g,h} (-\delta_1) f_U (-\delta_1) \frac{\partial \delta_1}{\partial X} - \kappa B f_U (\delta_1) \frac{\partial \delta_1}{\partial X} - BF_U (\delta_1) \frac{\partial \kappa}{\partial X}, \]

puesto que \(\delta_1 = -T_{g,h}^{-1} (\kappa) \) y dado que

\[\kappa = \frac{K - E[X_T]}{B} + \frac{2}{g} \int_0^{\infty} [\cosh (gu) - 1] \left[\frac{1}{2} h u^2 \right] f_U(u) \, du, \tag{3.56} \]
entonces

\[
\frac{\partial \kappa}{\partial X} = -\frac{e^{\tau r}}{B}, \tag{3.57}
\]

usando estos hechos y además que \(f_U(\cdot) \) es simétrica, se llega a

\[
e^{\tau r} \Delta = BT_{g,h} \left(T_{g,h}^{-1}(\kappa) \right) f_U(\delta_1) \frac{\partial \delta_1}{\partial X} - \kappa B f_U(\delta_1) \frac{\partial \delta_1}{\partial t} + BF_U(\delta_1) \frac{e^{\tau r}}{B} \\
= e^{\tau r} F_U(\delta_1),
\]

por lo tanto,

\[
\Delta_{\text{compra}} = F_U(\delta_1),
\]

al diferenciar la expresión (3.4) respecto a \(X \), se obtiene

\[
e^{\tau r} \left[\Delta_{\text{compra}} - \Delta_{\text{venta}} \right] = e^{\tau r} \Rightarrow \Delta_{\text{venta}} = \Delta_{\text{compra}} - 1 = -F_U(-\delta_1).
\]

- Theta

Derivando la expresión (3.1) respecto a \(t \), se tiene que

\[
e^{\tau r} \frac{\partial}{\partial t} C_t(K) - r e^{\tau r} C_t(K) = BT_{g,h} \left(-\delta_1 \right) f_U(\delta_1) \frac{\partial \delta_1}{\partial t} - \kappa B f_U(\delta_1) \frac{\partial \delta_1}{\partial t} \\
- \frac{B}{g} \frac{\partial g}{\partial t} \int_{-\delta_1}^{\infty} T_{g,h}(u) f_U(u) du - BF_U(\delta_1) \frac{\partial \kappa}{\partial t} \\
+ \frac{B}{g} \frac{\partial g}{\partial t} \int_{-\delta_1}^{\infty} u e^{gu+\frac{1}{2}hu^2} f_U(u) du,
\]

derivando la expresión (3.56) respecto a \(t \) se obtiene

\[
\frac{\partial \kappa}{\partial t} = \frac{r}{B} \mathbb{E} \left[X_T \right] - \frac{1}{g} \left[\kappa + \frac{\mathbb{E} \left[X_T \right] - K}{B} - g \int_{-\infty}^{\infty} u T_{g,h}(u) f_U(u) du \right] \frac{\partial g}{\partial t}, \tag{3.58}
\]

aqui se uso la expresión (2.31), sustituyendo esta derivadas en la ecuación, se llega

\[
e^{\tau r} \theta = r e^{\tau r} C_t(K) + B \left[T_{g,h} \left(T_{g,h}^{-1}(\kappa) \right) - \kappa \right] f_U(\delta_1) \frac{\partial \delta_1}{\partial t} - BF_U(\delta_1) \frac{r}{B} \mathbb{E} \left[X_T \right] \\
+ \frac{B}{g} \left[\kappa + \frac{\mathbb{E} \left[X_T \right] - K}{B} \right] F_U(\delta_1) \frac{\partial g}{\partial t} - \frac{B}{g} \frac{\partial g}{\partial t} \int_{-\delta_1}^{\infty} T_{g,h}(u) f_U(u) du \\
- \frac{B}{g} \left[F_U(\delta_1) \int_{-\infty}^{\infty} u e^{gu+\frac{1}{2}hu^2} f_U(u) du - \int_{-\delta_1}^{\infty} u e^{gu+\frac{1}{2}hu^2} f_U(u) du \right] \frac{\partial g}{\partial t}.
\]
3.5. Apéndices

\[e^{rt} \theta = r e^{rt} C_t(K) - r \mathbb{E} [X_T] F_U (\delta_1) + \left[\frac{\mathbb{E} [X_T] - K}{g} F_U (\delta_1) - \frac{e^{rt}}{g} C_t(K) \right] \frac{\partial g}{\partial t} \]

\[- \frac{B}{g} \left[F_U (\delta_1) \int_{-\infty}^{\infty} u e^{gu + \frac{1}{2} hu^2} f_U(u) du - \int_{-\delta_1}^{\infty} u e^{gu + \frac{1}{2} hu^2} f_U(u) du \right] \frac{\partial g}{\partial t}, \]

por otra parte, al diferenciar la expresión (3.4) respecto a \(t \), se obtiene

\[e^{rt} [\theta_{\text{compra}} - \theta_{\text{venta}}] - r e^{rt} [C_t(K) - P_t(K)] = -r \mathbb{E} [X_T] \]

\[e^{rt} [\theta_{\text{compra}} - \theta_{\text{venta}}] - r [\mathbb{E} [X_T] - K] = -r \mathbb{E} [X_T], \]

entonces

\[\theta_{\text{venta}} = \theta_{\text{compra}} + K r e^{-rt}. \]

- \textbf{Gamma}

Derivando dos veces la expresión (3.1) respecto a \(X \), se tiene

\[\Gamma = \frac{\partial^2 C}{\partial X^2} = \frac{\partial \Delta}{\partial X} = \frac{\partial}{\partial X} F_U (\delta_1) = f_U (\delta_1) \frac{\partial \delta_1}{\partial X}. \]

En este caso, la derivada de \(\delta_1 \) respecto a \(X \),

\[\frac{\partial \delta_1}{\partial X} = \frac{-1}{T'_{g,h} (-\delta_1)} \frac{\partial \kappa}{\partial X}, \]

usando este hecho y la expresión (3.57) se tiene que

\[\Gamma = - \frac{f_U (\delta_1)}{T'_{g,h} (-\delta_1)} \frac{\partial \kappa}{\partial X} = \frac{e^{rt} f_U (\delta_1)}{B T'_{g,h} (-\delta_1)}, \]

nótese que la derivada de la transformada de Tukey dada en (2.10) evaluada en \(\delta_1 \) viene dada por

\[T'_{g,h} (-\delta_1) = \begin{cases}
(g - h \delta_1) \kappa + \exp \left\{ \frac{1}{2} h \delta_1^2 \right\} & \text{si } g \neq 0 \\
-(1 + h \delta_1^2) \frac{\kappa}{\delta_1} & \text{si } g = 0
\end{cases} \]

Por lo tanto, el denominador quedaría

\[BT'_{g,h} (-\delta_1) = \begin{cases}
\frac{K - A}{1 - \exp \{ g \delta_1 \}} [g + h \delta_1 (\exp \{ g \delta_1 \} - 1)] & \text{si } g \neq 0 \\
-(1 + h \delta_1^2) \frac{K - A}{\delta_1} & \text{si } g = 0
\end{cases} \]
• Rho

Derivando la expresión (3.1) respecto a \(r \), se tiene que

\[
e^{\tau r} \frac{\partial}{\partial r} C_t(K) + \tau e^{\tau r} C_t(K) = BT_{g,h} (-\delta_1) f_U (-\delta_1) \frac{\partial \delta_1}{\partial r} - \kappa B f_U (\delta_1) \frac{\partial \delta_1}{\partial r} \\
- BF_U (\delta_1) \frac{\partial \kappa}{\partial r},
\]

derivando la expresión (3.56) respecto a \(r \) se tiene

\[
\frac{\partial \kappa}{\partial r} = -\frac{\tau}{B} \mathbb{E} [X_T], \tag{3.59}
\]

reemplazando

\[
e^{\tau r} \rho = BT_{g,h} \left(T^{-1}_{g,h}(\kappa) \right) f_U (\delta_1) \frac{\partial \delta_1}{\partial r} - \kappa B f_U (\delta_1) \frac{\partial \delta_1}{\partial r} + BF_U (\delta_1) \frac{\tau}{B} \mathbb{E} [X_T] \\
- \tau e^{\tau r} C_t(K) = \tau \mathbb{E} [X_T] F_U (\delta_1) - \tau e^{\tau r} C_t(K),
\]

por lo tanto,

\[
e^{\tau r} \rho_{\text{compra}} = \tau \left[\mathbb{E} [X_T] F_U (\delta_1) - e^{\tau r} C_t(K) \right],
\]

al diferenciar la expresión (3.4) respecto a \(r \), se obtiene

\[
e^{\tau r} [\rho_{\text{compra}} - \rho_{\text{venta}}] + \tau e^{\tau r} [C_t(K) - P_t(K)] = \tau \mathbb{E} [X_T]
\]

\[
e^{\tau r} [\rho_{\text{compra}} - \rho_{\text{venta}}] + \tau \left[\mathbb{E} [X_T] - K \right] = \tau \mathbb{E} [X_T],
\]

entonces \(\rho_{\text{venta}} = \rho_{\text{compra}} - K \tau e^{-\tau r} \).

• Vega

Derivando la expresión (3.1) respecto a \(\sigma \), se tiene que

\[
e^{\tau r} \frac{\partial}{\partial \sigma} C_t(K) = BT_{g,h} (-\delta_1) f_U (-\delta_1) \frac{\partial \delta_1}{\partial \sigma} - \kappa B f_U (\delta_1) \frac{\partial \delta_1}{\partial \sigma} \\
- \frac{B}{g} \frac{\partial g}{\partial \sigma} \int_{-\delta_1}^{\infty} T_{g,h}(u) f_U (u) du - BF_U (\delta_1) \frac{\partial \kappa}{\partial \sigma} \\
+ \frac{B}{g} \frac{\partial g}{\partial \sigma} \int_{-\delta_1}^{\infty} u e^{\delta_1 + \frac{1}{2} hu^2} f_U (u) du,
\]
derivando la expresión (3.56) respecto a σ se tiene

\[
\frac{\partial \kappa}{\partial \sigma} = -\frac{1}{g} \left[\kappa + \frac{\mathbb{E} [X_T] - K}{B} - \int_{-\infty}^{\infty} u e^{gu + \frac{1}{2}hu^2} f_U(u) du \right] \frac{\partial g}{\partial \sigma},
\]

(3.60)

reemplazando

\[
e^{rt} \nu = B \left[T_{g,h} \left(T_{g,h}^{-1} (\kappa) \right) - \kappa \right] f_U (\delta_1) \frac{\partial \delta_1}{\partial \sigma} - B \frac{\partial g}{\partial \sigma} \int_{-\delta_1}^{\infty} T_{g,h}(u) f_U(u) du
\]

\[
- \frac{B}{g} \left[F_U (\delta_1) \int_{-\infty}^{\infty} u e^{gu + \frac{1}{2}hu^2} f_U(u) du - \int_{-\delta_1}^{\infty} u e^{gu + \frac{1}{2}hu^2} f_U(u) du \right] \frac{\partial g}{\partial \sigma}
\]

\[
+ \frac{B}{g} \left[\kappa + \frac{\mathbb{E} [X_T] - K}{B} \right] F_U (\delta_1) \frac{\partial g}{\partial \sigma}
\]

Por lo tanto,

\[
e^{rt} \nu = \left[\frac{\mathbb{E} [X_T] - K}{g} F_U (\delta_1) - \frac{e^{rt}}{g} C_t(K) \right] \frac{\partial g}{\partial \sigma}
\]

\[
- \frac{B}{g} \left[F_U (\delta_1) \int_{-\infty}^{\infty} u e^{gu + \frac{1}{2}hu^2} f_U(u) du - \int_{-\delta_1}^{\infty} u e^{gu + \frac{1}{2}hu^2} f_U(u) du \right] \frac{\partial g}{\partial \sigma},
\]

por otra parte, al diferenciar la expresión (3.4) respecto a σ, se obtiene

\[
e^{rt} \left[\nu_{ compra} - \nu_{ venta} \right] = 0,
\]

entonces

\[
\nu_{ venta} = \nu_{ compra}.
\]
Capítulo 4

Modelo de precios de opciones aproximando la distribución del retorno mediante una mixtura de Normales sesgadas

Resumen 4.1. En este capítulo se presenta una aproximación de la distribución del activo subyacente usando una mixtura de distribuciones Log-Skew-Normal. Las propiedades básicas de una mixtura de distribuciones skew-normal se revisan en este capítulo. Se obtienen fórmulas para los precios de opciones de compra (venta) europeas, suponiendo que el retorno sigue una mixtura de distribuciones Skew-Normal. También se calculan lo que se conoce comúnmente como las “letras griegas” o simplemente “griegas”, como la delta, gamma y vega. La comparación de este modelo con otros producen precios de opciones que son más compatibles con las edf’s del retorno.

4.1 Introducción

Se ha demostrado empíricamente que las edf’s de los rendimientos de los activos financieros no son distribuciones normales, ya que presentan asimetría y exceso de curtosis. En los últimos años se han realizado muchos trabajos para demostrar que las distribuciones de probabilidad incondicional de la rentabilidad de los activos financieros no son normales. Una de las principales características de una serie financiera en la práctica es la existencia de saltos inesperados, que se producen con más frecuencia que en la distribución normal, con volatilidad constante. La asimetría y la curtosis de las edf’s contribuyen de manera significativa al fenómeno de la sonrisa de volatilidad.
En base a este fenómeno se han propuesto diversos modelos de valoración en los que usan distribuciones de probabilidad que permiten modelar los rendimientos de los activos subyacentes involucrando asimetría y exceso de curtosis. Uno de los enfoques es a través de las conocidas mixturas de distribuciones (por ejemplo, de normales). En concreto, estas distribuciones tienden a tener colas más pesadas (leptocúrticas) y asimétricas (por lo general la cola izquierda es más pesada que la derecha, al igual que en el caso de las acciones). Muchos autores han propuesto varias alternativas a la distribución normal para modelar el comportamiento de la rentabilidad de los activos financieros, entre los cuales podemos mencionar algunas distribuciones como: t no central (Harvey & Siddique (1999)), la mixtura de distribuciones normales (véase Ritchey (1990)), la mixtura de distribuciones lognormales (Melick & Thomas (1997) y Bahra (1997)), la distribución “de cola pesada” (Politis (2004)) y expansiones de la distribución implícita basadas en la normal. La última distribución mencionada se desarrolló a partir del trabajo pionero de Jarrow & Rudd (1982), entre estas están las distribuciones que se encuentran sobre la base de la expansión de Gram-Charlier de tipo A, Corrado y Su (1996, 1997), la expansión de Gram-Charlier para log-normal (Jarrow & Rudd (1982)) y la expansión de Edgeworth (Rubinstein (1998)), entre otras. Mercurio (2010) estudió la difusión del precio de las acciones mediante una mixtura de lognormales (LNMIX) y logra derivar una fórmula de precios de opciones para los derivados exóticos. Recientemente, Björnander (2012) estudió la valoración de opciones utilizando LNMIX en tiempo continuo. El movimiento browniano sesgado fue utilizado en la fijación de precios de opciones Europeas (Corns & Satchell (2007)), pero esta clase de densidades exhibe un rango moderado de coeficiente de asimetría y curtosis. Lin & Stoyanov (2009) presentan la distribución log-skew-normal (LSN) que es una extensión para los datos positivos de la distribución lognormal (LN) y la utiliza para considerar datos con asimetría y curtosis fuera del rango permitido por la distribución LN.

En este capítulo, se modela la distribución de la rentabilidad de las acciones usando una mixtura de distribuciones de Skew-Normal (SNMIX) y se obtienen fórmulas explícitas para valorar opciones de compra (venta) europea y además se
establecen las medidas griegas utilizando distribuciones LSNMIX. Cabe mencionar que las sensibilidades de las opciones no se habían obtenido bajo este modelo anteriormente. Por otra parte, el modelo propuesto es una alternativa a los modelos existentes y permite deducir otros modelos, como Bahra (1997), Black & Scholes (1973) y Corns & Satchell (2007).

El capítulo está estructurado de la siguiente manera: en la Sección 4.2, se presentan algunos preliminares de las distribuciones skew-normal (SN) y LSN, como son su función de distribución, los momentos y la moda, el límite de la asimetría de gran tamaño, algunas de las medidas de asimetría y el comportamiento de la distribución de la cola. Algunas propiedades de las distribuciones SNMIX se presentan en la Sección 4.3. En la Sección 4.4 obtenemos algunos resultados teóricos para evaluar el precio de las opciones Europeas usando distribuciones SNMIX; las pruebas de estos resultados se dan en el Apéndice A. En la Sección 4.5 se determinan fórmulas explícitas para la valoración de las sensibilidades (medidas griegas) utilizando distribuciones SNMIX; las pruebas de estos resultados se dan en el Apéndice B. En la Sección 4.6, un ejemplo numérico se utiliza para aclarar los resultados obtenidos hasta el momento.

4.2 Distribución normal sesgada

En esta Sección se presentan las propiedades más relevantes de la distribución SN propuesta por Azzalini (1985) y dada en (1.37). La distribución SN se introdujo por primera vez por Azzalini (1985) y más tarde fue estudiada en detalle por Arnold et al. (1993). En Azzalini & Capitanio (2014) se recopilan los resultados más relevantes de esta distribución.

4.2.1 Función de densidad de probabilidad

Definición 4.1. Una variable aleatoria Y tiene distribución SN no estándar con parámetro de asimetría $\lambda \in \mathbb{R}$, denotada como $Y \sim SN(\Lambda_1)$ si su pdf es de la forma

$$
\phi_{SN}(y; \Lambda_1) = \frac{2}{\sigma} \varphi \left(\frac{y - \mu}{\sigma} \right) \Phi \left(\lambda \frac{y - \mu}{\sigma} \right), \quad \mu \in \mathbb{R}, \sigma > 0,
$$

(4.1)
donde $\Lambda_1 = (\mu, \sigma, \lambda)$, $\varphi(\cdot)$ y $\Phi(\cdot)$ denotan la pdf y cdf de una variable normal estándar, respectivamente.

En el caso particular que $\Lambda_1 = (0, 1, \lambda)$ entonces Y se dice que tiene una distribución SN estándar, es decir, $Y \sim SN(\lambda)$.

4.2.1.1 Gráficas de las funciones de densidad de probabilidad

Algunas alternativas de pdf estándar, $\phi_{SN}(y; \lambda)$, se muestran en las figuras 4.1 y 4.2, variando el parámetro de asimetría λ.

Figura 4.1: Comparación de pdf’s con $\lambda > 0$

Figura 4.2: Comparación de pdf’s con $\lambda < 0$

El parámetro λ controla la asimetría, la cual es positiva cuando $\lambda > 0$ y negativa cuando $\lambda < 0$, como se ilustra en el gráfico 4.3 y el exceso de curtosis se representa en la figura 4.4, sin embargo, estas gráficas muestran un rango moderado para los coeficientes de asimetría y curtosis.
4.2. Distribución normal sesgada

Figura 4.3: Coeficiente de asimetría, β_1, de la distribución skew-normal

Figura 4.4: Coeficiente de exceso de curtosis, $(\beta_2 - 3)$, de la distribución skew-normal

4.2.2 Propiedades Estadísticas

En esta sección se discuten las propiedades estadísticas de la distribución SN.

4.2.2.1 Función de distribución acumulada (cdf)

La cdf de la variable aleatoria $Y \sim SN (\Lambda_1)$ es

$$ F_Y (y; \Lambda_1) = \frac{2}{\sigma} \int_{-\infty}^{y} \varphi \left(\frac{w - \mu}{\sigma} \right) \Phi \left(\lambda \frac{w - \mu}{\sigma} \right) dw $$

$$ = 2 \int_{-\infty}^{y} \int_{-\infty}^{\lambda w} \varphi(v) \varphi(u) dudv = F_Y \left(\frac{y - \mu}{\sigma}; \lambda \right), \tag{4.2} $$
donde $F_Y(y, 0, 1, \lambda)$ se denota por $F_Y(y, \lambda)$. La cdf, $F_Y(\cdot)$, también puede escribirse de la siguiente manera

$$F_Y(y; \Lambda_1) = \Phi\left(\frac{y - \mu}{\sigma}\right) - 2 T\left(\frac{y - \mu}{\sigma}; 0, \lambda\right), \quad (4.3)$$

donde la función $T(z; 0, \lambda)$ fue denotada por $T(z; \lambda)$ y dada en (1.39), en general $T(z; \alpha, \lambda)$ con $\alpha \geq 0$ viene dada por

$$T(z; \alpha, \lambda) = \text{sign}(\lambda) \left[\frac{\arctan(|\lambda|)}{2\pi} - \int_\alpha^z \int_0^{|\lambda|x} \varphi(x, \alpha, 1) \varphi(y) dy dx \right]. \quad (4.4)$$

4.2.3 Otras propiedades de la distribución SN.

Algunas de las propiedades básicas de la distribución $SN(\lambda)$ studiadas en Azzaolini (1985) son extendidas para el caso $SN(\Lambda_1)$ y quedan de la siguiente manera:

1. La densidad de $SN(\mu, \sigma, 0)$ es la densidad de $N(\mu, \sigma)$;

2. Si $Y \sim SN(\Lambda_1)$ entonces $-Y \sim SN(-\mu, \sigma, -\lambda)$;

3. Cuando $\lambda \to \pm \infty$, $Y \sim SN(\lambda)$ tiende a la distribución semi-normal, es decir, a la distribución de $\pm|Y|$ cuando $Y \sim N(0, 1)$.

4. Si $Y \sim SN(\lambda)$ se satsface que $\phi_{SN}(y) + \phi_{SN}(-y) = 2\varphi(y)$, usando el resultado de Roberts & Geisser (1966) se tiene que $Y^2 \sim \chi^2(1)$.

5. Ellison (1964) muestra que si $Z \sim N(\mu, \sigma)$ entonces

$$\mathbb{E}[\Phi(Z)] = \Phi\left(\frac{\mu}{\sqrt{1 + \sigma^2}}\right), \quad (4.5)$$

usando este resultado, si $Y \sim SN(\Lambda_1)$ entonces su fgm es

$$M_Y(t) = 2 \exp\left\{t\mu + t^2/2\sigma^2\right\} \Phi(\rho t), \quad (4.6)$$

donde

$$\rho = \frac{\lambda}{\sqrt{1 + \lambda^2}}, \quad |\rho| < 1. \quad (4.7)$$
4.2. Distribución normal sesgada

6. En Pewsey (2000) se demuestra que si \(Y \sim SN (\Lambda_1) \) entonces su función característica es

\[
\Psi_Y(t) = \exp \left\{ it\mu - \frac{1}{2} t^2 \sigma^2 \right\} \left[1 + b i \int_0^\rho e^{\frac{1}{2} u^2} du \right], \tag{4.8}
\]

donde \(i \) se denomina unidad imaginaria y tiene la propiedad \(i^2 = -1 \), \(b = \sqrt{\frac{2}{\pi}} \) y \(\rho \) es dado en (4.7).

7. Arnold et al. (1993) muestra que si \(Y \sim SN (\Lambda_1) \) entonces sus momentos son

\[
\begin{align*}
E[Y] &= \mu + b \rho \sigma, \\
Var[Y] &= [1 - (b \rho)^2] \sigma^2, \\
\beta_1(Y) &= \frac{1}{2} \left(\frac{4 - \pi}{\pi - 2 \sqrt{1 - b^2}} \right)^3, \\
\beta_2(Y) &= 3 + 2 \left(\frac{\pi - 3}{\pi - 2 \sqrt{1 - b^2}} \right)^4, \tag{4.9}
\end{align*}
\]

donde \(\rho \) es dado en (4.7) y \(\beta_1(Y) \) y \(\beta_2(Y) \) son las medidas de asimetría y curtosis, respectivamente. Fácilmente se demuestra que

\[
|\beta_1(Y)| \leq \frac{4 - \pi}{\pi - 2 \sqrt{1 - b^2}} \frac{b}{\sqrt{1 - b^2}}, \tag{4.10}
\]

y el exceso de curtosis, o simplemente “cola gruesa” viene dado por

\[
0 \leq [\beta_2(Y) - 3] \leq 2 (\pi - 3) \left(\frac{b^2}{1 - b^2} \right)^2. \tag{4.11}
\]

8. Dado que

\[
\varphi (\mathbf{-y}, \mu, \sigma) = \varphi (\mathbf{y}, -\mu, \sigma), \tag{4.12}
\]

entonces

\[
\begin{align*}
\phi_{SN} (-y; \Lambda_1) &= \phi_{SN} (y; -\mu, \sigma, -\lambda), \tag{4.13} \\
F_Y (-y; \Lambda_1) &= 1 - F_Y (y; -\mu, \sigma, -\lambda). \tag{4.14}
\end{align*}
\]

4.2.4 Distribución Log-Skew-Normal

Ahora se considera que si \(X \) es una variable aleatoria con distribución \(SN \), entonces la transformación \(Y = \exp(X) \) tiene distribución log-skew-normal (LSN).

Definición 4.2. Una variable aleatoria Y tiene distribución LSN con parámetro de asimetría $\lambda \in \mathbb{R}$, denotada como $Y \sim LSN(\Lambda_1)$, si su pdf es de la forma

$$f_Y(y; \Lambda_1) = \frac{2}{\sigma y} \phi \left(\frac{\ln y - \mu}{\sigma} \right) \Phi \left(\lambda \frac{\ln y - \mu}{\sigma} \right) = \frac{1}{y} \phi_{SN}(\ln y; \Lambda_1), \quad y \in \mathbb{R}^+, \sigma > 0 \quad (4.15)$$

donde $\phi_{SN}(\cdot)$ denota la pdf de la distribución SN.

4.3 Mixtura de normales sesgadas

En esta sección, se considera el modelo de mixtura finita sugerido por Lin et al. (2007).

4.3.1 Función de densidad de probabilidad

Definición 4.3. Una variable aleatoria Y sigue una distribución de mixtura finita con m-componentes de pdf's normales sesgadas, denotada por $Y \sim SNMIX(\Lambda)$, si su pdf viene dada por

$$f_Y(y; \Lambda) = 2 \sum_{j=1}^{m} \frac{\omega_j}{\sigma_j} \varphi \left(\frac{y - \mu_j}{\sigma_j} \right) \Phi \left(\lambda_j \frac{y - \mu_j}{\sigma_j} \right) = \sum_{j=1}^{m} \omega_j \phi_{SN}(y; \mu_j, \sigma_j, \lambda_j), \quad (4.16)$$

donde $\Lambda = (\xi_1, \ldots, \xi_m)$, cada $\xi_j = (\omega_j, \mu_j, \sigma_j, \lambda_j)$ es el vector de parámetros que define la j-ésima componente y los pesos probabilísticos, ω_j, satisfacen las condiciones

$$\sum_{j=1}^{m} \omega_j = 1, \quad \omega_j \geq 0, \text{ para cada } j. \quad (4.17)$$

Luego, si la variable aleatoria X es una mixtura de distribuciones skew-normal, entonces la transformación $Y = \exp(X)$ es una mixtura de distribuciones log-skew-normal ($LSNMI X$).

4.3.2 Propiedades de la mixtura de normales sesgadas.

En esta Sección se extiende el método dado en Azzalini (1985) para obtener algunas de las propiedades básicas de la distribución $SNMIX(\Lambda)$:
1. Si \(\lambda_j = 0, \forall j \), la densidad de \(SNMIX (\Lambda) \) es la densidad de \(NMIX (\mu_j, \sigma_j; \omega_j) \) propuesta por Ritchey (1990);

2. Si \(Y \sim SNMIX (\Lambda) \) entonces su función generadora de momentos es

\[
M_Y(t) = \sum_{j=1}^{m} \omega_j \exp \left\{ t \mu_j + \frac{1}{2} t^2 \sigma_j^2 + \ln [2\Phi (\rho_j \sigma_j t)] \right\},
\]

donde

\[
\rho_j = \frac{\lambda_j}{\sqrt{1 + \lambda_j^2}} , \quad |\rho_j| < 1, \text{ para cada } j.
\]

3. Si \(Y \sim SNMIX (\Lambda) \) entonces su función característica es

\[
\Psi_Y(t) = \sum_{j=1}^{m} \omega_j \exp \left\{ it \mu_j - \frac{1}{2} t^2 \sigma_j^2 \right\} \left[1 + b i \int_{0}^{\rho_j \sigma_j t} e^{\frac{1}{2} u^2} du \right],
\]

donde \(i = \sqrt{-1}, b = \sqrt{\frac{2}{2 \pi}} \) y \(\rho_j \) es dado en (4.19).

4. Usando la función generadora de momentos de \(Y \sim SNMIX (\Lambda) \), con algunas manipulaciones algebraicas básicas, se puede obtener fácilmente

\[
\mathbb{E}[Y] = \sum_{j=1}^{m} \omega_j \left[\mu_j + b \rho_j \sigma_j \right],
\]

\[
\text{Var}[Y] = \sum_{j=1}^{m} \omega_j (1 - b^2 \rho_j^2) \sigma_j^2 + \sum_{j=1}^{m} \omega_j (1 - \omega_j) (\mu_j + b \rho_j \sigma_j)^2 - 2 \sum_{j=1}^{m-1} \sum_{l=j+1}^{m} \omega_j \omega_l (\mu_j + b \rho_j \sigma_j) (\mu_l + b \rho_l \sigma_l),
\]

donde \(\rho_j \) se da en (4.19)

5. Dado que

\[
\varphi (-y, \mu_j, \sigma_j) = \varphi (y, -\mu_j, \sigma_j) , \text{ para cada } j
\]

entonces

\[
\phi_{SN} (-y; \Lambda) = \phi_{SN} (y; \Lambda^*),
\]

\[
F_Y (-y; \Lambda) = 1 - F_Y (y; \Lambda^*).
\]
donde \(\Lambda^* = (\xi^*_1, \ldots, \xi^*_m) \) con \(\xi^*_j = (\omega_j, -\mu_j, \sigma_j, -\lambda_j) \) para cada \(j \).

4.4 Valoración de opciones europeas

De manera análoga a la metodología usada en la Sección 3.2, sea \(X_t \) el precio del activo subyacente en el momento \(t \), y supongamos que la variable aleatoria \(\ln X \) es modelada mediante una mixtura de normales sesgadas, para ello se introducen dos parámetros: uno de localización \((A) \) y otro de escala \((B) \), los cuales satisfacen la siguiente relación:

\[
\ln[X_T] = A + BY, \quad Y \sim SNMIX(\Lambda), \quad (4.24)
\]

es decir, \(\ln[X_T] \) se aproxima linealmente por \((4.24) \) y en este caso, la pdf de \(X_T \) es LSNMIX.

Las fórmulas para los precios de una opción de compra (venta) europea en el momento \(t \) sobre una acción que no paga dividendos, con precio de ejercicio \(K \) vienen dados en las siguientes proposiciones:

Proposición 4.1. El precio sesgado de una opción de compra europea con parámetros adecuados viene dado por

\[
\mathbb{E}[(X_T - K)_+] = e^{rt} C_t(K) = \sum_{j=1}^{m} \frac{2\omega_j \mathbb{E}[X_T]}{\Upsilon_j(\Lambda, B)} \int_{-\delta_{1j}}^{\infty} \varphi(z) \Phi(\lambda_j (z + B\sigma_j)) dz - \sum_{j=1}^{m} \omega_j K [1 - F_Y(-\delta_{2j}; \lambda_j)], \quad (4.25)
\]

donde \(F_Y(\cdot) \) se da en \((4.2) \),

\[
\delta_{1j} = \delta_{2j} + B\sigma_j, \quad \delta_{2j} = -\frac{\kappa - \mu_j}{\sigma_j}, \quad \kappa = \frac{\ln K - A}{B}, \quad (4.26)
\]

y

\[
\Upsilon_j(\Lambda, B) = 2 \sum_{l=1}^{m} \omega_l \exp \left\{ B (\mu_l - \mu_j) + \frac{1}{2} B^2 (\sigma_l^2 - \sigma_j^2) \right\} \Phi(\rho_l \sigma_l B). \quad (4.27)
\]

Demostración. Una prueba se puede encontrar al final de este capítulo. \(\square \)
Proposición 4.2. El precio SNMIX de una opción de venta europea con parámetros adecuados viene dado por

\[
E \left((K - X_T)_+ \right) = e^{rt} P_t(K) = \sum_{j=1}^{m} \omega_j K F_Y (-\delta_{2j}; \lambda_j) \\
- E[X_T] \sum_{j=1}^{m} \frac{2\omega_j}{\Upsilon_j(\Lambda, B)} \int_{-\infty}^{-\delta_{1j}} \varphi(z) \Phi[\lambda_j(z + B\sigma_j)] dz,
\]

(4.28)
donde \(\delta_{1j}\) y \(\delta_{2j}\) se dan en (4.26) \(\Upsilon_j(\Lambda, B)\) se da en (4.27).

Utilizando el método descrito para obtener la relación de paridad put-call para opciones europeas dado en (1.6), se resta la fórmula de valoración (4.28) de (4.25) y se obtiene

\[
e^{rt} (C_t(K) - P_t(K)) = E[X_T] - K.
\]

(4.29)

A partir de la fórmula (4.25) dependiendo de las componentes y el vector de parámetros \(\xi_j\) que se asuma, se pueden encontrar los siguientes casos especiales:

4.4.0.1 Casos Especiales

1. Suponiendo que \(\xi_j = (\frac{1}{m}, \mu, \sigma, 0)\) para todos los \(j\) en (4.16) y sustituyendo en las expresiones (4.25) y (4.28) respectivamente,

\[
e^{rt} C_t(K) = E[X_T] \Phi \left[\frac{1}{B\sigma} \ln \left(\frac{E[X_T]}{K} \right) + \frac{1}{2} B\sigma \right] - K \Phi \left[\frac{1}{B\sigma} \ln \left(\frac{E[X_T]}{K} \right) - \frac{1}{2} B\sigma \right] \\
= E[X_T] \Phi(d_1) - K \Phi(d_2),
\]

(4.30)
y

\[
e^{rt} P_t(K) = K \Phi \left[\frac{1}{B\sigma} \ln \left(\frac{K}{E[X_T]} \right) + \frac{1}{2} B\sigma \right] - E[X_T] \Phi \left[\frac{1}{B\sigma} \ln \left(\frac{K}{E[X_T]} \right) - \frac{1}{2} B\sigma \right] \\
= K \Phi(-d_2) - E[X_T] \Phi(-d_1),
\]

(4.31)
donde

\[
d_2 = \frac{1}{B\sigma} \ln \left(\frac{E[X_T]}{K} \right) - \frac{1}{2} B\sigma \quad y \quad d_1 = d_2 + B\sigma.
\]

(4.32)
nótese que cuando \(B = \sqrt{\tau}\), estas expresiones coinciden con la fórmula de valoración de opciones del modelo de Black & Scholes (1973).
2. Asumiendo en (4.16) el vector \(\xi_j = (\omega_j, \mu_j, \sigma_j, 0) \) para todo \(j \), con \(\mu_j^* = B \left(\mu_j - \frac{1}{2} \sigma_j^2 \right) \) y sustituyendo en las expresiones (4.25) y (4.28) respectivamente, queda

\[
e^{rt} C_t(K) = \sum_{j=1}^{m} \frac{\omega_j \mathbb{E}[X_T]}{\Upsilon_j(\Lambda, B)} \Phi(\delta_{1j}) - K \sum_{j=1}^{m} \omega_j \Phi(\delta_{2j}), \tag{4.33}
\]

y

\[
e^{rt} P_t(K) = K \sum_{j=1}^{m} \omega_j \Phi(-\delta_{2j}) - \sum_{j=1}^{m} \frac{\omega_j \mathbb{E}[X_T]}{\Upsilon_j(\Lambda, B)} \Phi(-\delta_{1j}), \tag{4.34}
\]

donde \(\delta_{1j} \) y \(\delta_{2j} \) se dan en (4.26) y

\[
\Upsilon_j(\Lambda, B) = \sum_{l=1}^{m} \omega_l \exp \left\{ B^2 (\mu_l - \mu_j) \right\}. \tag{4.35}
\]

nótese que cuando \(B = \sqrt{\tau} \), estas expresiones coinciden con la fórmula de valoración de opciones del modelo dado en Bahra (1997).

3. Cuando \(\xi_j = (\frac{1}{m}, \Lambda_1) \) para todo \(j \) en (4.16) y sustituyendo en las expresiones (4.25) y (4.28) respectivamente,

\[
e^{rt} C_t(K) = \frac{\mathbb{E}[X_T]}{\Phi(\rho \sigma B)} \int_{-\delta_1}^{\infty} \varphi(z) \Phi[\lambda (z + B \sigma)]dz - K \left[1 - F_Y(-\delta_2; \lambda) \right], \tag{4.36}
\]

y

\[
e^{rt} P_t(K) = K F_Y(-\delta_2; \lambda) - \frac{\mathbb{E}[X_T]}{\Phi(\rho \sigma B)} \int_{-\delta_1}^{\infty} \varphi(z) \Phi[\lambda (z + B \sigma)]dz, \tag{4.37}
\]

donde

\[
\delta_2 = \frac{1}{B \sigma} \ln \left\{ \frac{\mathbb{E}[X_T]}{2K \Phi(\rho \sigma B)} \right\} - \frac{1}{2} B \sigma \quad \text{y} \quad \delta_1 = \delta_2 + B \sigma. \tag{4.38}
\]

nótese que cuando \(B = \sqrt{\tau} \), estas expresiones coinciden con la fórmula de valoración de opciones del modelo de valoración de opciones dado en Corns & Satchell (2007).

4.5 Las letras Griegas

Para determinar estas opciones se utiliza la siguiente proposición
Proposición 4.3. Sea \(Y \sim SNMIX(\Lambda) \) y \(\ln[X_T] \) la variable aleatoria transformada, \(\ln[X_T] = A + BY \), con parámetros \((A,B) \) = (localización, escala),

\[
\mathbb{E}(X_T) \varphi(\delta_{1j}) = \Upsilon_j(\Lambda, B) K \varphi(\delta_{2j}),
\]

(4.39)

donde \(\delta_{1j} \) y \(\delta_{2j} \) se dan en (4.26) y \(\Upsilon_j(\Lambda, B) \) viene dada en (4.27).

Demostración. Puesto que

\[
\varphi(\delta_{1j}) = \varphi(\delta_{2j} + B\sigma_j),
\]

para cada \(j \), luego

\[
\varphi(\delta_{2j} + B\sigma_j) = \exp \left\{ \ln[\Upsilon_j(\Lambda, B)] - \ln \left(\frac{\mathbb{E}(X_T)}{K} \right) \right\} \varphi(\delta_{2j})
\]

\[
= \Upsilon_j(\Lambda, B) \frac{K}{\mathbb{E}(X_T)} \varphi(\delta_{2j}).
\]

Esto completa la prueba.

 Nótese que al reescribir (4.39) como sigue

\[
\frac{\mathbb{E}(X_T)}{K} = \Upsilon_j(\Lambda, B) \frac{\varphi(\delta_{2j})}{\varphi(\delta_{1j})},
\]

(4.40)

se obtiene la expresión para el grado del dinero dada en (1.11).

Utilizando la proposición anterior, se obtienen las sensibilidades de las opciones de compra y venta europeas, las cuales son las derivadas parciales de las ecuaciones (4.25) y (4.28). A continuación se dan sólo las fórmulas de las medidas Griegas; los cálculos detallados se presentan en el Apéndice B al final de este capítulo.

* Delta

La tasa de cambio del precio de la opción con respecto al precio del activo subyacente, viene dada por

\[
\Delta_{\text{Compra}} = \sum_{j=1}^{m} \frac{2\omega_j}{\Upsilon_j(\Lambda, B)} \int_{-\delta_{1j}}^{\infty} \varphi(z) \Phi[\lambda_j(z + B\sigma_j)]dz,
\]

\[
\Delta_{\text{Venta}} = \Delta_{\text{Compra}} - 1.
\]
• **Theta**

La tasa de cambio del valor de la opción con respecto al tiempo, viene dada por

$$\Theta_{\text{Compra}} = \sum_{j=1}^{m} \frac{2\omega_j X_t}{\Upsilon_j (\Lambda, B)} \left\{ \rho_j \sigma_j \varphi (\rho_j \sigma_j B) \Phi \left[\sqrt{1 + \lambda^2_j (\delta_{1j} - \rho_j^2 B \sigma_j)} \right] \\
+ \sigma_j \varphi (\delta_{1j}) \Phi [-\lambda_j \delta_{2j}] - \frac{\partial \ln [\Upsilon_j (\Lambda, B)]}{\partial B} \int_{-\delta_{1j}}^{\infty} \varphi (z) \Phi [\lambda_j (z + B \sigma_j)] dz \right\} \frac{\partial B}{\partial t}$$

$$- \sum_{j=1}^{m} \omega_j r Ke^{-rt} \left[1 - F_Y (-\delta_{2j}; \lambda_j) \right].$$

y

$$\Theta_{\text{Venta}} = \Theta_{\text{Compra}} + K re^{-rt}.$$

• **Gamma**

La tasa de cambio del delta de la opción con respecto al precio del activo subyacente, es decir, la segunda derivada parcial del precio de la opción con respecto al precio del activo, es dada por

$$\Gamma_{\text{Compra}} = \Gamma_{\text{Venta}} = \sum_{j=1}^{m} 2\omega_j \frac{\Phi [-\lambda_j \delta_{2j}] \varphi (\delta_{1j})}{\Upsilon_j (\Lambda, B) B \sigma_j X_t}.$$

• **Rho**

La tasa de cambio del valor de la opción con respecto a la tasa de interés, viene dada por

$$\rho_{\text{Compra}} = \sum_{j=1}^{m} \omega_j Ke^{-rt} \left[1 - F_Y (-\delta_{2j}; \lambda_j) \right],$$

y

$$\rho_{\text{Venta}} = \rho_{\text{Compra}} - K \tau e^{-rt}.$$

• **Vega**

La Vega es la sensibilidad de la opción para un pequeño cambio en la volatilidad del activo subyacente. La Vega es idéntica para opciones de compra
Una aplicación numérica

En esta sección, se presenta un ejemplo con datos de mercado real, para modelar la distribución del precio de las acciones y comparar los valores numéricos de una opción europea bajo el supuesto de que los movimientos de la acción siguen una mixtura de distribuciones Log-Skew-Normal. Los datos usados son los del índice S&P500, se tomaron los precios diarios de cierre a partir de enero 4, 2010 a octubre 13, 2014. La siguiente tabla muestra las estadísticas descriptivas para los valores del subyacente S&P500.

La distribución empírica y las estadísticas descriptivas presentadas en la tabla 4.1 se analizan mediante el uso de la prueba propuesta por Jarque & Bera (1987), en particular, la asimetría y curtosis confirman que la hipótesis nula de distribución normal debe rechazarse.

\[
\nu_{\text{Compra}} = \sum_{j=1}^{m} \frac{2B \omega_j X}{\Upsilon_j (\Lambda, B)} \left\{ \rho_j \varphi (\rho_j \sigma_j B) \Phi \left[\sqrt{1 + \lambda_j^2 (\delta_{ij} - \rho_j^2 B \sigma_j)} \right]
+ \varphi (\delta_{ij} \rho_j) \Phi \left[-\lambda_j \delta_{2j} \right] - \frac{\partial \ln \left[\Upsilon_j (\Lambda, B) \right]}{\partial \sigma_j} \int_{-\delta_{1j}}^{\infty} \varphi (z) \Phi \left[\lambda_j (z + B \sigma_j) \right] dz \right\} \frac{\partial \sigma_j}{\partial \sigma},
\]

y

\[
\nu_{\text{Venta}} = \nu_{\text{Compra}}.
\]

Cuando se usan los parámetros considerados en los casos especiales, se obtienen respectivamente las medidas griegas para cada modelo.

<table>
<thead>
<tr>
<th>Estadísticas</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>0.0004</td>
</tr>
<tr>
<td>Desv. Estan.</td>
<td>0.0102</td>
</tr>
<tr>
<td>Mínimo</td>
<td>-0.0690</td>
</tr>
<tr>
<td>Máximo</td>
<td>0.0463</td>
</tr>
<tr>
<td>Asimetría</td>
<td>-0.4854</td>
</tr>
<tr>
<td>Curtosis</td>
<td>7.6325</td>
</tr>
<tr>
<td>JB test</td>
<td>1120.1201</td>
</tr>
</tbody>
</table>

Tabla 4.1: Resumen de estadísticas descriptivas
Ahora se estimarán por los métodos de momentos (MME) y máxima verosimilitud (MLE), los parámetros de la distribución. La siguiente tabla 4.2 da la estimación de los parámetros de la mixtura de distribuciones Skew-Normal, los resultados de las estimaciones por estos métodos son muy similares por los dos métodos.

<table>
<thead>
<tr>
<th>Estimación</th>
<th>MME</th>
<th>MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_1)</td>
<td>-0.0039</td>
<td>-0.0025</td>
</tr>
<tr>
<td>(\mu_2)</td>
<td>0.0036</td>
<td>0.0045</td>
</tr>
<tr>
<td>(\sigma_1)</td>
<td>0.0056</td>
<td>0.0056</td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td>0.0137</td>
<td>0.0132</td>
</tr>
<tr>
<td>(\lambda_1)</td>
<td>1.4683</td>
<td>1.4686</td>
</tr>
<tr>
<td>(\lambda_2)</td>
<td>-0.6444</td>
<td>-0.6457</td>
</tr>
<tr>
<td>(\omega)</td>
<td>0.6158</td>
<td>0.6158</td>
</tr>
</tbody>
</table>

Tabla 4.2: Estimaciones para ajustar la \(SNMIX(\Lambda)\)

En la figura 4.5 se muestra el histograma, la \(edf\) y el ajuste de la distribución skew-normal para los rendimientos diarios del índice \(S&P500\). Como se observa el índice \(S&P500\) exhibe un sesgo negativo significativo el cual desempeña un papel importante en la forma de la distribución de los retornos. El exceso de curtosis es alto lo cual indica que los datos son no-normales y tienen cola pesada. Esta gráfica de la \(pdf\) sugiere el uso de la \(LSN\) para modelar los datos reales y la cola pesada.

Figura 4.5: Gráfico de la \(edf\) vs distribución normal vs mixtura de skew-normal para los retornos del \(S&P500\)

En las siguientes tablas 4.3, 4.4 y 4.5 se presentan los precios de opción de compra para los modelos de valoración dados en Black & Scholes (1973), Corrado
& Su (1996) y mixtura de skew-normal (modelo propuesto), respectivamente. Se consideró la tasa de interés libre de riesgo \(r = 6\% \) precio inicial del subyacente \(S_0 = 1400 \), volatilidad para Black Scholes \(\sigma = 0.1297 \)

<table>
<thead>
<tr>
<th>Strike ((K))</th>
<th>Tiempo de madurez (\tau)</th>
<th>(\tau = 0.25)</th>
<th>(\tau = 0.5)</th>
<th>(\tau = 0.75)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td></td>
<td>122,7236</td>
<td>146,2137</td>
<td>168,1804</td>
<td>188,9434</td>
</tr>
<tr>
<td>1350</td>
<td></td>
<td>106,9346</td>
<td>130,0796</td>
<td>151,5625</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td>73,8094</td>
<td>96,9744</td>
<td>118,4221</td>
<td></td>
</tr>
<tr>
<td>1450</td>
<td></td>
<td>47,8415</td>
<td>69,5369</td>
<td>90,0320</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td>29,0350</td>
<td>47,9058</td>
<td>66,5672</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.3: Comparación de precios de opción de compra por BS para el SP.

<table>
<thead>
<tr>
<th>Strike ((K))</th>
<th>Maturit í ((K))</th>
<th>(\tau = 0.25)</th>
<th>(\tau = 0.5)</th>
<th>(\tau = 0.75)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td></td>
<td>123,0441</td>
<td>143,9754</td>
<td>164,5054</td>
<td>184,3572</td>
</tr>
<tr>
<td>1350</td>
<td></td>
<td>103,5501</td>
<td>125,8430</td>
<td>146,8139</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td>70,3303</td>
<td>92,9945</td>
<td>114,1851</td>
<td></td>
</tr>
<tr>
<td>1450</td>
<td></td>
<td>45,2095</td>
<td>66,5457</td>
<td>86,9097</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td>28,0958</td>
<td>46,5603</td>
<td>65,1000</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.4: Comparación de precios de opción de compra por CS para el SP.

<table>
<thead>
<tr>
<th>Strike ((K))</th>
<th>Maturit í ((K))</th>
<th>(\tau = 0.25)</th>
<th>(\tau = 0.5)</th>
<th>(\tau = 0.75)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td></td>
<td>121,8372</td>
<td>143,5546</td>
<td>164,1304</td>
<td>183,8455</td>
</tr>
<tr>
<td>1350</td>
<td></td>
<td>99,9953</td>
<td>121,4675</td>
<td>141,8595</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td>59,5374</td>
<td>81,2789</td>
<td>101,9446</td>
<td></td>
</tr>
<tr>
<td>1450</td>
<td></td>
<td>25,7672</td>
<td>45,2634</td>
<td>65,0156</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td>8,0504</td>
<td>19,5020</td>
<td>34,6045</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.5: Comparación de precios de opción de compra por SNMIX para el SP.

Por otra parte, cabe aclarar que los valores de la opción de compra (venta) del modelo Corrado & Su (1996) puede en algunos casos coincidir con los valores de Black & Scholes, nótese que si

\[
\beta_1 = \frac{\beta_2 - 3}{4} \left[\frac{(d_2^2 - 1) \psi (d_1)}{d_3 \psi (d_1) + \sigma^2 \tau - \sigma \sqrt{\tau}} \right],
\]

entonces sustituyendo en la expresión (1.13) se tiene

\[
C_t^{CS}(K) = C_t^{BS}(K).
\]

\footnote{Se debe satisfacer la desigualdad dada en (1.14).}
Llevando a cabo la minimización de los errores al cuadrado dados por la ecuación:

$$\min_\Lambda \sum_{i=1}^{n} (C_t(K; \Lambda) - \tilde{C}_i(K))^2 \quad (4.42)$$

donde $\tilde{C}_i(K)$ es el precio medio observado en el mercado (promedio de los precios bid y ask) y $C_t(K; \Lambda)$ es el precio teórico de la opción LSNMIX. En este trabajo, consideramos el precio de opción de compra sobre el índice S&P500 que se obtiene a partir de CME servicio E-cuotas, también se considera como tasa de interés los bonos del gobierno de los Estados Unidos en el momento $r = 0.11\%$. Al inspeccionar los parámetros de la mixtura de Skew-Normal, resultantes de la minimización, el parámetro de localización puede ser descartado para estos datos. En este caso, se obtienen los siguientes parámetros para la mixtura de Skew-Normal de dos componentes

$$\Lambda = [557.7136, 557.6375, 0.1732, 0.0324, -2.1216, 0.2827, 0.4622];$$

En la gráfica 4.6 los datos muestran que los modelos de Black-Scholes y el propuesto de opciones LSNMIX tienen un comportamiento muy similar para todos los tipos de opciones, ya sea dentro del dinero (ITM: in the money), en el dinero (ATM: at the money) y fuera del dinero (OTM: out the money). En cambio, los precios con el modelo de Corrado & Su está siempre por encima de los otros dos modelos para opciones OTM. En la gráfica el modelo de valoración propuesto siempre se encuentra por debajo.

Figura 4.6: Opción de compra para distintos moneyness para el SP
En el siguiente gráfico se muestra los valores de opción variando el vencimiento desde un mes hasta un año, para un precio de ejercicio fijo de $K = 1300$. En este caso, se puede observar que el modelo de valoración de opciones LSNMIX propuesto es inferior a los otros modelos.

Figura 4.7: Opción de compra para distintos vencimientos para el SP

Ahora se estudia la volatilidad implícita. Puesto que Black Scholes considera en su modelo la volatilidad constante durante la vida de la opción, en la Gráfica 4.8 se muestra como una línea recta. El modelo propuesto de mixtura de skew-normal muestra una sonrisa, este modelo refleja que la volatilidad no es constante.

Figura 4.8: Volatilidad implícita
4.7 Apéndices

En este apartado se presentan las pruebas de las fórmulas obtenidas en este capítulo.

Apéndice A: Prueba de las fórmulas de precios de las opciones

Si \(\ln X \) se aproxima por (4.24), es decir, \(\ln X = A + BY \), entonces se puede encontrar la pdf de \(X \) de la siguiente manera

\[
g_X(x) = \sum_{j=1}^{m} \frac{\omega_j}{\sigma_j} \frac{2}{|B|} x \varphi \left(\frac{\ln x - A - B\mu_j}{B\sigma_j} \right) \Phi \left(\frac{\ln x - A - B\mu_j}{B\sigma_j} \right),
\]

entonces

\[
e^{rt} C_t(K) = \mathbb{E}[(X - K)_+] = \int_{K}^{\infty} (x - K) g_X(x) dx = \int_{K}^{\infty} \frac{(x - K)}{|B|} \phi_{SN}(\ln x; \Lambda) dx
\]

\[
= \sum_{j=1}^{m} \frac{\omega_j}{\sigma_j} \int_{K}^{\infty} \left[e^{|\ln x - K|} \frac{2}{|B|} x \varphi \left(\frac{\ln x - A - B\mu_j}{B\sigma_j} \right) \Phi \left(\frac{\ln x - A - B\mu_j}{B\sigma_j} \right) dx
\]

\[
= 2 \sum_{j=1}^{m} \frac{\omega_j}{\sigma_j} \int_{\kappa}^{\infty} (\exp \{A + Bu\} - K) \varphi \left(\frac{u - \mu_j}{\sigma_j} \right) \Phi \left(\frac{u - \mu_j}{\sigma_j} \right) du
\]

\[
= 2 \sum_{j=1}^{m} \omega_j \exp \left\{ A + B\mu_j + \frac{B^2}{2} \sigma_j^2 \right\} \int_{\kappa}^{\infty} \varphi \left(u, \mu_j + B\sigma_j^2, \sigma_j \right) \Phi \left(\frac{u - \mu_j}{\sigma_j} \right) du
\]

\[
- 2 \sum_{j=1}^{m} \frac{\omega_j}{\sigma_j} K \int_{\kappa}^{\infty} \varphi \left(\frac{u - \mu_j}{\sigma_j} \right) \Phi \left(\frac{u - \mu_j}{\sigma_j} \right) du,
\]

donde \(\kappa = \frac{\ln K - A}{B} \) y al hacer el cambio de variable \(z = \frac{u - \mu_j}{\sigma_j} - B\sigma_j \), se tiene

\[
e^{rt} C_t(K) = 2 \sum_{j=1}^{m} \omega_j \exp \left\{ A + B\mu_j + \frac{B^2}{2} \sigma_j^2 \right\} \int_{\kappa}^{\infty} \varphi (z) \Phi \left(\lambda_j (z + B\sigma_j) \right) dz
\]

\[
- 2 \sum_{j=1}^{m} \omega_j K \int_{\kappa}^{\infty} \varphi (z) \Phi (\lambda_j z) dz.
\]

Utilizando la expresión (4.18) para \(\mathbb{E}[e^{BY}] \),

\[
\mathbb{E}[X_T] = e^A \sum_{l=1}^{m} \omega_l M_{Y_l}(B), \quad \mathbb{E}[X_T^2] = e^{2A} \sum_{l=1}^{m} \omega_l M_{Y_l}(2B),
\]

(4.44)
la sustitución de esto en (4.43), se obtiene

$$e^{r\tau} C_t(K) = \mathbb{E}[X_T] \sum_{j=1}^{m} \frac{2\omega_j}{\Upsilon_j(\Lambda, B)} \int_{\kappa - \mu_j - B\sigma_j}^{\infty}\varphi(z) \Phi\left[\lambda_j (z + B\sigma_j)\right]dz$$

$$- \sum_{j=1}^{m} \omega_j K \left[1 - F_Y\left(\frac{\kappa - \mu_j}{\sigma_j}; \lambda_j\right)\right],$$

aquí

$$\Upsilon_j(\Lambda, B) = 2 \sum_{l=1}^{m} \omega_l \exp\left\{ B(\mu_l - \mu_j) + \frac{1}{2} B^2 (\sigma_l^2 - \sigma_j^2) \right\} \Phi(\rho_l \sigma_l B),$$

donde \(\rho_l\) se da en (4.19). Luego

$$\frac{\kappa - \mu_j}{\sigma_j} = \frac{\ln K - (A + B\mu_j)}{B\sigma_j},$$

tomando \(\ln[\mathbb{E}(X_T)]\) en la expresión (4.44), se obtiene

$$\ln[\mathbb{E}(X_T)] = A + B\mu_j + B^2/2 \sigma^2_j + \ln[\Upsilon_j(\Lambda, B)].$$

En un mundo neutral al riesgo, el valor esperado de \(\mathbb{E}[X_T] = e^{r\tau} X_t\), luego

$$A + B\mu_j = \ln\left[\mathbb{E}(X_T) \right] - B^2/2 \sigma^2_j - \ln[\Upsilon_j(\Lambda, B)].$$

entonces por simple sustitución se tiene

$$\frac{\kappa - \mu_j}{\sigma_j} = \frac{\ln K - \left(\ln\left[\mathbb{E}(X_T) \right] - B^2/2 \sigma^2_j - \ln[\Upsilon_j(\Lambda, B)] \right)}{B\sigma_j}$$

$$= - \frac{1}{B\sigma_j} \left\{ \ln\left(\frac{\mathbb{E}(X_T)}{K} \right) - \ln[\Upsilon_j(\Lambda, B)] \right\} + \frac{1}{2} B\sigma_j,$$

por lo tanto

$$C_t(K) = X_t \sum_{j=1}^{m} \frac{2\omega_j}{\Upsilon_j(\Lambda, B)} \int_{-\delta_{1j}}^{\infty}\varphi(z) \Phi\left[\lambda_j (z + B\sigma_j)\right]dz$$

$$- \sum_{j=1}^{m} \omega_j Ke^{-r\tau} \left[1 - F_Y(-\delta_{2j}; \lambda_j)\right].$$
donde

\[
\delta_{1j} = \delta_{2j} + B\sigma_j \quad \text{y} \quad \delta_{2j} = -\frac{\kappa - \mu_j}{\sigma_j}. \tag{4.45}
\]

Simplificando se obtiene la fórmula (4.25) para la valoración de una opción de compra europea y del mismo modo la expresión (4.28) para una opción de venta europea.

Apéndice B: Las Griegas

En este apéndice se muestra en detalle cómo encontrar algunas de las sensibilidades de las opciones más comunes (las Griegas). Para calcular las Griegas se usa la Proposición 4.3 y los siguientes hechos:

1. La integral del producto de dos funciones gaussianas

\[
\int_{-\delta}^{\infty} \varphi(u) \varphi(hu + k) \, du = \frac{1}{h} \varphi \left(\frac{k}{h} \right) \Phi \left[\tilde{h} \left(\frac{\delta - k\tilde{h}}{\tilde{h}^2} \right) \right], \tag{4.46}
\]

con \(\tilde{h} = \sqrt{1 + h^2} \).

2. La reflexión sobre el eje y

\[
\varphi(-y, \mu, \sigma) = \varphi(y, -\mu, \sigma). \tag{4.47}
\]

3. Para cada \(j \) las siguientes derivadas parciales de \(\delta_{1j} \) y \(\delta_{2j} \)

\[
\frac{\partial \delta_{1j}}{\partial X} = \frac{\partial \delta_{2j}}{\partial X}, \tag{4.48}
\]

\[
\frac{\partial \delta_{1j}}{\partial t} = \frac{\partial \delta_{2j}}{\partial t} + \sigma_j \frac{\partial B}{\partial t}, \tag{4.49}
\]

\[
\frac{\partial \delta_{1j}}{\partial r} = \frac{\partial \delta_{2j}}{\partial r}, \tag{4.50}
\]

\[
\frac{\partial \delta_{1j}}{\partial \sigma} = \frac{\partial \delta_{2j}}{\partial \sigma} + B \frac{\partial \sigma_j}{\partial \sigma}. \tag{4.51}
\]
• Delta

Derivando la expresión (4.25) con respecto a X, se tiene

$$\frac{\partial}{\partial X} C_t(K) = \frac{\partial}{\partial X} \left\{ \sum_{j=1}^{m} 2\omega_j X \int_{-\delta_{1j}}^{\infty} \varphi(z) \Phi[\lambda_j (z + B\sigma_j)]dz \right\}$$

$$- \sum_{j=1}^{m} \omega_j K e^{r\tau} \left[1 - F_Y(-\delta_{2j}; \lambda_j) \right]$$

$$= \sum_{j=1}^{m} \frac{2\omega_j}{\Upsilon_j(\Lambda, B)} \int_{-\delta_{1j}}^{\infty} \varphi(z) \Phi[\lambda_j (z + B\sigma_j)]dz$$

$$+ \sum_{j=1}^{m} \frac{2\omega_j X}{\Upsilon_j(\Lambda, B)} \varphi(-\delta_{1j}) \Phi[\lambda_j (-\delta_{1j} + B\sigma_j)] \frac{\partial \delta_{1j}}{\partial X}$$

$$- 2 \sum_{j=1}^{m} \omega_j K e^{-r\tau} \varphi(\delta_{2j}) \Phi[-\lambda_j \delta_{2j}] \frac{\partial \delta_{2j}}{\partial X}.$$

Utilizando las expresiones (4.12), (4.39) y (4.48), se obtiene

$$\Delta_{Compra} = \sum_{j=1}^{m} \frac{2\omega_j}{\Upsilon_j(\Lambda, B)} \int_{-\delta_{1j}}^{\infty} \varphi(z) \Phi[\lambda_j (z + B\sigma_j)]dz.$$

Derivando la expresión (4.29) con respecto a X, se obtiene

$$e^{r\tau} [\Delta_{Compra} - \Delta_{Ventas}] = e^{r\tau} \quad \Rightarrow \quad \Delta_{Ventas} = \Delta_{Compra} - 1.$$

• Theta

Derivando la expresión (4.25) con respecto a los t, se obtiene

$$\frac{\partial}{\partial t} C_t(K) = \sum_{j=1}^{m} \frac{2\omega_j X}{\Upsilon_j(\Lambda, B)} \varphi(-\delta_{1j}) \Phi[\lambda_j (-\delta_{1j} + B\sigma_j)] \frac{\partial \delta_{1j}}{\partial t}$$

$$- \sum_{j=1}^{m} \frac{2\omega_j X}{\Upsilon_j(\Lambda, B)} - \frac{\partial \ln[\Upsilon_j(\Lambda, B)]}{\partial B} \int_{-\delta_{1j}}^{\infty} \varphi(z) \Phi[\lambda_j (z + B\sigma_j)]dz \frac{\partial B}{\partial t}$$

$$+ X \sum_{j=1}^{m} \frac{2\omega_j \lambda_j \sigma_j}{\Upsilon_j(\Lambda, B)} \int_{-\delta_{1j}}^{\infty} \varphi(z) \varphi[\lambda_j (z + B\sigma_j)]dz \frac{\partial B}{\partial t}$$

$$- 2 \sum_{j=1}^{m} \omega_j K e^{-r\tau} \varphi(\delta_{2j}) \Phi[-\lambda_j \delta_{2j}] \frac{\partial \delta_{2j}}{\partial t}$$

$$- \sum_{j=1}^{m} \omega_j r K e^{-r\tau} \left[1 - F_Y(-\delta_{2j}; \lambda_j) \right].$$
Valoración de Opciones usando la distribución Normal Sesgada

Utilizando las expresiones (4.12), (4.39), (4.46) y (4.49) se tiene que

\[\Theta_{Compra} = \sum_{j=1}^{m} \frac{2\omega_j X}{\Upsilon_j (\Lambda, B)} \left\{ \rho_j \sigma_j \varphi (\rho_j \sigma_j B) \Phi \left[\sqrt{1 + \lambda_j^2 (\delta_{1j} - \rho_j^2 B \sigma_j)} \right] \right. \]

\[+ \sigma_j \varphi (\delta_{1j}) \Phi [-\lambda_j \delta_{2j}] - \frac{\partial \ln [\Upsilon_j (\Lambda, B)]}{\partial B} \int_{-\delta_{1j}}^{\infty} \varphi (z) \Phi [\lambda_j (z + B \sigma_j)] dz \right\} \frac{\partial B}{\partial t} \]

\[- \sum_{j=1}^{m} \omega_j r Ke^{-rt} [1 - F_Y (-\delta_{2j}; \lambda_j)]. \]

Derivando la expresión (4.29) con respecto a \(t \), se tiene

\[e^{rt} [\Theta_{Compra} - \Theta_{Venta}] - r e^{rt} [C_t (K) - P_t (K)] = -rE [X_T] \]

\[e^{rt} [\Theta_{Compra} - \Theta_{Venta}] - r [E [X_T] - K] = -rE [X_T], \]

de modo que

\[\Theta_{Venta} = \Theta_{Compra} + Kre^{-rt}. \]

Gamma

Derivando dos veces la expresión (4.25) con respecto a \(X \), se tiene

\[\Gamma = \frac{\partial^2 C}{\partial X^2} = \frac{\partial \Delta}{\partial X} = \sum_{j=1}^{m} \frac{2\omega_j \varphi (-\delta_{1j}) \Phi [\lambda_j (-\delta_{1j} + B \sigma_j)] \partial \delta_{1j}}{\Upsilon_j (\Lambda, B) \partial X} \]

\[= \sum_{j=1}^{m} \frac{2\omega_j \varphi (\delta_{1j})}{B \sigma_j X} \Phi [-\lambda_j \delta_{2j}]. \]

Rho

Derivando la expresión (4.25) con respecto a \(r \), se obtiene

\[\frac{\partial}{\partial r} C_t (K) = \sum_{j=1}^{m} \frac{2\omega_j X}{\Upsilon_j (\Lambda, B)} \varphi (-\delta_{1j}) \Phi [\lambda_j (-\delta_{1j} + B \sigma_j)] \frac{\partial \delta_{1j}}{\partial r} \]

\[- 2 \sum_{j=1}^{m} \omega_j Ke^{-rt} \varphi (\delta_{2j}) \Phi [-\lambda_j \delta_{2j}] \frac{\partial \delta_{2j}}{\partial r} \]

\[+ \sum_{j=1}^{m} \omega_j KTe^{-rt} [1 - F_Y (-\delta_{2j}; \lambda_j)]. \]
Utilizando las expresiones (4.39) y (4.50) se obtiene

\[
\rho_{\text{Compra}} = \sum_{j=1}^{m} \omega_j K \tau e^{-\tau \gamma} [1 - F_Y (-\delta_{2j}; \lambda_j)].
\]

Derivando la expresión (4.29) con respecto a \(r \), se llega a

\[
e^{\tau \gamma} [\rho_{\text{Compra}} - \rho_{\text{Venta}}] + \tau e^{\tau \gamma} [C_t(K) - P_t(K)] = \tau \mathbb{E} [X_T]
\]

\[
e^{\tau \gamma} [\rho_{\text{Compra}} - \rho_{\text{Venta}}] + \tau [\mathbb{E} [X_T] - K] = \tau \mathbb{E} [X_T],
\]

de modo que

\[
\rho_{\text{Venta}} = \rho_{\text{Compra}} - K \tau e^{-\tau \gamma}.
\]

- **Vega**

Derivando la expresión (4.25) con respecto a \(\sigma \), se llega a

\[
\frac{\partial}{\partial \sigma} C_t(K) = \frac{\partial}{\partial \sigma} \left\{ \sum_{j=1}^{m} \frac{2 \omega_j X}{\Upsilon_j (\Lambda, B)} \int_{-\delta_{1j}}^{\infty} \varphi(z) \Phi [\lambda_j (z + B \sigma_j)] dz \right. \\
- \sum_{j=1}^{m} \omega_j \frac{K}{e^{\tau \gamma}} [1 - F_Y (-\delta_{2j}; \lambda_j)] \right\}
\]

\[
= \sum_{j=1}^{m} \frac{2 \omega_j X}{\Upsilon_j (\Lambda, B)} \varphi(-\delta_{1j}) \Phi [\lambda_j (-\delta_{1j} + B \sigma_j)] \frac{\partial \delta_{1j}}{\partial \sigma} \\
- \sum_{j=1}^{m} \frac{2 \omega_j B X}{\Upsilon_j (\Lambda, B)} \frac{\partial \ln [\Upsilon_j (\Lambda, B)]}{\partial \sigma} \int_{-\delta_{1j}}^{\infty} \varphi(z) \Phi [\lambda_j (z + B \sigma_j)] dz \frac{\partial \sigma_j}{\partial \sigma} \\
+ X \sum_{j=1}^{m} \frac{2 B \omega_j \lambda_j}{\Upsilon_j (\Lambda, B)} \int_{-\delta_{1j}}^{\infty} \varphi(z) \varphi [\lambda_j (z + B \sigma_j)] dz \frac{\partial \sigma_j}{\partial \sigma} \\
- 2 \sum_{j=1}^{m} \omega_j K e^{-\tau \gamma} \varphi(\delta_{2j}) \Phi [-\lambda_j \delta_{2j}] \frac{\partial \delta_{2j}}{\partial \sigma}.
\]

Utilizando las expresiones (4.12), (4.49), (4.39) y (4.46), se obtiene

\[
\nu_{\text{Compra}} = \sum_{j=1}^{m} \frac{2 B \omega_j X}{\Upsilon_j (\Lambda, B)} \left\{ \rho_j \varphi (\rho_j \sigma_j B) \Phi \left[\sqrt{1 + \lambda_j^2 (\delta_{1j} - \rho_j^2 B \sigma_j)} \right] \\
+ \varphi (\delta_{1j}) \Phi [-\lambda_j \delta_{2j}] - \frac{\partial \ln [\Upsilon_j (\Lambda, B)]}{\partial \sigma_j} \int_{-\delta_{1j}}^{\infty} \varphi(z) \Phi [\lambda_j (z + B \sigma_j)] dz \right\} \frac{\partial \sigma_j}{\partial \sigma}.
\]
Capítulo 5

Valor en Riesgo y Valor en Riesgo Condicional

Resumen 5.1. En este capítulo se propone una metodología para calcular el Valor en Riesgo (VaR, por sus siglas en inglés “Value at Risk”), se introduce el concepto de medida de riesgo coherente y se presentan los axiomas que caracterizan a esta clase de medidas. Se obtienen fórmulas cerradas para calcular el VaR y CVaR aproximando la distribución del activo mediante la distribución $g-h$ de Tukey.

5.1 Introducción

En la práctica diaria del mercado de capitales, los intermediarios financieros que toman las decisiones, necesitan realizar la cuantificación, análisis y gestión del riesgo de mercado asumido en cada una de sus operaciones y de estas en conjunto, con el fin de realizar las provisiones de capital necesarias para enfrentar la ocurrencia de posibles pérdidas y para determinar los niveles de inversión en activos diferentes de acuerdo con el nivel deseado de riesgo en cada uno de estos en relación con la rentabilidad esperada, para este propósito se cuenta con modelos internos en los cuales se aplica comúnmente el modelo de valor en riesgo, más específicamente en su forma paramétrica, que si bien es una herramienta muy útil en la práctica debido a la sencillez de su cálculo, aplicación e interpretación, tiene algunos problemas y limitaciones.

Una limitación de la medida VaR es que da poca importancia a las pérdidas más extremas, ya que no se reflejan adecuadamente la asimetría y la curtosis de la distribución. Por otra parte, el supuesto de normalidad sobrestima el VaR para valores de percentiles muy altos, mientras que se subestima para valores
de percentiles bajos los cuales corresponden a los eventos extremos. En el marco de la teoría de medidas de riesgo coherentes el VaR no es una de ellas, ya que tiene algunas características matemáticas no deseables tales como la falta de subaditividad y de convexidad, las cuales se satisfacen solo bajo el supuesto de normalidad, y cuya ausencia puede conducir a resultados contradictorios en los procesos de optimización de portafolios.

Por lo tanto, es necesario implementar una medida de riesgo coherente en cuanto a su caracterización matemática, que permita una mayor precisión para estimar el nivel de riesgo de mercado asumido, en este sentido, en este trabajo se muestra la estimación de la medida de riesgo Expected Shortfall (ES).

En este Capítulo se presenta un nuevo marco para establecer VaR y $CVaR$ cuando la distribución de la cartera muestra asimetría y exceso de curtosis, usando las distribuciones consideradas en los capítulos anteriores. Como se ha mencionado estas familias de distribuciones son de particular interés en las aplicaciones financieras, debido a sus características las cuales permiten cuantificar las pérdidas que podrían encontrarse en la cola. En este capítulo se propone el uso de las familias de distribuciones estudiadas antes para el cálculo del VaR y del Valor en Riesgo Condicional ($CVaR$, por sus siglas en inglés “Conditional Value at Risk”), ya que estas distribuciones permiten capturar la asimetría y la curtosis. En este Capítulo se obtienen expresiones explícitas para el cálculo de VaR y $CVaR$. También se obtiene una fórmula explícita para calcular el $CVaR$ mediante la aproximación de Cornish-Fisher.

El capítulo está organizado de la siguiente manera: Sección 5.2 se presentan algunas aproximaciones para el cálculo de VaR y se da un breve repaso de sus propiedades. En la Sección 5.3, se muestran algunos resultados teóricos para el cálculo del VaR y $CVaR$, utilizando las distribuciones consideradas en los capítulos anteriores y en la última Sección con un ejemplo se describe la metodología de cálculo del VaR y $CVaR$.
5.2 Aproximación al cálculo del VaR

Aunque en este trabajo no se hace una descripción detallada de cada método, antes de discutir las posibles aplicaciones de las distribuciones empleadas en esta tesis para el cálculo del VaR, se presentan algunas de las metodologías “clásicas” para la estimación del VaR.

5.2.1 Método varianza-covarianza

Este método paramétrico para el cálculo de VaR fue propuesto por Baumol (1963) como un criterio límite de confianza esperado. Suponiendo un nivel de confianza fijo $\alpha \in (0,1]$ y un horizonte temporal de T días, el VaR se puede calcular fácilmente a partir de σ mediante la siguiente expresión:

$$VaR_\alpha(X) = \mu_X - \Phi^{-1}(\alpha) \sigma_X \sqrt{T}$$

(5.1)

Bajo el supuesto de normalidad, el modelo estándar que determina el VaR de una posición es el siguiente:

$$VaR_\alpha(X) = -z_\alpha V_0 \sigma_X \sqrt{T},$$

(5.2)

donde

z_α: α–ésimo cuantil de la variable aleatoria $N(0,1)$.

V_0: inversión total o exposición total al riesgo.

σ_X: desviación estándar de los retornos de los activos.

T: horizonte de tiempo que se tiene para el cálculo del VaR.
En general, el VaR para un nivel de confianza $\alpha\%$ y un horizonte de T días, se puede obtener como

$$VaR_\alpha(V) = \mathbb{E}[V] - z_\alpha \sigma_V \sqrt{T},$$

donde V denota el valor de la cartera.

5.3 Aproximación del VaR por una distribución arbitraria

Proposición 5.1. Sean $F_Y(y)$ y $f_Y(y)$ la cdf y pdf de una variable aleatoria continua Y. Si S es la variable aleatoria transformada, $S = A + BY$, con parámetros de localización (A) y de escala (B), el VaR para S está dado por

$$VaR_\alpha(S) = A + BF_Y^{-1}(\alpha),$$

(5.3)

donde α es el único número de tal manera que $F_Y(y_\alpha) = \alpha$.

Demostración. Teniendo en cuenta un nivel de confianza α, el VaR se puede calcular analíticamente como sigue:

$$1 - \alpha = \int_{-\infty}^{\infty} H(S - VaR_\alpha(S)) g(S) dS,$$

donde $g(S)$ es la función de densidad de S y $H(u)$ denota la función escalón unitaria de Heaviside. Si la variable S es aproximada por $S = A + BY$, entonces

$$1 - \alpha = \int_{-\infty}^{\infty} H(S - VaR_\alpha(S)) f_Y(y) dy = \int_{\frac{VaR_\alpha(S) - A}{B}}^{\infty} f_Y(y) dy$$

$$= 1 - F_Y \left(\frac{VaR_\alpha(S) - A}{B} \right).$$

Por último, si $F_Y(\cdot)$ es invertible, el VaR se puede establecer como

$$F_Y \left(\frac{VaR_\alpha(S) - A}{B} \right) = \alpha \quad \Rightarrow \quad \frac{VaR_\alpha(S) - A}{B} = F_Y^{-1}(\alpha),$$

al despejar el valor de VaR, se obtiene

$$VaR_\alpha(S) = A + BF_Y^{-1}(\alpha).$$

(5.4)

que era lo que se quería demostrar.

En términos estadísticos, esto corresponde al α–ésimo cuantil de la distribución de pérdidas y ganancias de la inversión, es decir, representa la máxima pérdida en que incurre un activo en el $100\alpha\%$ mejor de los casos (en referencia
5.3. Aproximación del VaR por una distribución arbitraria

a las pérdidas más pequeñas), lo cual se interpreta como que la pérdida en una inversión no superará el VaR a un nivel de confianza α.

5.3.1 Aproximación de Cornish-Fisher

Basado en la expansión de Fisher & Cornish (1960), Zangari (1996) approxima los percentiles de la distribución de probabilidad de V y calcula el VaR para un nivel de confianza $\alpha\%$ y un horizonte de T días como sigue

$$VaR^{{CF}}_\alpha (V) = \mathbb{E}[V] - \omega_\alpha \sigma_V \sqrt{T}, \quad (5.5)$$

donde ω_α fue dado en (1.49), es decir:

$$\omega_\alpha = z_\alpha + \frac{1}{6} (z_\alpha^2 - 1) \beta_1 (V) + \frac{1}{24} (z_\alpha^3 - 3z_\alpha) \gamma_2 (V)$$

$$- \frac{1}{36} (2z_\alpha^3 - 5z_\alpha) \beta_1^2 (V) - \frac{1}{24} (z_\alpha^4 - 5z_\alpha^2 + 2) \beta_1 (V) \gamma_2 (V). \quad (5.6)$$

Nota 5.1. Cuando se emplea la aproximación Cornish-Fisher, es importante tener en cuenta el número de términos que se usa en la expansión, ya que si se usan pocos términos sólo proporcionará una “buena” aproximación si la distribución empírica es “cercana” a la normal, y no se puede esperar que sea de mucha utilidad si se tiene una distribución que es poco normal. Para ilustrar mejor la situación, supóngamos que los datos de Ganancia/Pérdida (B/L) se distribuyen según una t–Student con 5 grados de libertad. Teóricamente esta distribución tiene exceso de curtosis $\gamma_2 = \frac{6}{\nu - 4}$; en nuestro caso $\gamma_2 = 6$, lo cual indica que esta lejos de la curtosis de la normal ($\beta_2 = 3$). Al calcular el VaR para diferentes niveles de confianza con la verdadera (es decir, t), el VaR–normal y el VaR con la aproximación Cornish-Fisher, en la Tabla 5.1 se puede ver que la aproximación de Cornish-Fisher es en general muy deficiente.

<table>
<thead>
<tr>
<th>VaR</th>
<th>Niveles de confianza</th>
<th>$\alpha = 0.90$</th>
<th>$\alpha = 0.95$</th>
<th>$\alpha = 0.975$</th>
<th>$\alpha = 0.99$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Student (Real)</td>
<td>1.5608</td>
<td>1.9912</td>
<td>2.4503</td>
<td>3.1233</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>1.2816</td>
<td>1.6449</td>
<td>1.9599</td>
<td>2.3263</td>
<td></td>
</tr>
<tr>
<td>VaR$^{{CF}}$</td>
<td>0.8466</td>
<td>1.5238</td>
<td>2.3723</td>
<td>3.7291</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.1: Comparación de metodologías VaR

En torno a un nivel de confianza de 95 %, la aproximación Cornish-Fisher generalmente produce una estimación del VaR que es peor que la estimación (deficiente) que se consigue si se asume normalidad. Como se observa en la tabla 5.1, se debe utilizar la aproximación Cornish-Fisher con cierto cuidado, ya que puede empeorar las estimaciones del VaR.
5.3.2 Aproximación por la distribución g-h de Tukey

En el caso del \(VaR\), específicamente mediante la estimación paramétrica, se supone que las distribuciones son normales, lo que permite una aproximación parsimoniosa de los datos ya que la función de distribución se puede describir de manera completa sólo por sus dos primeros momentos (media y varianza), sin embargo, para otras distribuciones como se vio anteriormente los momentos de órdenes superiores y en particular los relacionados con el coeficiente de asimetría y curtosis, pueden ser importantes para determinar el cálculo del \(VaR\).

En esta sección se supone que la variable \(S\) es aproximada por (2.6), es decir

\[
S = A + BY,
\]

entonces utilizando la expresión (2.12) se obtiene

\[
1 - \alpha = \int_{T_{g,h}(VaR_{\alpha}(S)-A)}^{\infty} f_U(v) \, dv = 1 - F_U \left(T_{g,h}^{-1} \left(\frac{VaR_{\alpha}(S) - A}{B} \right) \right).
\]

Finalmente, como \(F_U(\cdot)\) es invertible, se puede definir el \(VaR\) como

\[
T_{g,h}^{-1} \left(\frac{VaR_{\alpha}(S) - A}{B} \right) = F_U (\alpha) \Rightarrow \frac{VaR_{\alpha}(S) - A}{B} = T_{g,h} (u_{\alpha}).
\]

Al despejar el valor del \(VaR\) y usando la expresión (2.7), se obtiene para \(\alpha > 0.5\),

\[
VaR_{\alpha}(S) = A + BT_{g,h}(u_{\alpha}) \quad (5.8)
\]

\[
VaR_{1-\alpha}(S) = A - B \exp\{-gu_{\alpha}\}T_{g,h}(u_{\alpha}).
\]

Esta última expresión coincide con el resultado presentado en Nam & Gup (2003), cuando \(U \sim N(0, 1)\).

Casos Especiales

Si la variable aleatoria \(U \sim GED(1/2)\) entonces se tienen las siguientes situaciones

1. Cuando \(h = 0\), la expresión (5.8) queda

\[
VaR_{\alpha}(S) = A + \frac{B}{g} (e^{gu_{\alpha}} - 1) = e^{\mu + \sigma u_{\alpha}} + \theta; \quad (5.9)
\]
donde $\theta = A - e^{\mu}$ y $g = \sigma$. En el capítulo 2 se estableció que si $V = \ln(X - \theta)$ sigue una ley normal $N(\mu_V, \sigma_V^2)$, entonces,

$$
\mu_X = \exp\left\{ \mu_V + \frac{1}{2} \sigma_V^2 \right\} + \theta \quad \text{y} \quad \sigma_X^2 = (\mu_X - \theta)^2 \left[\exp\left\{ \sigma_V^2 \right\} - 1 \right],
$$

al resolver para μ_V, σ_V, y sustituyendo en (5.9) resulta

$$
\text{VaR}_\alpha(S) = \theta + \exp \left\{ \ln \left[\frac{(\mu_X - \theta)^2}{\sqrt{(\mu_X - \theta)^2 + \sigma_X^2}} \right] + u_\alpha \sqrt{\ln \left[1 + \frac{\sigma_X^2}{(\mu_X - \theta)^2} \right]} \right\}
$$

$$
= \theta + \frac{\vert \mu_X - \theta \vert}{\sqrt{1 + \rho_X^2}} \exp \left\{ u_\alpha \sqrt{\ln \left(1 + \rho_X^2 \right)} \right\}, \quad (5.10)
$$

donde $\rho_X = \frac{\sigma_X}{\mu_X - \theta}$, lo cual coincide con el coeficiente de variación de la variable aleatoria X, cuando $\theta = 0$.

2. Si se supone que $g = 0$, al reemplazar en (5.8) se obtiene

$$
\text{VaR}_\alpha(S) = A + Bu_\alpha e^{\frac{1}{2}hu_\alpha^2},
$$

cuando $h = 1$ se tiene la distribución de Cauchy con parámetros μ y σ, es decir

$$
\text{VaR}_\alpha(S) = \mu + \sigma u_\alpha e^{\frac{1}{2}u_\alpha^2}.
$$

3. Si $g = h = 0$, usando las constantes dadas en Jiménez (2004) para los parámetros de localización y escala, se obtiene

$$
\text{VaR}_\alpha(S) = \mu + \sigma u_\alpha.
$$

Nótese que esta última expresión coincide con la fórmula clásica de VaR (ver Jorion (2007)).

5.3.3 Aproximación mediante la distribución Normal sesgada

Si la variable S se aproxima por

$$
S = A + BY, \quad \text{con} \quad Y \sim SN(\mu, \sigma^2, \lambda), \quad (5.11)
$$
entonces por la expresión (5.3) el VaR está dado por

\[\text{VaR}_\alpha(S) = A + By_\alpha, \]

(5.12)

la expansión de Cornish-Fisher se utiliza aquí para aproximar el \(\alpha \)-ésimo cuantil de \(Y \), basado en la expansión Fisher & Cornish (1960), se puede expresar el percentil \(y_\alpha \) en términos de los cumulantes, de la estandarización de la variable \(Y \), y el percentil de la normal estándar \(z_\alpha \)

\[\frac{y_\alpha - \mu_Y}{\sigma_Y} - z_\alpha = \omega, \]

(5.13)

el lado derecho se sustituye por \(I + II + III \), es decir, se ajusta por las expresiones \(I, II \) y \(III \) dadas en la página 214 de la expansión Fisher & Cornish (1960).

Puesto que el lado izquierdo está estandarizado, entonces

\[
y_\alpha = \mu_Y + \sigma_Y \left[z_\alpha + \frac{1}{6} (z_\alpha^2 - 1) \beta_1(Y) + \frac{1}{24} (z_\alpha^3 - 3z_\alpha) (\beta_2(Y) - 3) \right. \\
- \left. \frac{1}{36} (2z_\alpha^3 - 5z_\alpha) \beta_1^2(Y) - \frac{1}{24} (z_\alpha^4 - 5z_\alpha^2 + 2) \beta_1(Y) (\beta_2(Y) - 3) \right],
\]

(5.14)

donde \(\mu_Y, \sigma_Y, \beta_1(Y) \) y \(\beta_2(Y) \) son dados en (4.9).

5.4 Medidas Coherentes de Riesgo

Cuando se calcula el VaR por el método delta normal, se da poco peso a las pérdidas más extremas, ya sea porque no se recogen adecuadamente, o la distribución presenta asimetría o curtosis. En este caso, bajo el supuesto de normalidad, el VaR es sobreestimado por los valores altos de percentiles, mientras que se subestima para valores bajos de percentiles los cuales corresponden a eventos más extremos. Debido a este problema Artzner et al. (1997) proponen una medida alternativa de riesgo con propiedades de subaditividad y consistencia.

Para determinar la eficiencia de un buen indicador del riesgo de mercado, Artzner et al. (1997) derivan cuatro propiedades deseables que debe cumplir una medida de riesgo para que se denomine “coherente”.

Definición 5.1. Medida de Riesgo Coherente

Una medida de riesgo coherente es un indicador de riesgo \(\rho \), que satisface los siguientes axiomas:
1. **Homogeneidad positiva:**
\[\rho(\lambda u) = \lambda \rho(u). \]
El incremento de la posición en una cartera o en cualquiera de los activos que la conforman en \(\lambda \) implica que el riesgo se debe aumentar proporcionalmente en \(\lambda \).

2. **Monotonicidad:**
\[u \leq v \implies \rho(u) \leq \rho(v). \]
Esta propiedad establece que a mayor rentabilidad debe haber un mayor nivel de riesgo.

3. **Invariante en traslación:**
\[\rho(u + a) = \rho(u) + a. \]
Al invertir un monto adicional de la cartera de manera moderada, entonces el riesgo se incrementa en la misma cantidad, es decir, el riesgo se escala con el tamaño de la posición.

4. **Subaditividad o diversificación:**
\[\rho(u + v) \leq \rho(u) + \rho(v). \]
La composición de la cartera no debe aumentar el riesgo.

Un problema esencial al emplear el VaR es que no cumple con el cuarto axioma el de subaditividad, esto significa que no puede ser considerado como una medida adecuada de riesgo en todas las situaciones.

Limitaciones del VaR

A continuación se presentan algunos aspectos no convenientes al usar el VaR:

- Esta medida sólo satisface el axioma de subaditividad cuando se emplean distribuciones elípticas, por ejemplo, en el caso de las distribuciones normal y t–Student.

- No puede considerarse como una medida de riesgo coherente, desde el punto de vista de la teoría de la medida.

- No cumple la diversificación, como esta medida de riesgo no satisface la subaditividad entonces aplicar diversificación puede incrementar el riesgo.

- No suministra información adicional sobre los montos de pérdidas que exceden esta medida.

Teniendo en cuenta estos inconvenientes existentes al evaluar el VaR, en Acerbi & Tasche (2002) se define una nueva medida de riesgo el Expected Shortfall \((ES) \), que satisface los axiomas de una medida coherente y por lo tanto, el \(ES \) es considerado una medida de riesgo coherente.
5.5 Valor en Riesgo Condicional

Definición 5.2. El Déficit Esperado (ES, por sus siglas en inglés “Expected Shortfall”) de una muestra se define como:

$$ES_\alpha(X) = \mathbb{E} [X \mid X > \text{VaR}_\alpha(X)].$$ \hspace{1cm} (5.15)

El ES mide la pérdida promedio de una cartera, dado que la pérdida es mayor que un cierto límite.

El ES es una medida de riesgo subaditiva y por lo tanto coherente en el sentido de Acerbi & Tasche (2002), esta medida describe el tamaño promedio que puede tener las pérdidas que están por encima del nivel de VaR estimado, de manera que proporciona información adicional sobre la cola de la distribución de pérdidas y ganancias del activo o cartera. La medida de riesgo ES considera la forma de la distribución condicional del (1 - α)% de los peores escenarios, mientras que el VaR no los tiene en cuenta.

El ES es también llamado “Valor en Riesgo Condicional” (CVaR), “pérdida esperada en la cola” (ETL, por sus siglas en inglés “Expected Tail Loss”) y “valor medio en riesgo” (AVaR, por sus siglas en inglés “Average Value at Risk”).

Definición 5.3. El CVaR se define como la pérdida esperada, dado que es mayor o igual que el VaR. El CVaR es el promedio de pérdidas a un nivel de probabilidad α%, es decir, las pérdidas esperadas con esta probabilidad. El CVaR de una muestra se obtiene como sigue:

$$CVaR_\alpha(X) = \frac{1}{1 - \alpha} \int_\alpha^1 \text{VaR}_q(X) dq \quad \text{o} \quad CVaR_{1-\alpha}(X) = -\frac{1}{\alpha} \int_0^\alpha \text{VaR}_q(X) dq.$$ \hspace{1cm} (5.16)

El hecho de que el VaR mida la máxima pérdida en condiciones normales de mercado, significa que se centra (o debe centrarse) en los acontecimientos ordinarios (hasta un nivel de confianza del 95%) y no en los sucesos extraordinarios o extremos, lo cual hace necesaria la implementación de una medida de riesgo complementaria como el Valor en Riesgo Condicional (CVaR). Por definición el VaR no recoge todos los aspectos del riesgo de mercado, es decir, el VaR no permite estimar o predecir los movimientos extremos de los mercados y es aquí donde el CVaR juega un papel fundamental.
Como medida de riesgo, el $CVaR$ ofrece ventajas significativas en comparación con el VaR, especialmente cuando la distribución del retorno no sea continua y lejos de la hipótesis de normalidad (lo cual es particularmente común cuando se usan métodos históricos o series completas que están disponibles para todos los activos considerados por baja frecuencia de transacciones). Las propiedades del $CVaR$ se discuten en detalle en Acerbi & Tasche (2002) y Rockafellar & Uryasev (2002).

Proposición 5.2. Sean $f_X(x)$ y $F_X(x)$ la pdf y cdf de una variable aleatoria continua X. Si $F'_X(x)$ nunca es cero, entonces $F_X^{-1}(q)$ es diferenciable y satisface

$$
\int_{\alpha}^{1} F_X^{-1}(q) \, dq = \int_{x_\alpha}^{\infty} w f_X(w) \, dw,
$$

(5.17)

donde q es el único número que cumple que $F_X(x_q) = q$.

Demostración. Se supone que x_q es el menor número que satisface $F_X(x_q) = q$, es decir, es el q-ésimo cuantil de X, haciendo el cambio de variable

$$
w = x_q = F_X^{-1}(q) \quad \quad \quad \quad dw = dx_q = \frac{dq}{F'_X(x_q)},
$$

aquí se utiliza la expresión dada en (2.8), ya que $F'_X(w) = f_X(w)$, y dado que $f_X(w)$ es una función cuyo dominio es la recta real y su contradominio es el intervalo infinito $[0, \infty)$, despejando dq se obtiene

$$
\int_{\alpha}^{1} F_X^{-1}(q) \, dq = \int_{x_\alpha}^{\infty} w f_X(w) \, dw.
$$

 Nótese que si $\alpha \to 1$ entonces $\lim_{\alpha \to 1} F_X^{-1}(\alpha) \to \infty$.

Sustituyendo la expresión (5.1) en (5.16) y usando la Proposición 5.2 se obtiene

$$
CVaR_{\alpha}(X) = \frac{1}{1 - \alpha} \int_{\alpha}^{1} \left(\mu_X - \Phi^{-1}(q) \sigma_X \sqrt{T} \right) dq
$$

$$
= \mu_X - \frac{\sigma_X \sqrt{T}}{1 - \alpha} \int_{x_\alpha}^{\infty} \varphi(w) dw.
$$

(5.18)

En general, bajo el supuesto de normalidad, el modelo paramétrico que determina el $CVaR$ de una posición es como sigue:

$$
CVaR_{\alpha}(X) = \mu_X - \frac{\sigma_X \sqrt{T}}{1 - \alpha} \varphi(z_\alpha).
$$

(5.19)
Esta última fórmula coincide con la expresión dada por Jondeau et al. (2009, pág. 335) y McNeil et al. (2005, pág. 45).

Propiedades del CVaR

1. El $CVaR_\alpha(X)$ aumenta a medida que α aumenta.

2. El $CVaR(X)$ del 100%-cuantil es igual al valor esperado.

3. El $CVaR_\alpha(X)$ es peor (o igual) que el $VaR_\alpha(X)$ con el mismo nivel de confianza α.

Pflug (2002) demuestra que el $CVaR$ es “coherente” pues satisface los axiomas de homogeneidad positiva, monotonía e invariante en transición, en comparación con VaR que no cumple el axioma de subaditividad para distribuciones no normales.

5.5.1 Aproximación por Cornish-Fisher

Para determinar el $CVaR$ mediante la expansión de Cornish-Fisher para un nivel de confianza $\alpha\%$ y un horizonte de T días se sustituye la ecuación (1.47) en la expresión (5.17) y se obtiene

$$\int_{\alpha}^{1} F_X^{-1}(q) \, dq = \int_{z_\alpha}^{\infty} F_X^{-1} (\Phi(w)) \varphi(w) \, dw,$$

luego el $CVaR$ se puede aproximar como sigue

$$CVaR_{\alpha}^{CF}(V) = \mathbb{E}[V] - \frac{1}{1 - \alpha} \omega_{\alpha}^* \sigma_V \sqrt{T}, \quad (5.20)$$

con

$$\omega_{\alpha}^* = \int_{\alpha}^{1} \omega_q \, dq = \left\{ 1 + \frac{z_\alpha}{6} \beta_1(V) + \frac{z_\alpha^2}{24} - \frac{1}{\gamma_2(V)} - \frac{2z_\alpha^2}{36} \beta_1^2(V) \right\} \varphi(z_\alpha), \quad (5.21)$$

donde ω_q es dado en (5.6). Nótese que cuando el coeficiente de asimetría $\beta_1(V)$ y el exceso de curtosis $\gamma_2(V)$ son iguales a cero, esta expresión se reduce a (5.19).
5.5. Valor en Riesgo Condicional

Para establecer la expresión (5.21) se usaron las siguientes integrales:

1. \[\int_{\alpha}^{1} z_{q}^{2n+1} dq = \sum_{k=0}^{n} \frac{\Gamma(n+1)}{\Gamma(n-k+1)} 2^{k} (z_{\alpha}^2)^{n-k} \varphi(z_{\alpha}). \]

2. \[\int_{\alpha}^{1} z_{q}^{2n} dq = z_{\alpha}^{2n-1} \varphi(z_{\alpha}) + (2n-1) \int_{\alpha}^{1} z_{q}^{2(n-1)} dq. \]

5.5.2 Aproximación por la distribución g-h de Tukey

Para obtener la aproximación de CVaR mediante la distribución \(g-h \) de Tukey se consideran los siguientes casos

1. Cuando \(U \sim GED(1/2) \) se puede aproximar el CVaR a un nivel de confianza \(\alpha \% (\alpha > 0.5) \), como sigue

\[
CVaR_{\alpha}(S) = A + \frac{B}{1-\alpha} \left\{ \frac{e^{\frac{1}{2} \frac{g^2}{\pi}}}{g \sqrt{1-h}} \left[1 - F_U \left(\sqrt{1-h} u_{\alpha} - \frac{g}{\sqrt{1-h}} \right) \right] - \frac{1}{g \sqrt{1-h}} \left(1 - F_U \left(\sqrt{1-h} u_{\alpha} \right) \right) \right\},
\]

utilizando la expresión (2.26) se obtiene también dos casos

\[
CVaR_{\alpha}(S) = A + \frac{B}{1-\alpha} \left[\mu_{g,h} F_U(\delta_{2\alpha}) + \frac{1}{1-h} F_U(\delta_{2\alpha} - \delta_{1\alpha}) \right],
\]

donde

\[
\delta_{1\alpha} = -\sqrt{1-h} u_{\alpha}, \quad \text{y} \quad \delta_{2\alpha} = \delta_{1\alpha} + \frac{g}{\sqrt{1-h}}.
\]

Por otra parte,

\[
CVaR_{1-\alpha}(S) = A + \frac{B}{\alpha} \left[\mu_{g,h} F_U(\delta_{2\alpha}^*) - \frac{1}{1-h} F_U(\delta_{2\alpha}^* - \delta_{1\alpha}^*) \right]
\]

donde

\[
\delta_{1\alpha}^* = -\delta_{1\alpha} = \sqrt{1-h} u_{\alpha}, \quad \text{y} \quad \delta_{2\alpha}^* = -\delta_{2\alpha} = \delta_{1\alpha}^* - \frac{g}{\sqrt{1-h}}.
\]

2. Cuando \(U \sim GED(1) \) se tiene que

\[
CVaR_{\alpha}(S) = A + \frac{B}{1-\alpha} \frac{\sqrt{\pi}}{g \sqrt{|h|}} \left[\exp \left\{ \frac{1}{2} \beta_{1,0}^2 \right\} \Phi(\delta_{2\alpha}) - \exp \left\{ \frac{1}{|h|} \right\} \Phi(\delta_{1\alpha}) \right],
\]
donde \(\beta_{1,0} = \frac{\sqrt{2-\rho}}{\sqrt{|h|}} \) y

\[
\delta_{1\alpha} = -\sqrt{|h|} \left(u_\alpha + \frac{\sqrt{2}}{|h|} \right) \quad y \quad \delta_{2\alpha} = \delta_{1\alpha} + \frac{g}{\sqrt{|h|}}.
\]

Por otra parte,

\[
CVaR_{1-\alpha}(S) = A + B \frac{\sqrt{\pi}}{\alpha g \sqrt{|h|}} \left[\exp \left\{ \frac{1}{2} \alpha_{1,0}^2 \right\} \Phi(\delta_{2\alpha}) - \exp \left\{ \frac{1}{|h|} \right\} \Phi(\delta_{1\alpha}) \right],
\]

donde \(\alpha_{1,0} = \frac{\sqrt{2+g}}{\sqrt{|h|}} \) y

\[
\delta_{1\alpha} = \sqrt{|h|} \left(u_\alpha - \frac{\sqrt{2}}{|h|} \right) \quad y \quad \delta_{2\alpha} = \delta_{1\alpha} - \frac{g}{\sqrt{|h|}}.
\]

5.5.2.1 Casos Especiales

Cuando \(U \sim GED(1/2) \) se tienen los siguientes casos

1. Si \(h = 0 \), entonces

\[
CVaR_\alpha(S) = \theta + \frac{\Phi(\sigma - z_\alpha)}{1 - \alpha} e^{\mu + \sigma^2/2},
\]

donde \(\theta = A - e^\mu \). Siguiendo el enfoque utilizado en Jiménez & Martínez (2006), se determinan \(\mu \) y \(\sigma \), luego reemplazando en (5.23), se obtiene que

\[
CVaR_\alpha(S) = \theta + \frac{\mu x - \theta}{1 - \alpha} \left\{ \Phi \left\{ \sqrt{\ln (1 + \rho_X^2)} - u_\alpha \right\} \right\},
\]

donde \(\rho_X = \frac{\sigma_X}{\rho_X - \theta} \), el cual coincide con el coeficiente de variación de la variable aleatoria \(X \), cuando \(\theta = 0 \).

2. Suponiendo que \(g = 0 \), se puede utilizar el teorema del valor medio,

\[
\frac{\Phi(b) - \Phi(a)}{b - a} \approx \varphi(c),
\]

donde \(c \in (a, b) \),

en consecuencia, se llega a

\[
CVaR_\alpha(S) = A + B \frac{\varphi(\sqrt{1-h} u_\alpha)}{1 - h}.
\]
3. Cuando \(g = h = 0 \), mediante las constantes dadas para los parámetros de localización y escala en Jiménez (2004), se tiene

\[
CVaR_\alpha(S) = \mu - \frac{\sigma}{1 - \alpha} \varphi(u_\alpha).
\]

 Nótese que esta última expresión coincide con la fórmula para el \(CVaR \) dada en (5.19).

5.5.3 Aproximación por la distribución Normal sesgada

Cuando se utiliza la distribución Normal sesgada, se puede aproximar el \(CVaR \) a un nivel de confianza \(\alpha \% (\alpha > 0.5) \), sustituyendo la expresión (1.37) en (5.17), en este caso el \(CVaR \) está dado por

\[
CVaR_\alpha(S) = \frac{1}{1 - \alpha} \left[2\varphi(y_\alpha)\Phi(\lambda y_\alpha) + \rho b \left(1 - \Phi\left(\sqrt{1 + \lambda^2 y_\alpha} \right) \right) \right], \tag{5.25}
\]

donde \(\rho = \frac{\lambda}{\sqrt{1 + \lambda^2}} \), \(b = \sqrt{\frac{2}{\pi}} \) y \(y_\alpha \) es dado por (5.14). Esta última fórmula coincide con la expresión dada por Bernardi (2013). Además, nótese que si en la última expresión \(\lambda \rightarrow 0 \) esta fórmula coincide con la expresión dada por Jondeau et al. (2009, pág. 335) y McNeil et al. (2005, pág. 45).

En la Tabla 5.2 se presenta un resumen de fórmulas para calcular el \(VaR \) y \(CVaR \) con diferentes distribuciones univariadas.
Tabla 5.2: Resumen de modelos para el cálculo de VaR y CVaR

<table>
<thead>
<tr>
<th>Distribución</th>
<th>Función de densidad de probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>VaR</td>
<td>$\frac{1}{\sqrt{2\pi \sigma}} \exp \left{ -\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right}$</td>
</tr>
<tr>
<td>CVaR</td>
<td>$\frac{1}{\sqrt{2\pi \sigma}} \Phi \left(\frac{\mu - \Phi^{-1}(1 - \alpha)}{\sigma} \right)$</td>
</tr>
</tbody>
</table>

Donde $z = \frac{x - \mu}{\sigma}$.
5.6 Una aplicación

En esta sección se compara el procedimiento desarrollado anteriormente con el método clásico, la simulación histórica y la aproximación Cornish-Fisher para estimar el VaR y $CVaR$.

Se considera una cartera construida con tres grandes acciones de capitalización de mercado12: BBVA, ELE y SAN, la muestra cubre 2.081 días hábiles a partir de 01/01/2003 a 17/01/2011 y se establece:

1. La tasa de retorno diaria aritmética de cada acción, es decir,

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}} \quad t = 1, 2, \ldots, T, \quad (5.26)$$

donde P_t denota el precio de la acción en el momento t.

<table>
<thead>
<tr>
<th>Activo</th>
<th>Retorno</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBVA (%)</td>
<td>0.0163312757</td>
</tr>
<tr>
<td>ELE (%)</td>
<td>0.0424676054</td>
</tr>
<tr>
<td>SAN (%)</td>
<td>0.0351851054</td>
</tr>
</tbody>
</table>

2. La matriz de covarianza de la cartera

$$\Sigma = \begin{bmatrix} 4.325674189 & 1.714872578 & 4.100211925 \\ 1.714872578 & 2.961638820 & 1.738771858 \\ 4.100211925 & 1.738771858 & 4.677008713 \end{bmatrix}$$

3. Las ponderaciones del portafolio global de mínima varianza ($GMVP$, por sus siglas en inglés “Global Minimum Variance Portfolio”)

<table>
<thead>
<tr>
<th>Activo</th>
<th>GMVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBVA</td>
<td>0.2557446</td>
</tr>
<tr>
<td>ELE</td>
<td>0.67213809</td>
</tr>
<tr>
<td>SAN</td>
<td>0.072117444</td>
</tr>
</tbody>
</table>

Se supone una inversión de $V_0 = 1$ millón de unidades, las posiciones en esta cartera son

12Datos tomados de http://es.finance.yahoo.com
Ahora $\mu_V = w'r = 352.58188$ y $\sigma^2_V = 2.55459 \times 10^8$. La expresión (2.6) queda

$$X = 243.9427 - 11,968.1342 \frac{1}{g} [\exp\{gZ\} - 1] \exp\left\{\frac{h}{2} Z^2\right\};$$

donde

$$g = -0.29507 \quad y \quad h = 0.11718.$$

Como se muestra en la figura 5.1, hay una diferencia entre la distribución empírica de la cartera GMVP (representada por el histograma) y la distribución normal. La distribución $g - h$ de Tukey se aproxima mejor a la distribución empírica. La distribución de los rendimientos de la cartera GMVP como se esperaba tiende a ser más leptocúrtica que la distribución normal, pues tiene colas más pesadas.

Figura 5.1: Portafolio vs. Distribución Normal y Distribución $g - h$ de Tukey
La Tabla 5.3 muestra las estadísticas del rendimiento de la cartera GMVP.

<table>
<thead>
<tr>
<th>Estadísticas</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>352.58188</td>
</tr>
<tr>
<td>Mediana</td>
<td>270.60724</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>15,983.10112</td>
</tr>
<tr>
<td>Mínimo</td>
<td>-174,798.6684</td>
</tr>
<tr>
<td>Máximo</td>
<td>121,477.92095</td>
</tr>
<tr>
<td>Asimetría</td>
<td>-0.33695</td>
</tr>
<tr>
<td>Curtosis</td>
<td>15.80073</td>
</tr>
<tr>
<td>Prueba JB</td>
<td>14,240.4450</td>
</tr>
</tbody>
</table>

Tabla 5.3: Estadísticas Descriptivas

En cuanto a la asimetría, curtosis y prueba de Jarque & Bera (1987), estadísticas que se presentan en la Tabla 5.3, indican que la hipótesis nula de distribución normal puede ser rechazada para la variable en estudio. La figura 5.1 muestra el histograma, es evidente que el rendimiento de la serie tiene un ligero grado de sesgo a la derecha, es leptocúrtica, y no sigue una distribución normal.

En este caso, el cálculo de VaR, se supone inicialmente que es normal en los retornos. La Tabla 5.4 presenta la pérdida del cálculo del VaR para la cartera GMVP en los siguientes niveles de confianza: 90%, 95%, 97.5% y 99%.

<table>
<thead>
<tr>
<th>VaR</th>
<th>Niveles de confianza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α = 0.90</td>
</tr>
<tr>
<td>Clásico</td>
<td>20,130</td>
</tr>
<tr>
<td>Histórico</td>
<td>15,279</td>
</tr>
<tr>
<td>Cornish-Fisher</td>
<td>19,553</td>
</tr>
<tr>
<td>GH (A, B, g, h)</td>
<td>20,279</td>
</tr>
</tbody>
</table>

Tabla 5.4: Comparación de las metodologías VaR

Como se muestra en la figura 5.2 hay una diferencia perceptible entre las metodologías VaR.

Figura 5.2: Comparación de las metodologías VaR
La Tabla 5.5 presenta las pérdidas de calcular $CVaR$ para la cartera $GMVP$ en los siguientes niveles de confianza: 90%, 95%, 97.5% y 99%.

<table>
<thead>
<tr>
<th>$CVaR$</th>
<th>Niveles de confianza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\alpha = 0.90$</td>
</tr>
<tr>
<td>Clásico</td>
<td>27,697</td>
</tr>
<tr>
<td>Cornish-Fisher</td>
<td>35,087</td>
</tr>
<tr>
<td>GH (A, B, g, h)</td>
<td>41,660</td>
</tr>
</tbody>
</table>

Tabla 5.5: Comparación de metodologías $CVaR$

Como se puede observar, pérdidas $CVaR$ para cada uno de los métodos son mayores que las pérdidas de VaR.

La figura 5.3 muestra que hay una diferencia entre las metodologías $CVaR$.

Figura 5.3: Comparación de metodologías $CVaR$
Capítulo 6

Conclusiones

Aunque el modelamiento de series financieras es un asunto muy importante en los mercados financieros, lo es más aún la valoración de los activos financieros lo más acoplado posible a la realidad y, en especial, en la valoración de los instrumentos derivados. Usualmente, una de las grandes críticas a la valoración de derivados financieros ha sido el supuesto de que los rendimientos de las variables financieras sigan una distribución normal. La crítica se fundamenta en la pérdida de información importante al no considerar la probabilidad de ocurrencia de eventos extremos. De ahí la importancia de modelar los rendimientos usando distribuciones de colas pesadas, lo cual se hace en esta tesis.

Por otra parte, para disminuir el riesgo en el sistema financiero los entes de control han promovido una regulación más estricta a través de modelos de referencia que estiman el capital adecuado. Sin embargo, actualmente el modelo de referencia del Comité de supervisión bancaria de Basilea (BCBS, por sus siglas en inglés), que ha sido implementado por todas las entidades sujetas a su regulación, advierte sobre la violación de los supuestos clásicos: a) los retornos logarítmicos de los activos siguen una distribución normal y b) los eventos son independientes e idénticamente distribuidos. Esta advertencia se fundamenta en la evidencia empírica que las series financieras presentan asimetría, colas pesadas y exceso de curtosis, un indicio de que dichas series deben ajustarse por medio de distribuciones distintas a la distribución Normal. En esta tesis, la implementación de nuevas distribuciones, como la distribución $g - h$ de Tukey, para modelar los rendimientos de los activos busca describir apropiadamente el comportamiento
de los activos en situaciones extremas, la caracterización de la serie de retornos es útil para determinar los peores escenarios que se puedan presentar.

La metodología empleada en esta tesis fue modelar los precios (retornos) de los activos financieros mediante distribuciones que recogen los efectos de asimetría y curtosis de la \(\text{edf} \) y así, se obtuvieron nuevos modelos de valoración que son muy flexibles, los cuales, dependiendo de los parámetros asumidos, permiten obtener otros modelos de valoración usados en el campo financiero. Además, se derivaron fórmulas cerradas para las sensibilidades de las opciones (o Griegas).

En el capítulo 2 de este trabajo se logró obtener una nueva familia de distribuciones a partir de la Transformación no lineal propuesta en Tukey (1977). Esta familia, la cual es más flexible y permite un ajuste más robusto, la hemos denominado “familia de distribuciones generalizadas \(g - h \) de Tukey”. En este capítulo se encontró una expresión cerrada para determinar los momentos ordinarios de la familia generalizada \(g - h \) de Tukey, en su cálculo se involucra el teorema de convolución en la frecuencia de la transformada de Fourier. Para el caso particular en que la variable aleatoria empleada en la transformación de Tukey sea la normal estándar se obtienen los mismos resultados dados en Martínez & Iglewicz (1984) que son las expresiones empleadas actualmente para obtener los momentos. Cuando se asume que el parámetro \(h = 0 \) se obtienen las distribuciones generalizadas \(g \) de Tukey o distribuciones log-simétricas, en este capítulo se encontró una regla empírica para determinar cuándo un conjunto de datos se puede modelar bajo este tipo de distribuciones. Por otra parte, se establecieron los momentos centrales de la variable que se quiere ajustar mediante la distribución generalizada \(g \) de Tukey, en términos de la función generadora de momentos de la variable aleatoria que se está utilizando en la transformación de Tukey. La estimación del parámetro asociado a la distribución generalizada \(g \) de Tukey se hace por el método de momentos, lo que implica que se utilice la totalidad de la información lo cual en algunos casos puede ser una ventaja; sin embargo tiene el inconveniente de que es muy sensible a valores extremos. El método de estimación propuesto en Hoaglin & Peters (1979) para el parámetro de la distribución \(g \) de Tukey solamente tiene en cuenta algunos datos escogidos mediante un proceso
de selección de cierta manera subjetivo. En este capítulo se aprecia que el valor de g influye sobre la estimación del parámetro de escala B, resultado análogo al obtenido en Hoaglin & Peters (1979).

La generalización obtenida para la familia de distribuciones $g - h$ de Tukey permitió encontrar una fórmula cerrada de valoración de opciones suponiendo que el activo subyacente se puede modelizar mediante esta familia de distribuciones. Aunque las fórmulas analíticas obtenidas para los precios de compra y venta de opciones europeas involucran funciones hipergeométricas, y estos resultados teóricos aparentan ser difíciles por la complejidad de estas funciones, su implementación computacional es muy sencilla. Una ventaja de este modelo es que al evaluar el precio de las opciones usando esta familia de distribuciones se involucran automáticamente el sesgo y la curtosis. La fórmula de valoración de Black & Scholes (1973) se obtiene como caso particular. Asimismo, se obtiene una expresión analítica para los parámetros de cobertura (o Griegas), que no muestran las anomalías presentes en otros modelos de valoración semiparamétricos. Los precios de opciones obtenidos con nuestra propuesta, se comparan con los que se encuentran usando el modelo de valoración dado en Jarrow & Rudd (1982) que también incluye el sesgo y la curtosis del precio del activo.

En el Capítulo 4, se obtienen resultados similares a los del Capítulo 3 que permiten valorar opciones, para establecer aquí la fórmula de valoración se supone que el retorno del activo subyacente sigue una mixtura de distribuciones normales-sesgadas (skew-normal), es decir, el precio del activo subyacente se modela mediante una mixtura de distribuciones log-normales-sesgadas (log-skew-normal). Nuevamente, lo novedoso de los resultados reside en el procedimiento propuesto: se obtienen como casos particulares los modelos de precios de opciones dados en Bahra (1997), Black & Scholes (1973) y Corns & Satchell (2007). La normal sesgada tiene un parámetro que controla el sesgo y que influye de manera directa en el coeficiente de curtosis, por ende el modelo de valoración obtenido se compara con los precios que se encuentran mediante Corrado & Su (1996, 1997) que involucra el sesgo y la curtosis del retorno del activo.
La metodología propuesta también permite derivar modelos teóricos para cuantificar el riesgo, en el planteamiento dado en esta tesis se tuvo en cuenta que una medida de riesgo coherente es aquella que satisface los axiomas planteados por Artzner et al. (1999), pues las que no cumplen con alguno de dichos axiomas pueden producir resultados paradójicos que conllevan a la toma de decisiones erróneas desde el punto de vista de la administración de riesgo.

No debe perderse de vista u omitir el hecho de que el VaR es un cuantil extremo, luego, se deben usar las herramientas que la estadística ofrece para el estudio de estos sucesos de baja probabilidad; en esta tesis se recurre a la modelación mediante distribuciones de colas pesadas. Dichas distribuciones permiten recoger el comportamiento de las colas, como la distribución $g - h$ de Tukey, y así determinar los valores extremos de la distribución empírica.

Investigaciones futuras: En el capítulo 3, se ha encontrado una fórmula cerrada para valorar opciones usando la distribución generalizada $g - h$ de Tukey. Aunque se halló una fórmula de valoración cerrada, queda como trabajo futuro obtener una expresión explícita para la volatilidad implícita. Este trabajo es factible, aunque se debe tener en cuenta la complejidad de las funciones hipergeométricas. De manera análoga, para el caso de valorar opciones usando una mixtura de distribuciones skew-normal, un trabajo futuro es buscar una expresión explícita para la volatilidad implícita. Este trabajo incluye la manipulación de las integrales que aparecen en la expresión de valoración. Determinar una fórmula para estimar el CVaR que generalice las expresiones obtenidas en el capítulo 5 para el caso multivariado.
Bibliografía

Tukey, J. W. (1977), Modern techniques in data analysis, Nsp-sponsored regional research conference at southeastern massachusetts university, North Dartmouth, Massachusetts.

Apéndices

En este apéndice aparecen los artículos que se han derivado directamente de la tesis doctoral

Otra contribución relacionada con la investigación

Using Tukey’s \(g \) and \(h \) family of distributions to calculate value-at-risk and conditional value-at-risk

José Alfredo Jiménez
Department of Mathematics, National University of Colombia, Carrera 45
No. 26-85, Bogotá, Colombia; email: josajimenezm@unal.edu.co

Viswanathan Arunachalam
Department of Mathematics, University of Los Andes, Carrera 1 No. 18A-10, Bogotá, Colombia; email: aviswana@uniandes.edu.co

Generally, when calculating value-at-risk (VaR), little importance is attached to extreme losses because they do not adequately reflect the skewness and kurtosis of the distribution. Moreover, assuming normality in VaR tends to overestimate the VaR values for upper percentiles, while it underestimates VaR for the lower percentiles of values that correspond to more extreme events. We propose to use Tukey’s \(g \) and \(h \) family of distributions for calculating VaR and conditional value-at-risk (CVaR), as this distribution is able to take skewness and kurtosis into account. We also calculate an explicit formula for CVaR using the Cornish–Fisher approximation. An illustrative example is presented to compare our model with other models.

1 INTRODUCTION

Value-at-risk (VaR) is an estimate of the amount that can be lost from a financial position over a specific time interval. The time horizons commonly used to predict this interval range from one day to a month or a year, taken at a predefined confidence level. Thus, VaR is a method used to quantify exposure to market risk through statistical techniques. Rockafellar and Uryasev (2000), Bengtsson and Olsbo (2003) and Pritsker (1997) provide an overview of the standard tools used for measuring financial risk as VaR (see Jorion (1996)).

Value-at-risk can be calculated in several ways. The nonparametric method, or historical simulation, uses empirical distributions of historical data. In other words,

The authors thank the referees for their helpful suggestions and comments on an earlier draft, which led to an improvement of the present version.
this methodology uses a historical series of price-risk positions (a portfolio) and builds a time series of prices or yields, simulated with the assumption that the portfolio composition does not change during the time period of the historical series. To use this procedure we must first identify the components of portfolio assets and collect data on historical daily prices over a period containing 250–500 data entries. The frequency histogram of simulated yields is calculated using the corresponding quantile of the histogram. There are three different types of historical simulation that vary depending on how the time series of returns of prices are obtained. The series can be obtained by absolute growth, relative increases or logarithmic growth.

Parametric methods assume that the returns of various assets (stocks, zero coupon bond prices, exchange rates, options and futures) follow a normal distribution with zero mean and variance. However, this normality assumption that is used to simplify calculations is a source of error in measuring VaR since most actual distributions of prices are asymmetrical and also leptokurtic. In this case, the VaR obtained by parametric methods is only an approximation.

Finally, VaR can be calculated using Monte Carlo methods. However, this approach is very time consuming because the value of the portfolio needs to be recalculated in each simulation. This approach is widely used for portfolios where assets are nonlinear payments on market variables, such as options. In this case, however, there are no accurate estimates for the calculation of VaR as would normally be the case in Monte Carlo simulations.

The conditional value-at-risk (CVaR) is a measure of VaR that is used to quantify the losses that exceed the VaR, thereby acting as an upper bound for VaR. This measure satisfies all of the properties required to constitute a coherent risk measure (Artzner et al (1997)). In recent years much literature has been concerned with VaR and CVaR (see, for example, Bali et al (2008); Engle and Manganelli (2004); and Hallerbach (2003)).

The most important and useful characteristic of Tukey’s g and h family of distributions is that it covers most of the Pearson family of distributions and can also generate several known distributions (for example, lognormal, Cauchy, exponential, and chi-squared (see Martínez and Iglewicz (1984, p. 363))). Tukey’s g and h family of distributions has been used to study financial markets (Badrinath and Chatterjee (1988) and Mills (1995)), and Badrinath and Chatterjee (1991) also used the g and h to model the return on a stock index and the return on shares in several markets. Dutta and Babbel (2002) found that the skewed and leptokurtic behavior of the London Interbank Offered Rate (LIBOR) could be modeled effectively using the g and h distribution, and Dutta and Babbel (2005) used g and h to model interest rates and options on interest rates, while Dutta and Perry (2007) used g and h to estimate operational risk. Nam and Gup (2003) first used Tukey’s g and h family of distributions to study VaR methodology for options.
This paper attempts to present a framework to establish VaR and CVaR when the portfolio distribution exhibits skewness and leptokurtosis using Tukey’s \(g \) and \(h \) family of distributions. This family of distributions is of particular interest in financial applications due to its ability to quantify losses that could be present in the tail. We obtain explicit expressions for the calculations of VaR and CVaR. To the best of our knowledge, this is the first time that Tukey’s \(g \) and \(h \) family of distributions has been used to calculate CVaR. The paper is organized as follows. Section 2 presents Tukey’s \(g \) and \(h \) family of distributions and gives a brief review of the properties and parameter estimation of the family. In Section 3 and Section 4 we give some theoretical results calculating VaR and CVaR using Tukey’s \(g \) and \(h \) family of distributions, and Section 5 uses an example to explain the methodology of calculation of VaR and CVaR. Finally, in Section 6, the conclusions of the study are presented.

2 TUKEY’S \(g \) AND \(h \) FAMILY OF DISTRIBUTIONS

Let \(Z \) be a random variable with standard normal distribution and let \(g \) and \(h \) be two constants (parameters). The random variable \(Y \) given by:

\[
Y = T_{g,h}(Z) = \frac{1}{g}(\exp\{gZ\} - 1)\exp\{\frac{1}{2}hZ^2\} \quad \text{with } g \neq 0, \ h \in \mathbb{R} \quad (2.1)
\]

is Tukey’s \(g \) and \(h \) distributed. The parameters \(g \) and \(h \) stand for the bias and elongation of the tails, respectively, of Tukey’s \(g \) and \(h \) distribution.

When \(h = 0 \), Tukey’s \(g \) and \(h \) distribution reduces to:

\[
T_{g,0}(Z) = \frac{1}{g}(\exp\{gZ\} - 1) \quad (2.2)
\]

which is Tukey’s \(g \)-distribution. These are also known as the family of lognormal distributions because they have a much larger tail than the standard normal distribution and they are biased on this.

Similarly, when \(g \to 0 \), Tukey’s \(g \) and \(h \) distribution is given by:

\[
T_{0,h}(Z) = Z\exp\{\frac{1}{2}hZ^2\} \quad (2.3)
\]

which is known as Tukey’s \(h \) distribution. Tukey’s \(h \) distribution has the characteristic of being symmetrical but with heavier tails than the standard normal distribution as \(h \) increases. Introduce location and scale parameters \((A)\) and \((B)\), respectively. In order to determine the distribution of a random variable \(X \) and assuming that \(p > 0.5 \), we must estimate four parameters that satisfy any of the following relationships:

\[
X_p = A + BY_p \quad \text{and} \quad X_{1-p} = A - B \exp\{-gZp\}Y_p \quad (2.4)
\]

where \(X_q \) denotes the \(q \)th quantile of the random variable \(X \), such that:

\[
X_q = \inf\{x \mid P[X \leq x] > q\} = \sup\{x \mid P[X < x] \leq q\}
\]
2.1 Density function

Jiménez (2004) provides the following relation between the derivative of the qth quantile and the density function:

$$(F^{-1})'(F(x_q)) = \frac{d}{dq} x_q = \frac{1}{F'(x_q)} = \frac{1}{f(x_q)} \tag{2.5}$$

where q is the single number that satisfies $F(x_q) = q$ and where $f(\cdot)$ is the density function of the continuous random variable X. The density function for Tukey’s g and h distribution is obtained by considering this result as follows:

$$t_{g,h}(y_p) = \frac{\varphi(z_p)}{T'_{g,h}(z_p)} \text{ whenever } \frac{\exp(-gz_p) - 1}{g} \neq \frac{1}{hz_p} \tag{2.6}$$

where $\varphi(x)$ is the standard normal density function, where y_p and z_p denote the pth quantile of the transformation $Y = T_{g,h}(Z)$ and the standard normal distribution, respectively, and where $T'_{g,h}(z_p)$ satisfies the ordinary differential equation:

$$Z T'_{g,h}(Z) = \begin{cases} Z(g + hZ)T_{g,h}(Z) + T_{0,h}(Z) & \text{if } g \neq 0 \\ (1 + hZ^2)T_{0,h}(Z) & \text{if } g = 0 \end{cases} \tag{2.7}$$

subject to the initial condition:

$$T_{g,h}(0) = 0$$

Proposition 2.1 Tukey’s g and h distribution function $F_{g,h}(y)$ verifies the following equality:

$$\int_a^b t_{g,h}(u) \, du = \int_{T_{g,h}^{-1}(a)}^{T_{g,h}^{-1}(b)} \varphi(v) \, dv = \Phi(T_{g,h}^{-1}(b)) - \Phi(T_{g,h}^{-1}(a)) \tag{2.8}$$

where $T_{g,h}^{-1}(\cdot)$ is the inverse of the transformation given in (2.1) and where $\Phi(\cdot)$ is the cumulative distribution function of a standard normal variable.

Proof Note that:

$$\int_a^b t_{g,h}(y) \, dy = \int_a^b \frac{\varphi(T_{g,h}^{-1}(y))}{T'_{g,h}(T_{g,h}^{-1}(y))} \, dy$$

making the change of variable:

$$v = T_{g,h}^{-1}(y), \quad dv = \frac{dy}{T'_{g,h}(T_{g,h}^{-1}(y))}$$

results in:

$$\int_{T_{g,h}^{-1}(a)}^{T_{g,h}^{-1}(b)} \varphi(v) \, dv = \Phi(T_{g,h}^{-1}(b)) - \Phi(T_{g,h}^{-1}(a))$$
There is no explicit form for the inverse of the transformation of $T_{g,h}(y)$, but we have given the inverse transformation for the case when $h = 0$ or $g = 0$ as given below.

1. If $T_{g,0}(Z)$ is given by (2.2), then:

 $$T_{g,0}^{-1}(y) = \frac{\ln(1 + gy)}{g}, \quad y > -\frac{1}{g}$$

(2.9)

2. If $T_{0,h}(Z)$ is given by (2.3), it follows that:

 $$hY^2 = h[T_{0,h}(Z)]^2 = hZ^2 \exp\{hZ^2\}$$

(2.10)

The expression (2.10) is of the form $u = w \exp\{w\}$ and, by comparison with Lambert’s function, $w = W(u)$, where $W(x)$ is Lambert’s function. Then the solution of (2.10) is given by:

$$hZ^2 = W(hY^2)$$

$$T_{0,h}^{-1}(y) = \sqrt{\frac{1}{h}W(hy^2)}$$

(2.11)

From Equation (2.4) and using expression (2.5), Jiménez (2004) obtained the density function for the random variable X as follows:

$$f_X(x_p) = f_X(A + By_p) = \frac{1}{|B|} t_{g,h}(y_p)$$

(2.12)

Table 1 on the next page shows the values of g and h that approximate a selected set of well-known distributions.

2.2 Procedures for the estimation of parameters of Tukey’s g and h family of distributions

We now briefly discuss two alternative methods for the estimation of parameters of Tukey’s g and h distributions.

2.2.1 Method of quantiles

We start with the method proposed in Hoaglin (1985), which takes into account the properties presented in Dutta and Babbel (2002) and is complemented by the proposal given in Jiménez (2004):

Research Paper www.thejournalofrisk.com

© 2011 Incisive Media. Copying or distributing in print or electronic forms without written permission of Incisive Media is prohibited.
TABLE 1 Values of g and h for some distributions.

<table>
<thead>
<tr>
<th>Name of distribution</th>
<th>Parameters</th>
<th>Estimate values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A B g h</td>
</tr>
<tr>
<td>Cauchy</td>
<td>$\mu, \sigma > 0$</td>
<td>μ σ 0 1</td>
</tr>
<tr>
<td>Double exponential</td>
<td>$\alpha, \beta > 0$</td>
<td>α β 0 0</td>
</tr>
<tr>
<td>Exponential</td>
<td>$\lambda > 0$</td>
<td>$(1/\lambda) \ln 2$ g/λ 0.773 -0.09445</td>
</tr>
<tr>
<td>Logistic</td>
<td>$\alpha, \beta > 0$</td>
<td>α β 0 0.0017771</td>
</tr>
<tr>
<td>Lognormal</td>
<td>$\mu, \sigma^2, C > 0$</td>
<td>C^μ gC^μ $\sigma \ln C$ 0</td>
</tr>
<tr>
<td>Normal</td>
<td>μ, σ^2</td>
<td>μ σ 0 0</td>
</tr>
<tr>
<td>t_{10}</td>
<td>$\nu = 10$</td>
<td>0 1 0 0.057624</td>
</tr>
</tbody>
</table>

(1) X is a strictly increasing transformation of Z. This means that the transformation of a standard normal to Tukey’s g and h is one to one.

(2) The location parameter of Tukey’s g and h distribution is estimated by the median of the data, i.e., $A = x_{0.5}$.

(3) The estimate of the parameter that controls the skewness of the distribution (g) is estimated, usually by the median of the logarithms of the following expression:

$$\exp(\{gZ_p\} = \frac{\text{UHS}_p}{\text{LHS}_p} \quad \text{for all} \quad p > 0.5 \quad (2.13)$$

where $\text{UHS}_p = x_p - x_{0.5}$ and $\text{LHS}_p = x_{0.5} - x_{1-p}$ denote the pth upper half-spread and lower half-spread, respectively, as defined in Hoaglin et al (1985).

(4) If there exists $\theta \in \mathbb{R}$ with $\theta \neq x_{0.5}$ such that:

$$(x_p - \theta) + (\theta - x_{0.5}) \neq (x_{0.5} - \theta) + (\theta - x_{1-p}), \quad p > 0.5$$

and

$$\frac{x_p - \theta}{\theta - x_{0.5}} = \frac{x_{0.5} - \theta}{\theta - x_{1-p}}, \quad p > 0.5 \quad (2.14)$$

then $h = 0$. In particular, expression (2.14) is satisfied if:

$$\theta = A - \frac{B}{g} \quad (2.15)$$

This constant is known as a “threshold parameter” and was obtained in Hoaglin (1985).
(5) When $g \neq 0$, the parameter that controls the elongation (or kurtosis) of the tails (h) can be estimated conditionally on this value of g:

$$\ln(x_{0.5} - \theta_p) = \ln \left(\frac{B}{g} \right) + \frac{1}{2} h Z_p^2$$

(2.16)

where $\theta_p < x_{0.5}$ for all $p > 0.5$, and:

$$\theta_p = \frac{x_p x_{1-p} - x_{0.5}^2}{UHS_p - LHS_p} \text{ for all } p \in (0, 1), \ p \neq 0.5$$

(2.17)

noting that $\theta_p = \theta_{1-p}$. The value of h is obtained using a linear regression of $\ln(x_{0.5} - \theta_p)$ on $\frac{1}{2} Z_p^2$, where the estimator slope parameter is the value of h and the value of the scale parameter B is estimated by multiplying the value of g by the exponential of the estimator of the intercept term. It was discovered by Jiménez and Martínez (2006) that if $\theta_p = \theta = 0$ for all p, then h tends to zero and we obtain Tukey’s g-distributions.

(6) When $g \to 0$ (Tukey’s h distributions), h is estimated with the following relationship:

$$\ln \left(\frac{UHS_p}{Z_p} \right) = \ln(B) + \frac{1}{2} h Z_p^2$$

(2.18)

2.2.2 Method of moments

The concept of method of moments was proposed in Majumder and Ali (2008) for estimating parameters and was used in order to obtain as many equations as the number of parameters. In their work, Majumder and Ali (2008) use the expressions given to the mth moments of Tukey’s g and h family of distributions (Martínez and Iglewicz (1984)), which represent the population moments. It is hoped that these population moments will coincide with the first two sample moments. However, the location and scale parameters were not determined by Majumder and Ali (2008). We estimate these parameters by using expressions for measures of skewness and kurtosis (Headrick et al (2008)) to equate with skewness and kurtosis of the data, which gives estimation for g and h. Based on these values, we estimate\(^1\) parameters A and B as follows:

$$A = \mu_X - B \mu_{\text{g,h}}$$

(2.19)

\(^1\)Any distribution satisfying the following inequality as given in Stuart and Ord (1994):

$$\beta_2 - \beta_1^2 - 1 \geq 0$$
where μ_X is the mean of the random variable X and where $\mu_{g,h}$ is the mean of Tukey’s g and h distribution given in Martínez and Iglewicz (1984) as:

$$
\mu_{g,h} = E[T_{g,h}(Z)] = \begin{cases}
\frac{1}{g\sqrt{1-h}} \left[\exp \left(\frac{1}{2 \left(1 \right. \right.} \right. \left. - h \right) \right] - 1, & g \neq 0, \ 0 \leq h < 1 \\
0, & g = 0
\end{cases}
$$

(2.20)

and the scale parameter is estimated by:

$$
B = \text{sgn}(\beta_1(X)) \frac{\sigma_X}{\sigma_Y}
$$

where $\text{sgn}(\cdot)$ denotes the signum function and where $\beta_1(X)$ denotes the coefficient of skewness from the variable we want to approximate.

The parameter g controls skewness, which is positive when $g > 0$ and negative when $g < 0$. This is illustrated in Figure 1 and Figure 2 on the facing page. These figures also present some of the densities that can be obtained using Tukey’s g and h family of distributions.
Using Tukey’s g and h family of distributions to calculate VaR and CVaR

3 APPROXIMATION FOR CALCULATING VALUE-AT-RISK

There are a number of alternatives for calculating the VaR of a portfolio. A very popular approach used by RiskMetrics is to assume that changes in the value of various assets follow a multivariate normal distribution. Fallon (1996) presents the risk measurement models of Garbade (1986), Guldimann (1995), Hsieh (1993) and Wilson (1993). Although we will not give a detailed description of each method, before discussing the possible applications of Tukey’s g and h distribution for the calculation of VaR, we compare some of the “classical” methodologies for estimating VaR.

3.1 Variance–covariance method

This parametric method for calculating VaR as a criterion of confidence limit and expected gain was proposed by Baumol (1963). Assuming a fixed confidence level $\alpha \in (0, 1]$ and a time horizon of T days, the VaR can be easily calculated from σ using the following expression:

$$\text{VaR}_\alpha = \mu - \Phi^{-1}(\alpha) \sigma \sqrt{T} \quad \text{(3.1)}$$

FIGURE 2 Density functions for prices.

(a) $g = -0.5$, $h = 0$; (b) $g = -0.2446$, $h = 0.053356$; (c) $g = -0.78714$, $h = 0.016356$; (d) $g = 0$, $h = 0.16356$.

© 2011 Incisive Media. Copying or distributing in print or electronic forms without written permission of Incisive Media is prohibited.
In general, under the assumption of normality, the parametric model that determines the VaR of a position is as follows:

$$\text{VaR}_\alpha = -z_\alpha \times V_0 \times \sigma \times \sqrt{T}$$ \hspace{1cm} (3.2)

where z_α denotes the αth quantile of a variable $N(0, 1)$, V_0 denotes the total investment or total risk exposure, σ denotes the standard deviation of asset returns and T denotes the time horizon in which we want to calculate VaR.

In this case, the VaR for a confidence level $\alpha\%$ and a horizon of T days can be obtained as:

$$\text{VaR}_\alpha = E[V] - z_\alpha \sigma V \sqrt{T}$$

where V denotes the value of the portfolio.

3.2 Cornish–Fisher approximation

The Cornish–Fisher expansion is used to approximate the quantiles of a random variable based only on its first few cumulants (Johnson et al. (1994)). Zangari (1996) uses the Cornish–Fisher expansion to approximate the percentiles of the probability distribution of V and obtain the VaR for a confidence level $\alpha\%$ and a horizon of T days as follows:

$$\text{VaR}_\alpha = E[V] \omega_\alpha \sigma V \sqrt{T}$$ \hspace{1cm} (3.3)

where ω_α is defined (Abramowitz and Stegun (1965)) as follows:

$$\omega_\alpha = z_\alpha + \frac{1}{6}(z_\alpha^2 - 1)\beta_1(V) + \frac{1}{24}(z_\alpha^3 - 3z_\alpha)\beta_2(V) - 3 \frac{1}{36}(2z_\alpha^3 - 5z_\alpha)^2 \beta_1(V) - 3 \frac{1}{24}(z_\alpha^4 - 5z_\alpha^2 + 2)\beta_1(V)(\beta_2(V) - 3)$$ \hspace{1cm} (3.4)

where $\beta_1(V)$, $\beta_2(V)$ denote the skewness and kurtosis from the distribution of V. Note that when the skewness coefficient $\beta_1(V)$ and excess kurtosis $\beta_2(V)$ are zero, we obtain the quantile of the variable $N(0, 1)$.

3.3 Approximation using Tukey’s g and h distribution

Considering a confidence level α and a time horizon of T days, the VaR can be calculated as follows:

$$1 - \alpha = \int_{-\infty}^{\infty} H(S - \text{VaR}_\alpha) g(S) \, dS$$

where $g(S)$ is the density function of S and $H(u)$ is the Heaviside step function. If S is approximated by $S = A + B Y$, then:

$$1 - \alpha = \int_{-\infty}^{\infty} H(S - \text{VaR}_\alpha) f_{g,h}(y) \, dy = \int_{(\text{VaR} - A)/B}^{\infty} \varphi(T_{g,h}^{-1}(y)) \, dy$$

The Journal of Risk Volume 13/Number 4, Summer 2011

© 2011 Incisive Media. Copying or distributing in print or electronic forms without written permission of Incisive Media is prohibited.
Using expression (2.8), we obtain:

\[1 - \alpha = \int_{T_{g,h}^{-1}((\text{VaR} - A) / B)}^{\infty} \varphi(v) \, dv = 1 - \Phi\left(T_{g,h}^{-1}\left(\frac{\text{VaR} - A}{B}\right)\right) \]

Finally, as \(\Phi(\cdot) \) is invertible, we can also define the VaR as:

\[T_{g,h}^{-1}\left(\frac{\text{VaR} - A}{B}\right) = Z_\alpha \Rightarrow \frac{\text{VaR} - A}{B} = T_{g,h}(Z_\alpha) \]

Solving for VaR and using (2.4), we obtain, for \(\alpha > 0.5 \):

\[
\begin{align*}
\text{VaR}_\alpha &= A + BT_{g,h}(Z_\alpha) \\
\text{VaR}_{1-\alpha} &= A - B \exp(-gZ_\alpha)T_{g,h}(Z_\alpha)
\end{align*}
\]

This expression coincides with the corresponding result presented in Nam and Gup (2003).

3.3.1 Special cases

(1) When \(h = 0 \):

\[
\text{VaR}_\alpha = A + \frac{B}{g}(\exp(gZ_\alpha) - 1) = \theta + \exp\{\mu + \sigma Z_\alpha\}
\]

where \(\theta = A - \exp\{\mu\} \) and \(g = \sigma \). Jiménez and Martínez (2006) propose that in this case, if \(V = \ln(X - \theta) \) follows a normal law \(N(\mu, \sigma^2) \), we get:

\[
\mu_X = \theta + \exp\{\mu + \frac{1}{2}\sigma^2\} \quad \text{and} \quad \sigma^2_X = (\mu_X - \theta)^2[\exp(\sigma^2) - 1]
\]

solving for \(\mu, \sigma \), and substituting this into (3.6), obtaining:

\[
\text{VaR}_\alpha = \theta + \exp\left\{\ln\left[\frac{(\mu_X - \theta)^2}{\sqrt{(\mu_X - \theta)^2 + \sigma^2_X}}\right] + Z_\alpha \sqrt{\ln\left[1 + \frac{\sigma^2_X}{(\mu_X - \theta)^2}\right]}\right\}
\]

\[
= \theta + \frac{\mu_X - \theta}{\sqrt{1 + \rho^2_X}} \exp[Z_\alpha \sqrt{\ln(1 + \rho^2_X)}]
\]

where \(\rho_X = \sigma_X / (\mu_X - \theta) \), which coincides with the coefficient of variation of random variable \(X \) when \(\theta = 0 \).

(2) Supposing that \(g = 0 \), we obtain:

\[
\text{VaR}_\alpha = A + B Z_\alpha \exp\left\{\frac{1}{2} h Z^2_\alpha\right\}
\]

where \(h = 1 \), and we have the Cauchy distribution with parameters \(\mu \) and \(\sigma \), i.e:

\[
\text{VaR}_\alpha = \mu + \sigma Z_\alpha \exp\left\{\frac{1}{2} Z^2_\alpha\right\}
\]
(3) If \(g = h = 0 \), using the constants given for location and scale parameters in Jiménez (2004), we obtain:

\[
\text{VaR}_\alpha = \mu + \sigma Z_\alpha
\]

Note that this last expression coincides with the classical formula of VaR (see Jorion (2007)).

4 CONDITIONAL VALUE-AT-RISK

When calculating the normal delta VaR, little weight is attached to the most extreme losses, either because they are not collected properly or because the distribution exhibits skewness or kurtosis. In this case, assuming normality, the VaR is overestimated for high percentile values, while it is underestimated for lower percentile values that correspond to more extreme events. Because of this problem, Artzner et al. (1997) have proposed an alternative measure of risk with the following properties of subadditivity and consistency.

To determine the efficiency of a good indicator of market risk, Artzner et al. (1997) derive four desirable properties that should apply for a measure of risk to be called “coherent”. A risk indicator \(\rho \) must satisfy the following:

Positive homogeneity: \(\rho(\lambda u) = \lambda \rho(u) \). Increasing the value of the portfolio in \(\lambda \), the risk must also increase \(\lambda \).

Monotonicity: \(u \leq v \) implies \(\rho(u) \leq \rho(v) \). If the portfolio \(u \) has a consistently lower return than the portfolio \(v \), then risk must be lower.

Translation invariance: \(\rho(u + a) = \rho(u) + a \). Add cash of an amount \(a \) then add the risk by \(a \).

Subadditivity: \(\rho(u + v) \leq \rho(u) + \rho(v) \). The portfolio composition should not increase the risk.

If \(\rho \) satisfies these properties, then it is considered to be a coherent risk measure.

Definition 4.1 The expected shortfall (ES) of a sample is defined as:

\[
\text{ES}_\alpha = E[X \mid X > \text{VaR}_\alpha]
\]

(4.1)

The ES measures the average loss of a portfolio, given that the loss is greater than a certain limit.
The ES is also called “conditional value-at-risk” (CVaR), “expected tail loss” (ETL) and “average value-at-risk” (AVaR).

Definition 4.2 Conditional value-at-risk is defined as the expected loss given that it is larger than or equal to VaR. The CVaR is the average loss over a $Q\%$ probability level to be identified by α, that is, losses that can be expected with this probability. The CVaR of a sample is obtained as follows:

$$\text{CVaR}_\alpha = \frac{1}{1-\alpha} \int_\alpha^1 \text{VaR}_q \, dq \quad (4.2)$$

As a measure of risk, CVaR offers significant advantages when compared with VaR, especially when income distributions are not continuous and the normality assumption has been removed (which is particularly common when using historical methods or when full quotations are available for all assets considered due to the low frequency of transactions). The properties of CVaR are discussed in detail in Acerbi and Tasche (2002) and Rockafellar and Uryasev (2002).

Proposition 4.3 Let X be a continuous random variable with cumulative distribution function $F_X(x)$ and density function $f_X(x)$. If $F_X^{-1}(x)$ is never zero, then $F_X^{-1}(x)$ is differentiable and satisfies:

$$\int_\alpha^1 F_X^{-1}(q) \, dq = \int_{x_\alpha}^{\infty} w f_X(w) \, dw \quad (4.3)$$

where q is the single number such that $F_X(x_q) = q$.

Proof Suppose that x_q is the smallest number satisfying $F_X(x_q) = q$, ie, the qth quantile of X, making the change of variable:

$$w = x_q = F_X^{-1}(q), \quad dw = dx_q = \frac{dq}{F_X'(x_q)}$$

where we use the expression given in (2.5), since $F_X'(w) = f_X(w)$, given that $f_X(w)$ is a function with domain of the real line and counter-domain of the infinite interval $[0, \infty)$. We solve for dq and obtain:

$$\int_\alpha^1 F_X^{-1}(q) \, dq = \int_{x_\alpha}^{\infty} w f_X(w) \, dw$$
Substituting expression (3.1) into (4.2) and using Proposition 4.3, we obtain:

$$CVaR_\alpha = \frac{1}{1 - \alpha} \int_0^1 (\mu - \Phi^{-1}(q)\sigma \sqrt{T}) \, dq$$

$$= \mu - \frac{\sigma \sqrt{T}}{1 - \alpha} \int_{z_{\alpha}}^\infty w \varphi(w) \, dw$$

(4.4)

In general, under the assumption of normality, the parametric model that determines the CVaR of a position is as follows:

$$CVaR_\alpha = \mu - \frac{\sigma \sqrt{T}}{1 - \alpha} \varphi(z_{\alpha})$$

(4.5)

This last formula coincides with the expression given by Jondeau et al (2009, p. 335).

Properties

(1) The $CVaR_\alpha$ increases as α increases.

(2) The CVaR of the 100%-quantile is equal to the expected value of the portfolio.

(3) For a portfolio, the $CVaR_\alpha$ is worse than (or equal to) the VaR_α at the same level α.

Pflug (2002) showed that CVaR is “coherent”, satisfying the properties of positive homogeneity, monotonicity and translation invariant as compared with VaR, which does not have the subadditivity property for nonnormal distributions.

4.1 Cornish–Fisher approximation

The CVaR can be approximated using the Cornish–Fisher expansion for a confidence level $\alpha\%$ and a horizon of T days as follows:

$$CVaR_\alpha = E[V] - \frac{1}{1 - \alpha} \omega_\alpha^* \sigma_V \sqrt{T}$$

(4.6)

with:

$$\omega_\alpha^* = \int_0^1 \omega_q \, dq$$

$$= \{1 + \frac{1}{6} z_{\alpha} \beta_1(V) + \frac{1}{24} (z_{\alpha}^2 - 1)(\beta_2(V) - 3) - \frac{1}{36} (2z_{\alpha}^2 - 1)\beta_1^2(V)$$

$$- \frac{1}{24} (z_{\alpha}^3 - 2z_{\alpha}) \beta_1(V) (\beta_2(V) - 3)\} \varphi(z_{\alpha})$$

where ω_q is as given in (3.4). Note that when the skewness coefficient $\beta_1(V)$ and excess kurtosis $\beta_2(V)$ are zero, this expression reduces to (4.5).
4.2 Approximation by Tukey’s \(g \) and \(h \) distribution

When using Tukey’s \(g \) and \(h \) distribution, we can approximate the CVaR for a confidence level \(\alpha \% \), \(\alpha > 0.5 \), as follows:

\[
\text{CVaR}_\alpha = A + \frac{B}{1-\alpha} \left\{ \exp\left\{ \frac{1}{2} \left[\frac{g^2}{1-h} \right] \right\} \left[1 - \Phi\left(\sqrt{1-h} z_\alpha - \frac{g}{\sqrt{1-h}} \right) \right] \right. \\
\left. - \frac{1}{g \sqrt{1-h}} (1 - \Phi(\sqrt{1-h} z_\alpha)) \right\}
\]

(4.7)

using the expression (2.20) and defining:

\[
\delta_{1\alpha} = -\sqrt{1-h} z_\alpha, \quad \delta_{2\alpha} = \delta_{1\alpha} + \frac{g}{\sqrt{1-h}}
\]

(4.8)

we obtain:

\[
\text{CVaR}_\alpha = A + \frac{B}{1-\alpha} \left\{ \mu_{g,h} \Phi(\delta_{2\alpha}) + \frac{1}{1-h} \frac{\Phi(\delta_{2\alpha}) - \Phi(\delta_{1\alpha})}{\delta_{2\alpha} - \delta_{1\alpha}} \right\}
\]

(4.9)

4.2.1 Special cases

(1) Supposing that \(h = 0 \):

\[
\text{CVaR}_\alpha = \theta + \frac{\Phi(\sigma - Z_\alpha)}{1-\alpha} \exp\left\{ \mu + \frac{1}{2} \sigma^2 \right\}
\]

(4.10)

where \(\theta = A - e^\mu \). Following the approach used in Jiménez and Martínez (2006), by solving \(\mu, \sigma \) to replace (4.10), it follows that:

\[
\text{CVaR}_\alpha = \theta + \frac{\mu X - \theta}{1-\alpha} \left\{ \Phi[\sqrt{\ln(1+\rho_X^2)} - Z_\alpha] \right\}
\]

(4.11)

where \(\rho_X = \sigma_X / (\mu_X - \theta) \), which coincides with the coefficient of variation of random variable \(X \), when \(\theta = 0 \).

(2) If \(g = 0 \), we can use the mean value theorem:

\[
\frac{\Phi(b) - \Phi(a)}{b-a} \approx \varphi(c), \quad \text{where} \ c \in (a,b)
\]

Accordingly, we obtain:

\[
\text{CVaR}_\alpha = A + \frac{B}{1-\alpha} \frac{\varphi(\sqrt{1-h} Z_\alpha)}{1-h}
\]
(3) When $g = h = 0$, using the constants given for location and scale parameters in Jiménez (2004), we have:

$$\text{CVaR}_\alpha = \mu - \frac{\sigma}{1 - \alpha} \varphi(Z_\alpha)$$

Note that this last expression coincides with the formula for the CVaR given in (4.5).

5 AN ILLUSTRATION

In this section we compare the procedure developed above with the classical method, the historical simulation and the Cornish–Fisher approximation for estimating VaR and CVaR.

We consider a portfolio constructed with the three largest market capitalization stocks in Spain: Banco Bilbao Vizcaya Argentaria (BBVA), Endesa (ELE) and Banco Santander (SAN). The data was obtained from the Spanish Yahoo! Finance website and the sample covers 2081 trading days from January 1, 2003 to January 17, 2011. The process is as follows.

(1) Get the arithmetic daily rate of return for each stock, ie:

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}}, \quad t = 1, 2, \ldots, T$$

(5.1)

where P_t denotes the price of the stock at time t. Then:

<table>
<thead>
<tr>
<th>Asset</th>
<th>Return (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBVA</td>
<td>0.0163312757</td>
</tr>
<tr>
<td>ELE</td>
<td>0.0424676054</td>
</tr>
<tr>
<td>SAN</td>
<td>0.0351851054</td>
</tr>
</tbody>
</table>

(2) The covariance matrix of the portfolio is:

$$\Sigma = \begin{bmatrix} 4.325674189 & 1.714872578 & 4.100211925 \\ 1.714872578 & 2.961638820 & 1.738771858 \\ 4.100211925 & 1.738771858 & 4.677008713 \end{bmatrix}$$

Using Tukey’s g and h family of distributions to calculate VaR and CVaR

FIGURE 3 Portfolio versus normal distribution and Tukey’s g and h distribution.

![Figure 3](image)

(3) The global minimum variance portfolio (GMVP) is:

<table>
<thead>
<tr>
<th>Asset</th>
<th>GMVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBVA</td>
<td>0.25574446</td>
</tr>
<tr>
<td>ELE</td>
<td>0.67213809</td>
</tr>
<tr>
<td>SAN</td>
<td>0.07211744</td>
</tr>
</tbody>
</table>

We assume that an investment of $V_0 = 1$ million currency units and positions in this portfolio gives:

<table>
<thead>
<tr>
<th>Asset</th>
<th>GMVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBVA</td>
<td>255 744</td>
</tr>
<tr>
<td>ELE</td>
<td>672 138</td>
</tr>
<tr>
<td>SAN</td>
<td>72 117</td>
</tr>
</tbody>
</table>

Now $\mu_V = w'r = 352.58188$ and $\sigma^2_V = 2.55459 \times 10^8$. Expression (2.4) is:

$$X = 243.9427 - 11968.1342 \frac{1}{g} \left[\exp \left\{ gZ \right\} - 1 \right] \exp \left\{ \frac{1}{2} hZ^2 \right\}$$

where:

$g = -0.29507 \quad$ and $\quad h = 0.11718$

As shown in Figure 3, there is a difference between the empirical distribution of portfolio returns of the GMVP (represented by the histogram) and the normal distribution.
Tukey’s g and h distribution better approximates the empirical distribution. The distribution of portfolio returns is as expected: the GMVP tends to be more leptokurtic and has heavier tails than the normal distribution.

Table 2 presents the statistics of portfolio returns of the GMVP.

Table 3 presents the loss when calculating VaR for the GMVP under the following confidence levels: 90%, 95%, 97.5% and 99%.

Table 4 on page 114 presents the loss when calculating CVaR for the GMVP under the following confidence levels: 90%, 95%, 97.5% and 99%.

© 2011 Incisive Media. Copying or distributing in print or electronic forms without written permission of Incisive Media is prohibited.
As can be seen from Table 4 on the next page, CVaR losses for each of the methods are greater than the losses of VaR. Figure 5 shows that there is a difference between the CVaR methodologies.
TABLE 4 Comparison of CVaR methodologies.

<table>
<thead>
<tr>
<th>CVaR</th>
<th>Confidence levels</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\alpha = 0.90$</td>
<td>$\alpha = 0.95$</td>
<td>$\alpha = 0.975$</td>
<td>$\alpha = 0.99$</td>
</tr>
<tr>
<td>Classical</td>
<td>27 697</td>
<td>32 615</td>
<td>37 012</td>
<td>42 245</td>
</tr>
<tr>
<td>Cornish–Fisher</td>
<td>35 087</td>
<td>59 102</td>
<td>88 740</td>
<td>135 600</td>
</tr>
<tr>
<td>Tukey’s g and h (A, B, g, h)</td>
<td>41 660</td>
<td>67 612</td>
<td>115 401</td>
<td>252 015</td>
</tr>
</tbody>
</table>

6 CONCLUSIONS

This paper presents an alternative methodology for establishing the VaR and CVaR when the portfolio distribution has skewness and kurtosis. Assuming normality tends to overestimate VaR and CVaR for the upper percentiles, while it underestimates VaR and CVaR for lower percentiles of values that correspond to extreme values. The formulas obtained for calculating VaR and CVaR are explicit and we obtain the classical model as a particular case when parameters g and h are considered equal to zero. The losses obtained for CVaR for each of the methods used are greater than losses of VaR. Thus, our model exhibits many of the characteristics of the other models in the literature.

REFERENCES

Using Tukey’s g and h family of distributions to calculate VaR and CVaR

Abstract: There is good empirical evidence to show that the financial series, whether stocks or indices, currencies or interest rates do not follow the log-normal random walk underlying the Black-Scholes model, which is the basis for most of the theory of options valuation. This article presents a derivation to determine the price of a derivative when the underlying stock’s distribution under normality assumption is not valid, using the density function associated with the Tukey’s \(g-h \) family of generalised distributions, which has tails heavier than the normal distribution. Using the Tukey’s \(g-h \) family of generalised distributions, we approximate asset price distribution and in the process include both the skewness and kurtosis of the underlying stock’s distribution to obtain the impact of these measures on the option pricing. We also obtain the price of the European option to different log-symmetrical and these prices are illustrated with suitable examples. We have also obtained explicit formula for option valuation with two additional parameters \(g \) and \(h \) relative to the Black-Scholes model, providing control over skewness and kurtosis respectively.

Keywords: Tukey’s \(g-h \) family of distributions; option pricing; Esscher transform; hypergeometric function; dilogarithmic function.

Biographical notes: José Alfredo Jiménez is a doctoral candidate at the University of Valencia in Spain. He is an Associate Professor in the Department of Mathematics at the Universidad Nacional de Colombia. He studied Mathematics at the University National of Colombia (BSc, 1995) and Statistics at the University National of Colombia (MSc, 2000). He also holds an MSc in Banking and Finance at the University of Valencia (2008). His main research interests are actuarial mathematics, financial risk management and portfolio management.

Viswanathan Arunachalam earned his PhD in Mathematics from the Indian Institute of Technology Madras, in 1996. He is currently an Associate Professor at the Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia. His research interests include stochastic processes and its applications in biology, reliability and queuing theory, mathematics of financial derivatives, and statistics of financial markets. He has published in several journals such as Optimization, Stochastic Analysis and Applications, Journal of Risk, Computers and Mathematics with Applications, among others.

Gregorio Manuel Serna is an Associate Professor of Financial Economics at the University of Alcalá (Spain). He received his PhD in Economics from the University Carlos III of Madrid (Spain). He has published research papers in the Journal of Banking and Finance, European Financial Management, The Quarterly Review of Economics and Finance, Quantitative Finance, Energy Economics, among others.

1 Introduction

It has been shown empirically that the probability distributions of financial asset returns are not normal, but usually have asymmetry and are leptokurtic. One of the main characteristics of financial series in practice is the existence of unexpected breaks, which occur more frequently than that of normal distribution, with reasonable volatility. The skewness and kurtosis of normal distribution in the price of options, contribute significantly to the phenomenon of volatility smile.

Based on this assertion, various valuation models for allowing asymmetric and leptokurtic probability distributions have appeared in the literature. One way to do is this through the known mixtures of distributions (of normal). In recent years there have been many articles to show that the unconditional probability distributions of returns on financial assets are not normal. Specifically, these distributions tend to have heavier tails (leptokurtic) and asymmetry (usually the left tail is heavier than the right, at least in the case of shares). Many authors have proposed several alternatives to the normal distribution to model the behaviour of the profitability of financial assets, of which, we mention a few like non-central t (Harvey and Siddique, 1999), the mixture of normal distributions (Ritchey, 1990), the mixture of log-normal distributions (Melick and Thomas, 1997; Bahra, 1997), the distribution ‘heavy-tailed’ (Politis, 2004), or expansions-based distributions in the normal range, developed from the pioneering work of Jarrow and Rudd (1982), where the distributions would fall based on Gram-Charlier expansions of type A (Corrado and Su, 1996, 1997) Gram-Charlier expansion of log-normal (Jarrow and Rudd, 1982) and the Edgeworth expansion (Rubinstein, 1998), among others. In the past decade, most of the literature on valuation models have take
into consideration the volatility but have failed on modelling the resulting distribution function. The knowledge of the current volatility and the forecasting of future volatility are essential for risk management and consequently to the success of the investor.

The most important and useful characteristic of the Tukey’s g-h family of distributions is that it covers most of the Pearsonian family of distributions. It also can generate several known distributions, for example log-normal, Cauchy, exponential and chi-squared [see Martínez and Iglewicz, (1984), p.363]. Tukey’s g-h family of distributions have been used to study financial markets. Badrinath and Chatterjee (1988, 1991), and Mills (1995) used the g and h to model the return on a stock index, as well as the return on shares in several markets. Dutta and Babbel (2004) found that the skewness and leptokurtic behaviour of LIBOR was modelled effectively using the distribution g-h. Dutta and Babbel (2005) used g and h to model interest rates and options on interest rates, while Dutta and Perry (2007) used the g-h to estimate operational risk. Tang and Wu (2006) studied the portfolio management. Jiménez and Arunachalam (2011) provided explicit expressions of skewness and kurtosis for VaR and CVaR calculations. They proposed the use of Tukey’s classical g and h transformations applied to the normal distribution to capture the distributional features.

The purpose of this paper is to present a new approach for determining option values using a generalisation of the Tukey’s g-h family of distributions. This new model provides flexibility in the prices of options when skewness, kurtosis, or other moments of the underlying distribution do not conform to the corresponding measure of a log-normal distribution.

The paper is organised as follows: Section 2 presents the Tukey’s g-h family of generalised distributions and its probability density function (pdf), as well as the cumulative distribution function (cdf). In Section 3, we provide some theoretical results to assess the price of the options using Tukey’s g-h family of generalised distributions and the last section explains the methodology of calculation of valuation by an example. Finally, conclusions are presented.

2 Tukey’s g-h family of generalised distributions

Let U be a continuous random variable with mean 0 and variance 1, such that its pdf $f_U(\cdot)$ is symmetric about the origin and with cdf $F_U(\cdot)$. The transformation option pricing based on the generalised Tukey $T_{g,h}(U)$ named the Tukey’s g-h generalised distribution is defined as:

$$Y = T_{g,h}(U) = -\frac{1}{g} \{\exp\{gU\} - 1\} \exp\{hU^2/2\} \quad \text{with } g \neq 0, h \in \mathbb{R}. \quad (1)$$

The parameters g and h respectively represent the degrees of skewness and the elongation of the tails of the Tukey’s g-h generalised distribution.

If $h = 0$ in (1) then the Tukey’s g-h generalised distribution reduces to:

$$T_{g,0}(U) = \frac{1}{g} \{\exp(gU) - 1\} \quad (2)$$

which is known as the Tukey’s g generalised distribution. Similarly, when g goes to 0, the Tukey’s g-h generalised distribution reduces to:
known as the Tukey’s h generalised distribution. Clearly, Y has the distribution of the random variable U when the parameter h is equal to zero.

The pdf for the Tukey’s g-h generalised distribution is given by:

\[
t_{g,h}(y_p) = \frac{f_U(u_p)}{T_{g,h}^{-1}(u_p)} \text{ whenever } |h|u_p \frac{e^{-|h|u_p} - 1}{g} < 1,
\]

where \(y_p\) and \(u_p\) respectively denote the p-th quantiles of the transformation \(Y = T_{g,h}(U)\) and the continuous random variable U. The cdf of the Tukey’s g-h family of generalised distributions, denoted by \(F_{g,h}(y)\), satisfies the following identity:

\[
\int_a^b t_{g,h}(u)du = \int_{T_{g,h}^{-1}(a)}^{T_{g,h}^{-1}(b)} f_U(v)dv = F_U\left(T_{g,h}^{-1}(b)\right) - F_U\left(T_{g,h}^{-1}(a)\right),
\]

where \(T_{g,h}^{-1}(\cdot)\) is the inverse of the transformation given in (1) and \(F_U(\cdot)\) is the cdf of the continuous random variable U.

There is no explicit form for the inverse of the transformation of \(T_{g,h}(y)\), but we give below the inverse transformation when \(h = 0\) or \(g = 0\).

- If \(h = 0\) then \(T_{g,0}(U)\) is given by (2) and

\[
T_{g,0}^{-1}(y) = \frac{1}{g} \ln(1 + gy), \quad gy > -1.
\]

- If \(g = 0\) then \(T_{0,h}(U)\) is given by (3), and

\[
hY^2 = h\left[T_{0,h}(U)\right]^2 = hU^2 \exp\{hU^2\}.
\]

The expression (7) is of the form \(u = w \exp\{w\}\), where \(w = W(z)\) is the Lambert’s function. Then the solution of (7) is given by:

\[
hU^2 = W\left(hy^2\right) \quad \Rightarrow \quad T_{0,h}^{-1}(y) = \frac{1}{\sqrt{h}} W\left(hy^2\right).
\]

The basic properties of the function \(W(z)\) are given in Olver et al. (2010). Though the inverse of the transformation of \(T_{g,h}(y)\) cannot be evaluated analytically, it can be evaluated numerically. The n-th moment of the random variable Y is given by:

\[
\mu'_n = \left\{ \begin{array}{ll}
\frac{2}{g^n} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \int_0^\infty \cosh\left(\tilde{g}u\right) \exp\left\{\frac{1}{2} \tilde{h}u^2\right\} f_U(u)du & \text{if } g \neq 0, \\
\left[1 + (-1)^n \right] \int_0^\infty u^n \exp\left\{\frac{1}{2} \tilde{h}u^2\right\} f_U(u)du & \text{if } g = 0,
\end{array} \right.
\]

where \(\tilde{g} = (n-k)g\) and \(\tilde{h} = nh\). The expression (9) allows us to obtain the moments of Tukey’s g-h generalised distribution. However, moments of some orders do not exist for
a certain range of values of the parameter h, considering that we have the following cases:

1. Suppose that $U \sim N(0, 1)$ and $h < \frac{1}{n}$, we have

$$E(Y^n) = \begin{cases}
\frac{1}{g^n} \sum_{k=0}^n \frac{(-1)^k \binom{n}{k} M_U \left(\frac{n-k}{\sqrt{1-nh}} \right)}{\Gamma(n) \sqrt{1-nh}^{n-k+1}} & g \neq 0 \\
\frac{1+(-1)^n}{2^n} \frac{\Gamma(n)}{\Gamma(n/2)} & g = 0
\end{cases}$$

(10)

where $M(t)$ is the moment generating function of a standard normal random variable and $\Gamma(\cdot)$ is the Gamma function. This expression is consistent with those obtained by Martínez and Iglewicz (1984).

2. When $U \sim \text{Laplace} \left(0, \frac{\sqrt{2}}{2} \right)$ and $h < 0$, we have

$$\mu'_n = \begin{cases}
1 + 2(-1)^n e^{\frac{1}{n|h|}} \exp \left\{ \frac{\alpha_{n,k}^2}{2} \right\} \Phi \left(-\frac{1}{n|h|} \right), & g \neq 0, \\
\frac{1}{2} \left[\frac{\sqrt{2}}{n|h|} \sum_{k=0}^n \frac{(-1)^k \Gamma \left(\frac{k+1}{2} \right)}{\Gamma(n/2) \sqrt{1-nh}^{n-k+1}} \right] + \int_0^{\frac{1}{n|h|} \sqrt{(k-1)}} e^{-u} du, & g = 0,
\end{cases}$$

(11)

where $\alpha_{n,k}$ and $\beta_{n,k}$ respectively are the larger and smaller roots of the quadratic equation.

$$n|h|r^2 - 2(n-k)\sqrt{n|h|}gr + (n-k)^2 g^2 - 2 = 0.$$

(12)

Expression (11) was wrongly calculated in Klein and Fischer (2002).

In order to model an arbitrary random variable X using the transformation given in (1), we introduce two new parameters, A (location) and B (scale) and propose the following linear transformation:

$$X = A + BY$$

with

$$Y = T_{g,h}(U).$$

(13)

We must estimate four parameters that satisfy either of the following relationships:

$$x_p = A + B y_p,$$

and

$$x_{1-p} = A - B \exp \left\{ -g u_p \right\} y_p.$$

(14)
where \(p > 0.5 \) and \(x_p \) is the \(p \)-th quantile of the random variable \(X \), such that,

\[
x_p = \inf \{ x \mid P[X \leq x] > p \} = \sup \{ x \mid P[X \leq x] \leq p \}.
\]

Quantile \(p \)-value has the same interpretation as the median, quartiles, eighth digit. Hoaglin et al. (1985) refer to them as the letter values, respectively, for the \(M \) (median), \(F \) (fourths), \(E \) (eighths), etc. Since the \(pdf \) and \(cdf \) can be explicitly specified, the estimation of the parameters of Tukey’s \(g-h \) family of generalised distributions can be applied made using the method of moments or the method of quantiles proposed by Majumder and Ali (2008).

From equation (14) we obtain the \(pdf \) of the random variable \(X \) as follows:

\[
f_X (x_p) = f_X (A + By_p) = \frac{1}{B} t_{g,h} (y_p).
\]

3 European option prices

In this section, we proceed to derive the option pricing formula using the Tukey’s \(g-h \) family of generalised distributions. Let \(X_t \) be the price of the underlying asset at time \(t \) with a \(g-h \) generalised distribution so that \(X_t \) is approximated by (13). The European call option \(C(K) \) denotes the event with strike price \(K \) and maturity date of \(T \). It is assumed that the interest rate \(r \) is free of risk. According to Harrison and Pliska (1981), in the absence of arbitrage, the price of European call option can be written as follows:

\[
C_t (K) = \mathbb{E} \left[e^{-r(T-t)} \max \{ X - K, 0 \} \right] = e^{-r(T-t)} \mathbb{E} \left[\max \{ X - K - 0 \} \right] = e^{-r(T-t)} \int_K^\infty (X_T - K) f_X (X_T) dX_T.
\]

Here \(\mathbb{E}[] \) is the operator of risk-neutral expectations, conditional on any information available at time \(t \), \(f_X (X_T) \) is the density function of risk-neutral (RND) of the underlying at maturity. In an arbitrage-free economy, the following martingale condition must be satisfied as well:

\[
X_t = e^{rt} \mathbb{E} \left[X_T \right],
\]

where \(t = T - t \) denotes the time of maturity and the standard deviation of \(\ln (X_t) \) is \(\sigma \sqrt{t} \).

3.1 Formulas European option pricing

The pricing formulas for the prices at the time \(t \) of an European call (put) option on a non-dividend-paying stock with strike price \(K \) is given by the following proposition.

Proposition 3.1: The price of an European call option with appropriate parameters is given by:

\[
\mathbb{E} \left[(X_T - K)_+ \right] = e^{rt} C_t (K) = B \int_{\tilde{\alpha}}^\infty T_{g,h} (u) f_{U_t} (u) du - \kappa BF_U (\tilde{\alpha}),
\]
and the price of an European put option with appropriate parameters is given by:

$$E\left[(K - X_T)_{+} \right] = e^{rt} P_{r}(K) = \kappa BF_{U}(-\delta_I) - B \int_{-\infty}^{h} T_{gA}(u) f_{U}(u) du,$$

(18)

where $\delta_I = -T_{g,h}^{-1}(\kappa)$ and

$$\kappa = \frac{K - A}{B} = \frac{K - \mathbb{E}[X_T]}{B} + 2 \int_{h}^{\infty} \frac{e^{\frac{1}{2}hu^{2}}}{g} f_{U}(u) du.$$

(19)

Proof. Please refer to Appendix 1 for a proof of this proposition.

Using the option valuation formula, we can obtain the put-call parity relationship by subtracting the expression (17) from (18) to get the following:

$$e^{rt} (C_{r}(K) - P_{r}(K)) = E[X_T] - K.$$

(20)

In the case present, the pdf is risk-neutral and thus will not violate put-call parity relationship developed by Stoll (1969).

From the formula (3.2) we can find some special cases depending on the variable U is taken, the details of obtaining these formulas also are given in Appendix 1.

Case I. If in the expression (13) we assume $U \sim N(0, 1)$, then using the expression (10) with $n = 1$, $\mathbb{E}[Y]$ can be calculated and substituting this into (13) we have:

$$E[X] = \begin{cases}
A + \frac{B}{g\sqrt{1-h}} \left(\frac{1}{e^{2+\kappa}} - 1 \right), & \text{if } g \neq 0 \\
A & \text{if } g = 0.
\end{cases}$$

(21)

The formulas for the prices at time t of an European call (put) option on a non-dividend-paying stock with strike price K, respectively, are:

$$E\left[(X_T - K)_{+} \right] = e^{rt} C_{r}(K) = (E[X_T] - K) \Phi(\delta_{1}^{N}) + B\kappa \left[\Phi(\delta_{1}^{N}) - \Phi(\delta_{2}^{N}) \right] + \frac{B}{g\sqrt{1-h}} \left[\Phi(\delta_{1}^{N}) - \Phi(\delta_{2}^{N}) \right],$$

(22)

and

$$E\left[(K - X_T)_{+} \right] = e^{rt} P_{r}(K) = (K - E[X_T]) \Phi(-\delta_{1}^{N}) + B\kappa \left[\Phi(\delta_{1}^{N}) - \Phi(\delta_{2}^{N}) \right] + \frac{B}{g\sqrt{1-h}} \left[\Phi(\delta_{1}^{N}) - \Phi(\delta_{2}^{N}) \right],$$

(23)

where $\kappa = \frac{K - A}{B}$ and

$$\delta_{1}^{N} = -T_{g,h}^{-1}(\kappa), \quad \delta_{2}^{N} = \sqrt{1-h}\delta_{1}^{N}, \quad \delta_{3}^{N} = \delta_{2}^{N} + \frac{g}{\sqrt{1-h}}.$$

(24)
The expressions (22) and (23) were wrongly calculated in Dutta and Babbel (2005). The solution given by Tunaru et al. (2005) is not general and restricted to certain special cases only. We wish to mention that the calculation of equations (22) and (23) corrects the imprecision of their models. The present equations given in (22) and (23) allow us to easily calculate Greeks letters and the classical Black-Scholes (BS) formula for the special case when \(h = 0 \).

Case 2. In the expression (13), assuming that the variable \(U \sim \text{Laplace} \left(0, \frac{1}{\sqrt{2}} \right), \ g \neq 0, \ h < 0 \) and using the expression (11) with \(n = 1 \) we obtain,

\[
\mu_{g,h}^t = \frac{1}{g} \sqrt{\frac{\pi}{|h|}} \left[\exp \left(\frac{1}{2} \alpha_{1,0}^2 \right) \Phi \left(-\alpha_{1,0} \right) + \exp \left(\frac{1}{2} \beta_{1,0}^2 \right) \Phi \left(\beta_{1,0} \right) \right]
- 2 \exp \left(\frac{1}{|h|} \right) \Phi \left(-\frac{2}{|h|} \right),
\]

(25)

where \(\alpha_{1,0} \) and \(\beta_{1,0} \) respectively are the larger and smaller roots of the quadratic equation given in (12). Letting \(\kappa = \frac{K - A}{B} \), the formulas for the price at time \(t \) of an European call (put) options on a non-dividend-paying stock with strike price \(K \) and \(\kappa < 0 \) are given by:

\[
\mathbb{E} \left[(X_T - K) \right] = e^{rt} C_t(K) = \mathbb{E} \left[X_T \right] - K + \frac{B}{2} \kappa \exp \left(-\sqrt{2} \delta_t^c \right)
- \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \left[\exp \left(\frac{1}{2} \alpha_{1,0}^2 \right) \Phi \left(-\delta_t^c \right) - \frac{1}{\sqrt{|h|}} \Phi \left(-\delta_t^c \right) \right]
\]

(26)

and

\[
\mathbb{E} \left[(K - X_T) \right] = e^{rt} P_t(K) = \frac{B}{2} \kappa e^{-\sqrt{2} \delta_t^p} + \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \exp \left(\frac{1}{2} \alpha_{1,0}^2 \right) \Phi \left(-\delta_t^p \right)
- \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \exp \left(\frac{1}{2} \alpha_{1,0}^2 \right) \Phi \left(-\delta_t^p \right),
\]

(27)

where

\[
\delta_t^c = -T_{g,h}^{-1}(\kappa), \quad \delta_t^p = \sqrt{|h|} \left(\delta_t^c + \frac{\sqrt{2}}{|h|} \right), \quad \delta_t^c = \delta_t^c + \frac{g}{\sqrt{|h|}}.
\]

(28)

Analogously for \(\kappa > 0 \) we have,

\[
\mathbb{E} \left[(X_T - K) \right] = e^{rt} C_t(K) = \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \exp \left(\frac{1}{2} \beta_{1,0}^2 \right) \Phi \left(\delta_t^c \right)
- \frac{B \sqrt{\pi}}{g \sqrt{|h|}} \exp \left(\frac{1}{2} \beta_{1,0}^2 \right) \Phi \left(\delta_t^c \right) - \frac{B}{2} \kappa e^{\sqrt{2} \delta_t^p},
\]

(29)
and
\[
\mathbb{E}\left[(K - X_t)\right] = e^{\kappa t} P_t(K) = K - \mathbb{E}[X_t] - \frac{\sigma}{2} \exp\left\{\sqrt{2} \delta^2\right\}
\]
\[
+ \frac{B\sqrt{\pi}}{g\sqrt{|h|}} \left[\exp\left\{\frac{1}{2} T_{g,h}^{-1}(\delta)^2\right\} \Phi\left(\frac{\delta^2}{2}\right) - \exp\left\{\frac{1}{2|\delta^2|}\right\} \Phi\left(\frac{\delta^2}{|\delta^2|}\right) \right],
\]
(30)
where
\[
\delta^2 = -T_{g,h}^{-1}(\kappa), \quad \delta^2 = \sqrt{|h|}\left(\delta^2 - \frac{\sqrt{2}}{|h|}\right), \quad \delta^2 = \delta^2 + \frac{g}{\sqrt{|h|}}
\]
(31)
The expressions given in (26) and (27) allow us to easily calculate Greeks letters.

3.2 Price of options under asymmetric distributions

In this section, we propose the option pricing formula using the generalised distribution given by equation (2), which is a non-linear transformation of a continuous random variable parameterised by \(g \). This subfamily contains distributions whose skewness increases when the value of the parameter \(g \) increases. Now, we give below an empirical rule for a random variable \(X \) which can be expressed as (13) with \(Y = T_{g,h}(U) \), as:
\[
\frac{x_p - \theta}{x_{0.5} - \theta} = \frac{\theta - x_{0.5}}{\theta - x_{0.5}} \quad \text{for all } p > 0.5.
\]
(32)
In particular, the expression (32) is satisfied if:
\[
\theta = A - \frac{B}{g}
\]
(33)
The constant \(\theta \) relates to the location and scale parameters, known as ‘threshold parameter’ and was given by Hoaglin et al. (1985). If we take \(h = 0 \) in expression (4) and use the result given in (15), which relates the pdf of \(X \) and \(Y = T_{g,h}(Z) \) on the quantiles, we get,
\[
f_X(x) = \left\{ \frac{1}{g} \right\} f_U\left(\frac{1}{|g|}\left(\ln(x - \theta) - \mu^*\right)\right), \quad x > \theta,
\]
(34)
where \(\mu^* = \ln\left(\frac{B}{g}\right) \). We say that the random variable \(X \) has a log-symmetric distribution\(^1\) with threshold parameter \(\theta \), scale parameter \(\mu^* \) and shape parameter \(g \), denoted by \(X \sim LS(\mu^*, g, \theta) \). If \(\theta = 0 \) we denote by \(X \sim LS(\mu^*, g) \). The cdf of the random variable \(X \) given by:
\[
F_X(x) = F_U\left(\frac{1}{|g|}\left(\ln(x - \theta) - \mu^*\right)\right), \quad x > \theta.
\]
(35)
Expression (34) allows us to obtain the following pdf associated with the Tukey’s \(g \) function.
3.2.1 Special cases

1 If $\mathcal{U} \sim \mathcal{N}(0, 1)$ and $g \neq 0$, we have that
$$f_X(x) = \frac{1}{\sqrt{2\pi}|g|} \exp \left\{ \frac{1}{2} \left[\ln(x-\theta) - \frac{\mu^*}{g} \right]^2 \right\},$$
where $\mu^* = \ln(\mu_X - \theta) - \frac{1}{2} g^2$ and $x > \theta$. Note that when $\theta = 0$ the last expression coincides with the pdf of the classic log-normal random variable. In this case, we say that X is log-normal distributed with three parameters μ_X, g and θ.

2 When $\mathcal{U} \sim \text{Laplace} \left(0, \frac{1}{\sqrt{2}}\right)$ and $0 < g < \frac{\sqrt{2}}{n}$, the resulting distribution is given by the pdf
$$f_X(x) = \frac{\beta}{2(\epsilon-\theta)} \begin{cases} \left(\frac{x-\theta}{\epsilon-\theta}\right)^{\beta-1}, & \theta < x < \epsilon \\ \left(\frac{x-\theta}{\epsilon-\theta}\right)^{\beta-1}, & x \geq \epsilon, \end{cases}$$
where $\beta = \frac{\sqrt{2}}{g}$ and $(\epsilon-\theta) = (\mu_X - \theta) \left(1 - \frac{1}{\beta^2}\right)$. Note again that this expression coincides with the pdf of log-Laplace with three parameters μ_X, g and θ.

3 If $\mathcal{U} \sim \text{Logistic} \left(0, \frac{\lambda}{n}\right)$, $0 < g < \frac{\lambda}{n}$ and $\lambda = \frac{\pi}{\sqrt{3}}$, then the pdf of X can be expressed as:
$$f_X(x) = \frac{\pi}{\epsilon-\theta} \left[\frac{\pi x-\theta}{\alpha \epsilon-\theta} \right]^{\alpha-1} \left[1 + \frac{\pi x-\theta}{\alpha \epsilon-\theta} \right]^{2\alpha},$$
where $\alpha = \frac{\lambda}{g}$ and $(\epsilon-\theta) = (\mu_X - \theta) \sin(\sqrt{3}g)$. Note that this expression coincides with the pdf of three parameters log-logistic (μ_X, g and θ).

When we take the expectation operators on both sides of the linear transformation given by equation (13) with $Y = T_{\mu_0}(U)$, we obtain,
$$\mathbb{E}(X-\theta) = \frac{B}{g} \mathbb{E}[e^{\mu U}] = \frac{B}{g} M_U(g).$$

Thus,
$$\frac{B}{g} = \frac{\mathbb{E}(X-\theta)}{M_U(g)} = \frac{\mathbb{E}(X)-\theta}{M_U(g)}.$$
where \(M_U(g) \) is the moment generating function of the random variable \(U \). The \(n \)-th moment of the random variable \(X \) could be obtained using the formula:

\[
E \left[(X - \bar{X})^n \right] = \mu_n(X) \left(\frac{B}{g} \right)^n \sum_{k=0}^{\infty} (-1)^k \binom{n}{k} M_U \left(\frac{\bar{g}}{g} \right) M^k_U \left(\frac{g}{\bar{g}} \right).
\]

Note that these expressions do not depend on the parameter \(\theta \). Thus, the skewness coefficient \(\beta_1(X) \) and kurtosis/\(\beta_2(X) \) respectively are given by:

\[
\beta_1(X) = \frac{M_U(3g) - M^3_U(g)}{\left[M_U(2g) - M^2_U(g) \right]^\frac{3}{2}}, \quad (41)
\]

\[
\beta_2(X) = \frac{M_U(4g) - 4M_U(3g)M_U(g) + 6M_U(2g)M^2_U(g) - 3M^4_U(g)}{\left[M_U(2g) - M^2_U(g) \right]^2}. \quad (42)
\]

Note that these expressions only depend on the parameter \(g \). Table 1 shows parameters of the \(pdf \) and the moment generating function for a random variable \(U \), using a selected set of well known symmetrical distributions.

Table 1 Parameters of the \(pdf \) of the random variable \(U \)

<table>
<thead>
<tr>
<th>Distribution of the r.v. U</th>
<th>Parameters</th>
<th>(\mu, a)</th>
<th>(\sigma, b)</th>
<th>(g \neq 0)</th>
<th>(M_U(g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laplace</td>
<td>0</td>
<td>(\sqrt{2})</td>
<td>0 (< g < \sqrt{2})</td>
<td>(\frac{2}{2 - g^2})</td>
<td></td>
</tr>
<tr>
<td>Logistic</td>
<td>0</td>
<td>(\sqrt{3})</td>
<td>0 (< g < \frac{\sqrt{3}}{\sqrt{n}})</td>
<td>(\sqrt{3} g \csc \left(\frac{\sqrt{3}g}{\sqrt{n}} \right))</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>0</td>
<td>1</td>
<td>(g > 0)</td>
<td>(\exp \left(\frac{1}{2} g^2 \right))</td>
<td></td>
</tr>
<tr>
<td>HyperSec</td>
<td>0</td>
<td>(\frac{2}{\pi})</td>
<td>0 (< g < \frac{\pi}{2n})</td>
<td>(\sec \left(g \right))</td>
<td></td>
</tr>
<tr>
<td>HyperCsc</td>
<td>0</td>
<td>(\frac{\sqrt{2}}{\pi})</td>
<td>0 (< g < \frac{\pi}{\sqrt{2n}})</td>
<td>(\sec^2 \left(\frac{g}{\sqrt{2}} \right))</td>
<td></td>
</tr>
</tbody>
</table>

Proposition 3.2. The LS price at time \(t \) of an European call option on a non-dividend-paying stock with strike price \(K \) is given by:

\[
e^{\tau} C_t(K) = \left(\mathbb{E}[X_T] - \theta \right) \left[1 - F_U \left(-\delta_t^L S; g \right) \right] - \left(K - \theta \right) F_U \left(\delta_t^L S \right), \quad (43)
\]

and the LS price at time \(t \) of an European put option on a non-dividend-paying stock with strike price \(K \) is given by:

\[
e^{\tau} P_t(K) = \left(K - \theta \right) F_U \left(-\delta_t^L S \right) - \left(\mathbb{E}[X_T] - \theta \right) F_U \left(-\delta_t^L S g \right), \quad (44)
\]

where the \(cdf \) \(F_U \left(\cdot ; g \right) \) is called the Esscher transform of \(F_U \left(\cdot \right) \) with parameter \(g \) and
Proof. The proof is given in Appendix 2.

The expressions (43) and (44) allows us to obtain the prices at time \(t \) of an European call and put options on a non-dividend-paying stock with strike price \(K \), respectively, for the following cases:

1. Let \(U \sim N(0, 1) \) and \(g > 0 \). Using expressions (6) and (33) we have that:

\[
e^{rT} C(J) = \left(\mathbb{E}[X_T] - \theta \right) \Phi \left(d_1^* \right) - (K - \theta) \Phi \left(d_2^* \right).
\]

A similar result to the above equation leads us to the value of European put as:

\[
e^{rT} P(J) = (K - \theta) \Phi \left(-d_2^* \right) - \left(\mathbb{E}[X_T] - \theta \right) \Phi \left(-d_1^* \right).
\]

where

\[
d_1^* = \frac{1}{g} \ln \left(\frac{\mathbb{E}[X_T] - \theta}{K - \theta} \right) + \frac{g}{2}, \quad d_2^* = d_1^* - g.
\]

Note that these expressions coincide with the option pricing formula of Black and Scholes (1973), when \(\theta = 0 \) and \(g = \sigma \sqrt{t} \).

2. When \(U \sim Laplace \left(0, \frac{\sqrt{2}}{2} \right) \) and \(0 < g < \frac{\sqrt{2}}{n} \) if \(\kappa < 0 \), the expression (43) that represents the value of European call can be expressed as:

\[
e^{rT} C(J) = \mathbb{E}(X_T) - K + \frac{1}{2} \frac{K - \theta}{\beta + 1} \left[\frac{(K - \theta)M_U(g) - \mathbb{E}[X_T] - \theta}{(K - \theta)M_U(g)} \right]^\beta,
\]

where \(\beta = \frac{\sqrt{2}}{g} \). When \(\kappa \geq 0 \), we substitute this into (43) to get,

\[
e^{rT} C(J) = \frac{1}{2} \frac{K - \theta}{\beta - 1} \left[\frac{\mathbb{E}[X_T] - \theta}{(K - \theta)M_U(g)} \right]^\beta.
\]

Note that the location and scale parameters do not appear in these expressions when \(\theta = 0 \). The European put can be found by put-call parity.

3. When \(U \sim Logistic \left(0, \frac{1}{\lambda} \right) \), \(0 < g < \frac{2}{n} \) and \(\lambda = \frac{\pi}{\sqrt{3}} \), the expression (43) that represents the value of European call can be expressed as:

\[
\delta_{\lambda, g}^{-1}(\kappa) = \frac{1}{g} \ln \left[\frac{\mathbb{E}[X_T] - \theta}{M_U(g)(K - \theta)} \right], \quad g \neq 0.
\]
Option pricing based on the generalised Tukey distribution

\[e^{rt} C(K) = (K - \theta) \left[\frac{e^{j\delta_1 s}}{1 - g/\lambda} \ {}_2F_1 \left(\frac{2, 1 - \frac{g}{\lambda}}{2 - \frac{g}{\lambda}} ; 2 - \frac{g}{\lambda} ; -e^{j\delta_1 s} \right) \right. \]
\[\left. - \frac{1}{2} \left(1 + \tanh \left(\frac{\lambda}{2} \delta_1 s \right) \right) \right], \tag{51} \]

where \({}_2F_1 (a, b; c; z) \) denotes the hypergeometric function. The basic properties of this function are given in Andrews et al. (1999) and in this case the value of European put is given by:

\[e^{rt} P(K) = \frac{K - \theta}{2} \left[1 - 2 \ {}_2F_1 \left(\frac{1, g/\lambda + \frac{g}{\lambda}}{e^{-j\delta_1 s}} \right) \right. \]
\[\left. + \frac{g}{g + \lambda} e^{-j\delta_1 s} {}_2F_1 \left(\frac{1, 1 + \frac{g}{\lambda}}{2 - \frac{g}{\lambda}} ; 2 - \frac{g}{\lambda} ; -e^{-j\delta_1 s} \right) \right], \tag{52} \]

Note that the location and scale parameters do not appear in these expressions when \(\theta = 0 \).

4 When \(U - \sec h \left(0, \frac{2}{\pi} \right) \) and \(0 < g < \frac{\pi}{2n} \), the expression (43) that represents the value of European call can be expressed as:

\[e^{rt} C(K) = 2(K - \theta) \left[\frac{\pi e^{j\delta_1 s}}{e^2 - 2g} \ {}_2F_1 \left(\frac{1, \frac{g}{\pi}}{2 - \frac{g}{\pi}} ; 2 - \frac{g}{\pi} ; -e^{j\delta_1 s} \right) \right. \]
\[\left. - \frac{2}{\pi} \arctan \left(\frac{\pi e^{j\delta_1 s}}{e^2} \right) \right] \tag{53} \]

The value of European put can be obtained using the formula:

\[e^{rt} P(K) = (K - \theta) \left[1 - \frac{2}{\pi} \arctan \left(\frac{\pi e^{j\delta_1 s}}{e^2} \right) \right. \]
\[\left. - \frac{2(K - \theta)}{\pi + 2g} e^{-j\delta_1 s} {}_2F_1 \left(\frac{1, 1 + \frac{g}{\pi}}{2 + \frac{g}{\pi}} ; 2 + \frac{g}{\pi} ; -e^{-j\delta_1 s} \right) \right]. \tag{54} \]

Note that the location and scale parameters do not appear in these expressions when \(\theta = 0 \).

4 When \(U - \csc h \left(0, \frac{\sqrt{2}}{\pi} \right) \) and \(0 < g < \frac{\pi}{\sqrt{2n}} \), the expression (43) that represents the value of European call can be expressed as:
\[
e^{rt} C_t(K) = \frac{2(K-\theta)}{\pi} e^{\frac{\lambda^2}{2}} \left[-\delta_1^{\text{LS}} \frac{3}{2} F_1 \left(1, \frac{1}{2} - \frac{g}{\sqrt{2\pi}}, \frac{3}{2} - \frac{g}{\sqrt{2\pi}}; e^\lambda \right) \right]
\]

\[
+ \frac{1}{\sqrt{2\pi}} \left[-\delta_1^{\text{LS}} \frac{3}{2} F_2 \left(1, \frac{1}{2} - \frac{g}{\sqrt{2\pi}}, \frac{3}{2} - \frac{g}{\sqrt{2\pi}}; e^\lambda \right) \right]
\]

\[
- \frac{K-\theta}{\pi^2} \left[2\text{Li}_2(-\eta) - 2\text{Li}_2(\eta) + \lambda \ln(-\eta) \right].
\]

where \(\lambda = \sqrt{2\pi\delta_1^{\text{LS}}} \), \(\eta = \tanh\left(\frac{\lambda}{4} \right) \) and \(\text{Li}_2(\cdot) \) denotes the dilogarithmic function. This function is tabulated in Lewin (1981). Note that the location and scale parameters do not appear in these expressions when \(\theta = 0 \).

4 Numerical results

In this section, we compare numerical values of an European call option under the assumption that price movements follow the Tukey’s \(g \) generalised distribution with the corresponding option call values from the Jarrow and Rudd (1982) model. For each of the log-symmetric models with \(\theta = 0 \) we consider the following values: \(X_0 = 100, r = 0.10, \sigma = 0.2 \), for various strike prices \(K \) and times to maturity \(\tau \). Table 2 shows the call option values using the classical BS formula.

<table>
<thead>
<tr>
<th>Strike price (K)</th>
<th>Time to maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\tau = 0.25)</td>
</tr>
<tr>
<td>80</td>
<td>21.9939</td>
</tr>
<tr>
<td>85</td>
<td>17.2059</td>
</tr>
<tr>
<td>90</td>
<td>12.6450</td>
</tr>
<tr>
<td>95</td>
<td>8.5793</td>
</tr>
<tr>
<td>100</td>
<td>5.2954</td>
</tr>
<tr>
<td>105</td>
<td>2.9456</td>
</tr>
<tr>
<td>110</td>
<td>1.4711</td>
</tr>
<tr>
<td>115</td>
<td>0.6603</td>
</tr>
<tr>
<td>120</td>
<td>0.2675</td>
</tr>
</tbody>
</table>
Tables 3, 4, 5 and 6 show that the distribution function evidently has significant impact on the option value.

Table 3 gives the European call option values from the log-Laplace model computed with formulas (49) and (50) for various strikes prices \(K \) and times to maturity \(\tau \) with \(g = \sigma \sqrt{\tau} \).

Table 3 Call option values using log-Laplace model

<table>
<thead>
<tr>
<th>Strike price (K)</th>
<th>(\tau = 0.25)</th>
<th>(\tau = 0.50)</th>
<th>(\tau = 0.75)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>22.0580</td>
<td>24.1507</td>
<td>26.1821</td>
<td>28.1395</td>
</tr>
<tr>
<td>85</td>
<td>17.3059</td>
<td>19.6308</td>
<td>21.8417</td>
<td>23.9476</td>
</tr>
<tr>
<td>90</td>
<td>12.7145</td>
<td>15.2993</td>
<td>17.6849</td>
<td>19.9268</td>
</tr>
<tr>
<td>95</td>
<td>8.4620</td>
<td>11.2826</td>
<td>13.8041</td>
<td>16.1479</td>
</tr>
<tr>
<td>100</td>
<td>4.8965</td>
<td>7.7768</td>
<td>10.3296</td>
<td>12.7045</td>
</tr>
<tr>
<td>105</td>
<td>2.5926</td>
<td>5.0794</td>
<td>7.4410</td>
<td>9.7190</td>
</tr>
<tr>
<td>110</td>
<td>1.4068</td>
<td>3.3418</td>
<td>5.3329</td>
<td>7.3456</td>
</tr>
<tr>
<td>115</td>
<td>0.7843</td>
<td>2.2399</td>
<td>3.8783</td>
<td>5.6082</td>
</tr>
<tr>
<td>120</td>
<td>0.4483</td>
<td>1.5271</td>
<td>2.8590</td>
<td>4.3312</td>
</tr>
</tbody>
</table>

Table 4 gives the European call option values from the log-logistic model computed with formula (51) for various strikes prices \(K \) and times to maturity \(\tau \) with \(g = \sigma \sqrt{\tau} \).

Table 4 Call option values using log-logistic model

<table>
<thead>
<tr>
<th>Strike price (K)</th>
<th>(\tau = 0.25)</th>
<th>(\tau = 0.50)</th>
<th>(\tau = 0.75)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>22.0245</td>
<td>24.0868</td>
<td>26.1055</td>
<td>28.0584</td>
</tr>
<tr>
<td>85</td>
<td>17.2539</td>
<td>19.5651</td>
<td>21.7788</td>
<td>23.8903</td>
</tr>
<tr>
<td>90</td>
<td>12.6709</td>
<td>15.2794</td>
<td>17.6852</td>
<td>19.9402</td>
</tr>
<tr>
<td>95</td>
<td>8.5157</td>
<td>11.3898</td>
<td>13.9370</td>
<td>16.2919</td>
</tr>
<tr>
<td>100</td>
<td>5.1405</td>
<td>8.0761</td>
<td>10.6495</td>
<td>13.0281</td>
</tr>
<tr>
<td>105</td>
<td>2.8023</td>
<td>5.4660</td>
<td>7.9077</td>
<td>10.2123</td>
</tr>
<tr>
<td>110</td>
<td>1.4271</td>
<td>3.5694</td>
<td>5.7365</td>
<td>7.8716</td>
</tr>
<tr>
<td>115</td>
<td>0.7071</td>
<td>2.2815</td>
<td>4.0950</td>
<td>5.9921</td>
</tr>
<tr>
<td>120</td>
<td>0.3506</td>
<td>1.4464</td>
<td>2.8980</td>
<td>4.5257</td>
</tr>
</tbody>
</table>

Table 5 gives the European call option values from the log-HyperSec model computed with formula (53) for various strikes prices \(K \) and times to maturity \(\tau \) with \(g = \sigma \sqrt{\tau} \).

Table 6 gives the European call option values from the log-HyperCsc model computed with formula (55) for various strikes prices \(K \) and times to maturity \(\tau \) with \(g = \sigma \sqrt{\tau} \).
Table 5 Call option values using log-HyperSec model

<table>
<thead>
<tr>
<th>Strike price (K)</th>
<th>Time to maturity</th>
<th>(\tau = 0.25)</th>
<th>(\tau = 0.50)</th>
<th>(\tau = 0.75)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>22.0404</td>
<td>24.1169</td>
<td>26.1404</td>
<td>28.0943</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>17.2783</td>
<td>19.5934</td>
<td>21.8036</td>
<td>23.9107</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>12.6879</td>
<td>15.2813</td>
<td>17.6754</td>
<td>19.9228</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>8.4841</td>
<td>11.3321</td>
<td>13.8660</td>
<td>16.2144</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5.0418</td>
<td>7.9498</td>
<td>10.5098</td>
<td>12.8826</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>2.7130</td>
<td>5.3175</td>
<td>7.7288</td>
<td>10.0174</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1.4088</td>
<td>3.4654</td>
<td>5.5727</td>
<td>7.6695</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>0.7380</td>
<td>2.2494</td>
<td>3.9896</td>
<td>5.8271</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>0.3953</td>
<td>1.4728</td>
<td>2.8636</td>
<td>4.4249</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 Call option values using log-HyperCsc model

<table>
<thead>
<tr>
<th>Strike price (K)</th>
<th>Time to maturity</th>
<th>(\tau = 0.25)</th>
<th>(\tau = 0.50)</th>
<th>(\tau = 0.75)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>22.0204</td>
<td>24.0814</td>
<td>26.1009</td>
<td>28.0550</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>17.2496</td>
<td>19.5629</td>
<td>21.7791</td>
<td>23.8925</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>12.6709</td>
<td>15.2844</td>
<td>17.6933</td>
<td>19.9503</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>8.5246</td>
<td>11.4037</td>
<td>13.9537</td>
<td>16.3105</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5.1559</td>
<td>8.0965</td>
<td>10.6730</td>
<td>13.0536</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>2.8169</td>
<td>5.4880</td>
<td>7.9342</td>
<td>10.2416</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1.4344</td>
<td>3.5880</td>
<td>5.7618</td>
<td>7.9014</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>0.7055</td>
<td>2.2925</td>
<td>4.1154</td>
<td>6.0189</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>0.3433</td>
<td>1.4483</td>
<td>2.9106</td>
<td>4.5467</td>
<td></td>
</tr>
</tbody>
</table>

For each of the models we obtain the skewness and kurtosis with formulas (41) and (42), respectively. Table 7 gives the skewness for different times to maturity \(\tau \).

Table 7 Skewness

<table>
<thead>
<tr>
<th>Distribution of the r.v. X</th>
<th>Time to maturity</th>
<th>(\tau = 0.25)</th>
<th>(\tau = 0.50)</th>
<th>(\tau = 0.75)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-Laplace</td>
<td></td>
<td>0.5394</td>
<td>0.7764</td>
<td>0.9681</td>
<td>1.1388</td>
</tr>
<tr>
<td>Log-Logistic</td>
<td></td>
<td>0.2663</td>
<td>0.3791</td>
<td>0.4674</td>
<td>0.5433</td>
</tr>
<tr>
<td>Log-Normal</td>
<td></td>
<td>0.3018</td>
<td>0.4293</td>
<td>0.5289</td>
<td>0.6143</td>
</tr>
<tr>
<td>Log-HyperSec</td>
<td></td>
<td>0.3864</td>
<td>0.5530</td>
<td>0.6854</td>
<td>0.8012</td>
</tr>
<tr>
<td>Log-HyperCsc</td>
<td></td>
<td>0.2033</td>
<td>0.2885</td>
<td>0.3546</td>
<td>0.4108</td>
</tr>
</tbody>
</table>

The results demonstrate the rapid increase of skewness for increasing \(\tau \) for log-Laplace and log-HyperSec distributions while not so rapidly for log-logistic and log-HyperCsc distributions.

Table 8 gives the kurtosis for different times to maturity \(\tau \).
Table 8 Kurtosis

<table>
<thead>
<tr>
<th>Distribution of the r.v. X</th>
<th>Time to maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\tau = 0.25$</td>
</tr>
<tr>
<td>Log-Laplace</td>
<td>6.7329</td>
</tr>
<tr>
<td>Log-Normal</td>
<td>3.1623</td>
</tr>
<tr>
<td>Log-HyperSec</td>
<td>5.3853</td>
</tr>
<tr>
<td>Log-HyperCsc</td>
<td>4.0951</td>
</tr>
</tbody>
</table>

For this case, kurtosis increases more rapidly with increases τ for log-Laplace and log-HyperSec distributions while not so rapidly for log-logistic and log-HyperCsc distributions. Since the coefficient of skewness and kurtosis are invariant to changes in the scale, we use the values obtained for the coefficient of skewness and kurtosis in Tables 7 and 8 to calculate option prices using the Jarrow and Rudd (1982) model. Table 9 gives call values from the Jarrow and Rudd for different strikes prices K and times to maturity $\tau = 0.5$ with $g = \sigma \sqrt{\tau}$. Similarly, for the maturity times $\tau = 0.25, 0.75, 1.0$ for deep in the money (deep out the money) options the call values from the Jarrow and Rudd model that is higher than the respective call values using our log-symmetric model.

Table 9 Call option values using Jarrow and Rudd model

<table>
<thead>
<tr>
<th>Strike price (K)</th>
<th>Log-Laplace</th>
<th>Log-Logistic</th>
<th>Log-HyperSec</th>
<th>Log-HyperCsc</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>24.5485</td>
<td>24.2550</td>
<td>24.3723</td>
<td>24.2401</td>
</tr>
<tr>
<td>90</td>
<td>14.7295</td>
<td>15.2284</td>
<td>15.0153</td>
<td>15.3181</td>
</tr>
<tr>
<td>95</td>
<td>10.4243</td>
<td>11.2581</td>
<td>10.9078</td>
<td>11.3804</td>
</tr>
<tr>
<td>100</td>
<td>7.0999</td>
<td>7.9561</td>
<td>7.5995</td>
<td>8.0670</td>
</tr>
<tr>
<td>105</td>
<td>4.8206</td>
<td>5.4103</td>
<td>5.1673</td>
<td>5.4744</td>
</tr>
<tr>
<td>110</td>
<td>3.3685</td>
<td>3.5689</td>
<td>3.4896</td>
<td>3.5754</td>
</tr>
<tr>
<td>115</td>
<td>2.4384</td>
<td>2.2988</td>
<td>2.3615</td>
<td>2.2595</td>
</tr>
<tr>
<td>120</td>
<td>1.7910</td>
<td>1.4505</td>
<td>1.5963</td>
<td>1.3875</td>
</tr>
</tbody>
</table>

In general the call (put) values from the Jarrow and Rudd (1982) can in some cases coincide with the values of BS. Based on the Jarrow and Rudd (1982) expansion, we can express the call option price as:

$$c_{JRM} = c_{BSM} + \eta_1 Q_1 + \eta_2 Q_2,$$

(56)

where $\eta_1 = \beta_1(F) - \beta_1(L)$ and $\eta_2 = \beta_2(F) - \beta_2(L)$. Here $\beta_1(L), \beta_2(L)$ respectively denote the skewness and kurtosis from the log-normal distribution, while $\beta_1(F), \beta_2(F)$ respectively denote the skewness and kurtosis from the distribution we want to approximate. c_{JRM} is the plain vanilla Jarrow and Rudd value, c_{BSM} is the plain vanilla BS value. Moreover, the coefficients,
where
\[q = \sqrt{\omega - 1}, \quad \text{and} \quad \omega = \exp \{ \sigma^2 t \}, \]
and \(a'(\cdot), \ a''(\cdot) \) denote the first and second derivatives evaluated at \(X_t = K \), respectively, of the function
\[\alpha(X_t) = \sqrt{2\pi} \left[\frac{X_t}{K} \right]^{d_1} \exp \left\{ -\frac{1}{2} \left[\frac{\ln(X_t) - \ln(K)}{\sigma \sqrt{t}} \right]^2 \right\}. \]

Here \(d_1 \) and \(d_2 \) are defined as in (48) with \(\theta = 0 \) and \(\text{LogN}(X_t; \ln(K), \sigma^2 t) \) denotes the density of the log-normal distribution with:
\[\mathbb{E}[\ln(X_t)] = \ln(K) \quad \text{and} \quad \text{var}[\ln(X_t)] = \sigma^2 t. \]

Thus
\[\text{LogN}(X_t; \ln(K), \sigma^2 t) = \frac{1}{\sqrt{2\pi \sigma \sqrt{t}}} \exp \left\{ -\frac{1}{2} \left[\frac{\ln(X_t) - \ln(K)}{\sigma \sqrt{t}} \right]^2 \right\}. \]

Note that if
\[\eta_i = \frac{q}{4} (\beta_2(F) - 3) d_4 \frac{\varphi(d_2)}{\varphi(d_1)} - \frac{q^3}{4} d_4 (\omega^3 + 2\omega^2 + 6\omega + 6) \frac{\varphi(d_2)}{\varphi(d_1)}, \]
where
\[d_4 = \frac{d_3^2 - 1}{\sigma \sqrt{t} d_3} - 1 \quad \text{and} \quad d_3 = d_2 - \sigma \sqrt{t} \]

then from expression (56) we have,
\[c_{RM} = c_{BSM}. \]

5 Conclusions

The option pricing formula of BS depends upon the assumption that price fluctuations are log-normal. However, B-S formula has certain well-known deficiencies. This article presents a methodology for establishing the price of the options when the underlying distribution is asymmetric. The extension to log-symmetric as presented above, makes this model a viable entrant due to fact that the formulas obtained in this paper for calculating price of European options are explicit for different type of distributions. By using a generalisation of the Tukey \(g \cdot h \) family of distribution we have presented a method for calculating explicit formula for price of European options. This formula reduces to BS when the parameters \(g = \sigma \sqrt{t} \) and \(h \) is equal to zero. We have also
provided numerical examples to illustrate the proposed model compared with other existing well known model of Jarrow and Rudd to show that the difference of options prices can be significant. For further work, we are planning to obtain closed form solution for the n-th moment assuming $h \neq 0$ and use estimation analysis for $g-h$ parameters.

Acknowledgements

The authors would like to thank the referees for thoughtful comments which led to a improvement of the article.

References

Notes

1 Such distributions are all asymmetric, see for reference Johnson et al. (1994), and Stuart and Ord (1994).

2 The details of these expressions appear in Appendix 2.
Appendix 1

Proof for the formulas of option prices

If X is approximated by (13), i.e., $X = A + BY$, then,

$$e^{rt}C_t(K) = E[(A + BY - K)_+] = BE[(Y - \kappa)_+]$$

$$= B\int_{\kappa}^{\infty} yt_{g/b}(y)dy - \kappa B\left[1 - F_{g,b}(\kappa)\right],$$

(A1)

where $F_{g,b}(\cdot)$ is given in (5) and $\kappa = \frac{K - A}{B}$. We assume that $g \neq 0$ and substitute (1) in (5) to obtain:

$$e^{rt}C_t(K) = \frac{B}{g} \int_{-\delta}^{\delta} \left(e^{gu} - 1\right)\frac{1}{2}hu^2 f_U(u)du - \kappa B\left[1 - F_U(-\delta)\right]$$

$$= \frac{B}{g} \int_{-\delta}^{\delta} \left(e^{gu} - 1\right)\frac{1}{2}hu^2 f_U(u)du - \kappa BF_U(\delta),$$

where $\delta = -T_{g,b}(\kappa)$, in this expression we use that the random variable U is symmetric. Therefore,

1 If $U \sim N(0, 1)$ then,

$$e^{rt}C_t(K) = \frac{B}{g\sqrt{2\pi}} \left[\int_{-\delta}^{\delta} \exp\left\{gu - \frac{1}{2}(1-h)u^2\right\} du\right.$$

$$- \int_{-\delta}^{\delta} \exp\left\{-\frac{1}{2}(1-h)u^2\right\} du\left]-\kappa B\Phi(\delta)\right\}$$

$$= \frac{Be^{-1-h}}{g\sqrt{1-h}} \left[1 - \Phi\left(-\sqrt{1-h}\delta - \frac{g}{\sqrt{1-h}}\right)\right]$$

$$- \frac{B}{g\sqrt{1-h}} \left[1 - \Phi\left(-\sqrt{1-h}\delta\right)\right] - \kappa B\Phi(\delta).$$

(A2)

From the standard normal distribution, we have $1 - \Phi(x) = \Phi(-x)$. Using the expression (21), which coincides with that of Dutta and Babbel (2005) with $g \neq 0$, we get,

$$\frac{1}{2}g^2 Be^{2(1-h)} = \mathbb{E}[X_T] - A + \frac{B}{g\sqrt{1-h}}.$$
\[e^{\kappa} C_t(K) = \mathbb{E}[X_T] \Phi(\delta^N) - K \Phi(\delta^N) - A \left[\Phi(\delta^N) - \Phi(\delta^N) \right] \]
\[+ \frac{B}{g\sqrt{1-h}} \left[\Phi(\delta^N) - \Phi(\delta^N) \right], \]

where
\[\delta^N = \delta_1, \quad \delta^N_2 = \sqrt{1-h}\delta^N_1, \quad \delta^N_3 = \delta^N_2 + \frac{g}{\sqrt{1-h}}. \]

Simplifying, we obtain the formula (22) for valuation of a European call option. Similarly the expression (23) for a European put option can be obtained.

If \(U = \text{Laplace}\left(0, \frac{1}{\sqrt{2}}\right), g \neq 0, h < 0 \) and \(\kappa < 0 \), then the first integral of the expression (A1) can be expressed as:

\[
\int_{-\delta_1}^{\infty} y g_h(y) dy = \int_{-\delta_1}^{0} y f \left(T_{g,h}^{-1}(y) \right) dy + \int_{0}^{\infty} y f \left(T_{g,h}^{-1}(y) \right) dy
\]

\[= I_1 + I_2 \]

Making the following change of variable:
\[u = T_{g,h}^{-1}(y) \]
\[du = \frac{dy}{T_{g,h}'(T_{g,h}^{-1}(y))}, \quad (A3) \]

and substituting in \(I_1 \) we obtain:

\[I_1 = \int_{-\delta_1}^{0} T_{g,h}(w)f(w)dw = \sqrt{\pi} \int_{\delta_1}^{0} e^{-gw} e^{g_0} - e^{-\sqrt{2}u} e^{rac{|u|^2}{2}} du \]

\[= \sqrt{\pi} \int_{\delta_1}^{0} e^{-gw} e^{g_0} - \sqrt{2} e^{rac{|u|^2}{2}} du \]

\[= \frac{1}{g} \sqrt{\pi} \exp \left\{ -\frac{1}{2} \int_{\delta_1}^{0} e^{g_0} - \frac{|u|^2}{2} \right\} du \]

\[- \frac{1}{g} \sqrt{\pi} \exp \left\{ -\frac{|u|^2}{2} \right\} \int_{\delta_1}^{0} e^{-g_0} - \frac{|u|^2}{2} \right\} du, \]

where \(\delta_1 = -T_{g,h}^{-1}(\kappa) \), effecting the change of variable:

\[v = \sqrt{|\alpha|} \left(u + \frac{\sqrt{2}}{|\alpha|} \right) \quad dv = \sqrt{|\alpha|} du \]

\[z = \sqrt{|\alpha|} \left(u + \frac{\alpha_{1,0}}{|\alpha|} \right) \quad dz = \sqrt{|\alpha|} du, \]
we obtain,

\[
I_1 = \frac{\sqrt{\pi}}{g\sqrt{|h|}} \frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{1}{2} \left(\frac{\log |A|}{\sqrt{|h|}} \right)^2 \right\} \int \frac{1}{|h|} \exp \left\{ -\frac{1}{2} v^2 \right\} dv \\
- \frac{\sqrt{\pi}}{g\sqrt{|h|}} \frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{\alpha_{i,0}^2}{2} \right\} \int \frac{1}{|h|} \exp \left\{ -\frac{1}{2} \frac{1}{|h|} \right\} dz \\
= \frac{\sqrt{\pi}}{g\sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \left[\Phi \left(\frac{\sqrt{2}}{|h|} \right) - \Phi \left(\frac{\sqrt{2}}{|h|} \left(\delta_1 + \frac{\sqrt{2}}{|h|} \right) \right) \right] \\
- \frac{\sqrt{\pi}}{g\sqrt{|h|}} \exp \left\{ \frac{\alpha_{i,0}^2}{2} \right\} \left[\Phi \left(\frac{\alpha_{i,0}}{\sqrt{|h|}} \right) - \Phi \left(\frac{\alpha_{i,0}}{\sqrt{|h|}} \left(\delta_1 + \frac{\alpha_{i,0}}{\sqrt{|h|}} \right) \right) \right].
\]

Consider the second integral \(I_2 \):

\[
I_2 = \int_0^\infty T_{\pi,h}(u) f(u) du = \pi \int_0^\infty e^{\log u} - 1 e^{-\frac{\log u}{2}} du \\
= \frac{\sqrt{\pi}}{g} \int_0^\infty e^{\log u} - 1 e^{-\frac{\log u}{2}} du \\
= \frac{\sqrt{\pi}}{g} \exp \left\{ \frac{|h|}{2} \right\} \int_0^\infty \exp \left\{ -\frac{|h|}{2} \left(\frac{u - \beta_{i,0}}{|h|} \right)^2 \right\} du \\
- \frac{\sqrt{\pi}}{g} \exp \left\{ \frac{1}{|h|} \right\} \int_0^\infty \exp \left\{ -\frac{|h|}{2} \left(\frac{u + \sqrt{2}}{|h|} \right)^2 \right\} du,
\]

using the change of variable,

\[
v = \sqrt{|h|} \left(u + \frac{\sqrt{2}}{|h|} \right) \quad dv = \sqrt{|h|} du \\
z = \sqrt{|h|} \left(u - \frac{\beta_{i,0}}{|h|} \right) \quad dz = \sqrt{|h|} du,
\]

leads us to

\[
I_2 = \frac{\sqrt{\pi}}{g\sqrt{|h|}} \exp \left\{ \frac{\beta_{i,0}^2}{2} \right\} \int_0^\infty \exp \left\{ -\frac{1}{2} z^2 \right\} dz \\
- \frac{\sqrt{\pi}}{g\sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \int_0^\infty \exp \left\{ -\frac{1}{2} v^2 \right\} dv \\
= \frac{\sqrt{\pi}}{g\sqrt{|h|}} \left[\exp \left\{ \frac{\beta_{i,0}^2}{2} \right\} \Phi(\beta_{i,0}) - \exp \left\{ \frac{1}{|h|} \right\} \Phi \left(\frac{-\sqrt{2}}{|h|} \right) \right].
\]

From the standard normal distribution, we have \(1 - \Phi(x) = \Phi(-x) \). Thus,
\[I_1 + I_2 = \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{\beta_{1,0}^2}{2} \right\} \Phi (\beta_{1,0}) \]
\[\quad - \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \left[\Phi \left(-\frac{\sqrt{2}}{\sqrt{|h|}} \right) - \Phi \left(\frac{\sqrt{2}}{\sqrt{|h|}} \right) \right] \]
\[\quad - \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{1}{|h|} \right\} \Phi \left(\sqrt{|h|} \frac{\delta_1 + \frac{\sqrt{2}}{\sqrt{|h|}}}{|h|} \right) \]
\[\quad - \frac{\sqrt{\pi}}{g \sqrt{|h|}} \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\} \left[\Phi (\alpha_{1,0}) - \Phi \left(\sqrt{|h|} \left(\delta_1 + \frac{\alpha_{1,0}}{\sqrt{|h|}} \right) \right) \right] \]
\[= \mu_{\phi}^L + \frac{\sqrt{\pi}}{g \sqrt{|h|}} \left[\exp \left\{ \frac{1}{|h|} \right\} \Phi (-\delta_1^L) - \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\} \Phi (-\delta_1^L) \right] \]

where
\[\delta_1^L = \delta_1 \quad \delta_2^L = \sqrt{|h|} \left(\delta_1^L + \sqrt{\frac{2}{|h|}} \right) \quad \delta_3^L = \delta_2^L + g \frac{\sqrt{|h|}}{|h|} . \]

When \(U \sim \text{Laplace}\left(0, \frac{1}{\sqrt{2}}\right) \), its cumulative distribution function given by,
\[F_U (x) = \frac{1}{2} \left[1 + \text{sign}(x) \left(1 - \exp \left\{ -\sqrt{\frac{2}{|h|}} |x| \right\} \right) \right] , \quad (A4) \]

where \(\text{sign}(\cdot) \) denote the signum function. On the other hand, for the last term of the expression (A1) we have \(\kappa < 0 \) so that \(\delta_1^L > 0 \). Thus,
\[B \kappa \left[1 - F_U (-\delta_1^L) \right] = B \kappa \left(1 - \frac{1}{2} e^{-\sqrt{2} \delta_1^L} \right) \]
\[I_3 = K - A - B \kappa \frac{\sqrt{|h|}}{2} \exp \left\{ -\sqrt{2} \delta_1^L \right\} . \]

Finally, we replace \(I_1, I_2, I_3 \) in the expression (A1), to get,
\[e^{\nu^T} C_i (K) = A + \mu_{\phi}^L - K + B \kappa \frac{\sqrt{|h|}}{2} \exp \left\{ -\sqrt{2} \delta_1^L \right\} \]
\[\quad + B \frac{\sqrt{\pi}}{g \sqrt{|h|}} \left[\exp \left\{ \frac{1}{|h|} \right\} \Phi (-\delta_2^L) - \exp \left\{ \frac{\alpha_{1,0}^2}{2} \right\} \Phi (-\delta_3^L) \right] . \]

Since \(\mathbb{E}[X_T] = A + B \mu_{\phi}^L \), we arrive at,
Option pricing based on the generalised Tukey distribution

\[e^{rt} C_t(K) = \mathbb{E}[X_T] - K + \frac{B}{2} \kappa \exp \left\{ -\sqrt{\delta_t^G} \right\} + \frac{B\sqrt{\pi}}{g(\delta_t^G)} \exp \left\{ \frac{1}{(\delta_t^G)} \right\} \Phi \left\{ -\delta_t^G \right\} - \exp \left\{ \frac{\alpha_t^{2,0}}{2} \right\} \Phi \left\{ -\delta_t^G \right\}. \]

Thus, we obtain the formula (26) for valuation of a European call option. Similarly, the expression (27) for an European put option can be derived.

Appendix 2

Proof for the formulas of price of options under asymmetric distributions

If in the expression (A1) we assume \(h = 0 \), then we get,

\[\mathbb{E}[(A + BY - K)_+] = B \mathbb{E}[(Y - \kappa)_+] = B \int_{-\infty}^{\infty} y g(y) dy - \kappa B \left[1 - F_{g,h}(\kappa) \right] \]

where \(F_{g,h}(\cdot) \) is given in (5) and \(\kappa = \frac{K - A}{B} \). We assume that \(g \neq 0 \) and using (2), (5) and (40) we obtain,

\[e^{rt} C_t(K) = \frac{B}{g} \int_{-\delta_t^G}^{\infty} (e^{gu} - 1) f(u) du - \kappa B \left[1 - F_U(\delta_t^L) \right] \]

\[= \frac{\mathbb{E}(X_T) - \theta}{M_U(g)} \int_{-\delta_t^L}^{\infty} e^{gu} f(u) du - (K - \theta) F_U(\delta_t^L), \]

where

\[\delta_t^L = -T^{-1}_g(\kappa) = \frac{1}{g} \ln \left[\frac{\mathbb{E}(X_T) - \theta}{M_U(g)(K - \theta)} \right]. \]

Use of Esscher transform yields,

\[e^{rt} C(K) = \left(\mathbb{E}(X_T) - \theta \right) \left[1 - F_U(\delta_t^L; g) \right] - (K - \theta) F_U(\delta_t^L), \]

(A5)

where

\[\overline{F}_U(x; g) = \frac{1}{M_U(g)} \int_{-\infty}^{x} e^{gw} f_U(w) dw. \]

(A6)

When \(g \) goes to 0, \(\overline{F}_U(x; 0) = F_t(x) \). Thus, we obtain the formula (43) for valuation of an European call option and similarly the expression (44) can be obtained for an European put option.

- When \(U \sim N(0, 1) \), the moment generating function of \(U \) is

\[M_U(g) = \exp \left\{ \frac{1}{2} g^2 \right\}. \]
Substituting the above in (A6) yields,
\[
\Phi(x; g) = e^{\frac{1}{2}g^2} \int_{-\infty}^{x} e^{w^2} \varphi(w) dw
\]
\[
= e^{\frac{1}{2}g^2} \int_{-\infty}^{x} \exp \left(-\frac{1}{2}(w-g)^2 + \frac{1}{2}g^2 \right) dw = \Phi(x-g).
\]
Thus, (A5) reduces to:
\[
e^{ct} C_t (K) = (\mathbb{E}[X_T] - \theta) \Phi \left(g + \delta^{LS}_t \right) - (K - \theta) \Phi \left(\delta^{LS}_t \right)
\]
\[
= (\mathbb{E}[X_T] - \theta) \Phi \left[g + \frac{1}{g} \ln \left(\frac{\mathbb{E}[X_T] - \theta}{(K - \theta)e^{\frac{1}{2}g^2}} \right) \right]
\]
\[
- (K - \theta) \Phi \left[\frac{1}{g} \ln \left(\frac{\mathbb{E}[X_T] - \theta}{(K - \theta)e^{\frac{1}{2}g^2}} \right) \right].
\]
Making the substitutions,
\[
d_1^* = \frac{1}{g} \ln \left(\frac{\mathbb{E}[X_T] - \theta}{K - \theta} \right) + \frac{g}{2} \quad d_2^* = d_1^* - g,
\]
in (A5), we have,
\[
e^{ct} C_t (K) = \left(\mathbb{E}[X_T] - \theta \right) \Phi \left(d_1^* \right) - (K - \theta) \Phi \left(d_2^* \right).
\]
Similarly, for an European put option we obtain,
\[
e^{ct} P_t (K) = (K - \theta) \Phi \left(-\delta^{LS}_t \right) - (\mathbb{E}[X_T] - \theta) \Phi \left(-\delta^{LS}_t + g \right)
\]
\[
= (K - \theta) \Phi \left(-d_1^* \right) - (\mathbb{E}[X_T] - \theta) \Phi \left(-d_1^* \right).
\]

- When \(U \sim \text{Laplace} \left(0, \frac{\sqrt{2}}{2} \right) \) and \(0 < g < \frac{\sqrt{2}}{n} \), its cumulative distribution function is given by:
\[
F_U (x) = \frac{1}{2} \left[1 + \text{sign}(x) \left(1 - \exp \left(-\sqrt{2} |x| \right) \right) \right].
\]

Since
\[
M_U (g) = \frac{2}{2-g^2},
\]
(A6) yields,
\[\overline{F}_U(x; g) = \frac{2 - g^2}{2} \sqrt{\frac{2}{\pi}} \int_0^x e^{\sqrt{2}w} e^{-\sqrt{2}y} dw \]

\[= \begin{cases}
\frac{\sqrt{2} - g \sqrt{2}}{2} \exp\left\{(g + \sqrt{2})x\right\} & \text{if } x < 0; \\
1 - \frac{\sqrt{2} + g \sqrt{2}}{2} \exp\left\{(g - \sqrt{2})x\right\} & \text{if } x \geq 0.
\end{cases} \]

As \(\kappa < 0 \) implies \(\delta_{1LS} > 0 \) and conversely, we have,

\[\overline{F}_U(-\delta_{1LS}; g) = \begin{cases}
\frac{1}{2 + \sqrt{2}g} \frac{K - \theta}{\sqrt{2} + g} \exp\{-\sqrt{2}\delta_{1LS}\} & \text{if } \delta_{1LS} > 0; \\
1 - \frac{1}{2 - \sqrt{2}g} \frac{K - \theta}{\sqrt{2} - g} \exp\{\sqrt{2}\delta_{1LS}\} & \text{if } \delta_{1LS} \leq 0.
\end{cases} \]

If \(\kappa < 0 \), (A5) represents the value of European call which can be expressed as:

\[e^{\rho T} C(K) = \mathbb{E}(X_T) - K + \frac{g}{2} \frac{K - \theta}{\sqrt{2} + g} \exp\{-\sqrt{2}\delta_{1LS}\}, \quad (A11) \]

and if \(\kappa \geq 0 \) (A5), results in

\[e^{\rho T} C(K) = \frac{g}{2} \frac{K - \theta}{\sqrt{2} - g} \exp\{\sqrt{2}\delta_{1LS}\}. \quad (A12) \]

- When \(U \sim \text{Logistic}(0, \lambda^{-1}) \), \(0 < g < \frac{\lambda}{n} \) and \(\lambda = \frac{n}{\sqrt{3}} \), the cumulative distribution function is given by:

\[F_U(x) = \frac{1}{2} \left[1 + \tanh\left(\frac{\lambda}{2} x\right) \right]. \quad (A13) \]

As

\[M_U(g) = \sqrt{3} g \csc\left(\sqrt{3} g \right), \]

we replace the moment generating function in (A6), to get

\[1 - \overline{F}_U(x; g) = \frac{1}{\sqrt{3} g} \sin\left(\sqrt{3} g \right) \frac{\lambda}{4} \int_0^\lambda e^{\sqrt{2}w} \left[\sec h\left(\frac{\lambda}{2} w\right) \right]^2 dw. \]

To evaluate the integral, we use the change of variable

\[u = e^{-\sqrt{2}w}, \quad du = -\sqrt{2}e^{-\sqrt{2}w} dw, \]

to obtain
This explicit expression for the integral was found by using Formula (3.194) from Gradshteyn and Ryzhik (2000). In this case, the expression (A5) that represents the value of European call can be expressed as:

\[e^{rt} C(K) = (K - \theta) \left[\frac{e^{\frac{g}{\lambda}}}{1 - g / \lambda} \right] F_1 \left(2, 1 - \frac{g}{\lambda}, 2 - \frac{g}{\lambda}, -e^{\frac{g}{\lambda}} \right) - \frac{1}{2} \left[1 + \tanh \left(\frac{\delta_{LS}}{2} \right) \right]. \]

Similarly, the expression for an European put option is given by:

\[e^{rt} P(K) = \frac{(K - \theta)}{2} \left[1 - \left(1 + \frac{g}{\lambda} \right) \right] F_1 \left(1, \frac{g}{\lambda}, 1 + \frac{g}{\lambda}, -e^{\frac{g}{\lambda}} \right) + \frac{g}{\lambda} e^{-\frac{g}{\lambda}} e^{\frac{g}{\lambda}} F_1 \left(1, 1 + \frac{g}{\lambda}, 2 + \frac{g}{\lambda}, -e^{\frac{g}{\lambda}} \right). \] (A14)

- When \(U = \text{sech} \left(0, \frac{2}{\pi} \right) \) and \(0 < g < \frac{\pi}{2\eta} \), its cumulative distribution function is given by:

\[F_U(x) = 1 - \frac{2}{\pi} \arctan \left(\exp \left(-\frac{\pi}{2} x \right) \right). \] (A15)

Replacing the moment generating function of \(U \),
\[M_U(g) = \sec(g), \]
in (6.6), we have

\[1 - F_U(x, g) = \frac{\cos(g)}{2} \int_x^e \sec \left(\frac{\pi}{2} w \right) dw = \cos(g) \int_x^e \frac{e^{\frac{\pi}{2}w}}{1 + e^{\frac{\pi}{2}w}} dw. \]

Making the change of variable,
\[z = e^{-tw}, \quad dz = -\pi e^{-tw} dw, \]
and using the table of Integrals [Gradshteyn and Ryzhik, (2000); (3.194)], we obtain,

\[1 - F_U(x, g) = \frac{1}{\pi} \cos(g) \int_0^{\infty} \frac{e^{-z} z^{\mu - 1}}{1 + z} dz = \frac{2 \cos(g)}{\pi - 2g} e^{-\mu \frac{g}{2}} F_1 \left(1, \mu; 1 + \mu; -e^{-\mu \frac{g}{2}} \right), \]
where $\mu = \left(\frac{1}{2} - \frac{g}{\pi}\right)$. Thus,

$$1 - F_U(-\theta LS; g) = \frac{2e^{-\theta LS}}{\pi \theta - 2g} \cdot F_\mu \left(1 + \frac{\theta}{\pi} - e^{-\theta LS} \right).$$

Substituting the above expression in (A5) and simplifying we get,

$$e^{\text{rt}} C_t(K) = \frac{2(K - \theta) e^{\pi LS}}{\pi - 2g} \cdot F_\mu \left(1 - \frac{g}{\pi} + \frac{3g}{\pi} - e^{\pi LS} \right) - 2(K - \theta) \pi \theta - e^{\pi LS} \arctan \left(e^{\pi LS} \right).$$

Similarly, the expression for an European put option is given by:

$$e^{\text{rt}} P_t(K) = (K - \theta) \left[1 - \frac{2}{\pi} \pi \theta - e^{\pi LS} \arctan \left(e^{\pi LS} \right) - 2e^{\pi LS} + 2g \right] \cdot F_\mu \left(1 + \frac{g}{\pi} + \frac{3g}{\pi} - e^{\pi LS} \right).$$

- When $U = \text{csch} \left(0, \frac{\sqrt{2}}{\pi}\right)$ and $0 < g - \frac{\pi}{\sqrt{2}n}$, its cumulative distribution function is given by:

$$F_u(x) = 1 - \frac{1}{\pi^2} \left[2Li_2 \left(\tanh \left(\frac{\pi x}{2 \sqrt{2}} \right) \right) - 2Li_1 \left(- \tanh \left(\frac{\pi x}{2 \sqrt{2}} \right) \right) - \sqrt{2} \pi x \ln \left(\tanh \left(\frac{\pi x}{2 \sqrt{2}} \right) \right) \right].$$

Use of the moment generating function of U,

$$M_U(g) = \sec^2 \left(\frac{g}{\sqrt{2}} \right),$$

in (A6) yields
\[1 - F_U(x; g) = \frac{\sqrt{2}}{\pi} \cos^2\left(\frac{g}{\sqrt{2}}\right) \left[x \int_0^{\exp(-\sqrt{2}\pi)} \frac{z^{g\frac{1}{2}}}{1-z} dz \\
+ \int_0^{\infty} \left(\exp(-\sqrt{2}\pi) \right) \frac{z^{g\frac{1}{2}}}{1-z} dz dw \right] \\
= \frac{\sqrt{2}}{\pi} \cos^2\left(\frac{g}{\sqrt{2}}\right) \left[x e^{\left(\frac{g}{\sqrt{2}}\right)^2} \ _2F_1\left(1, \frac{1}{2} - \frac{g}{\sqrt{2}\pi}, \frac{3}{2}, \frac{g}{\sqrt{2}\pi} e^{-\sqrt{2}\pi} \right) \\
+ \int_0^{\infty} e^{\left(\frac{g}{\sqrt{2}}\right)^2} \ _2F_1\left(1, \frac{1}{2} - \frac{g}{\sqrt{2}\pi}, \frac{3}{2}, \frac{g}{\sqrt{2}\pi} e^{-\sqrt{2}\pi} \right) dw \right], \]

Making the following change of variable,
\[z = e^{-\sqrt{2}\pi} \quad dz = -\sqrt{2}e^{-\sqrt{2}\pi} dw, \]
we obtain
\[1 - F_U(x; g) = \frac{2\cos^2\left(\frac{g}{\sqrt{2}}\right)}{\pi - g} \left[x e^{\left(\frac{g}{\sqrt{2}}\right)^2} \ _2F_1\left(1, \frac{1}{2} - \frac{g}{\sqrt{2}\pi}, \frac{3}{2}, \frac{g}{\sqrt{2}\pi} e^{-\sqrt{2}\pi} \right) \\
+ \frac{1}{\sqrt{2}\pi} \left(\exp(-\sqrt{2}\pi) \right) \frac{z^{g\frac{1}{2}}}{1-z} \ _2F_1\left(1, \frac{1}{2} - \frac{g}{\sqrt{2}\pi}, \frac{3}{2}, \frac{g}{\sqrt{2}\pi} \right) dz \right] \\
= \frac{2e^{xx}}{\pi - g \sec^2\left(\frac{g}{\sqrt{2}}\right)} \left[x \ _2F_1\left(1, \frac{1}{2} - \frac{g}{\sqrt{2}\pi}, \frac{3}{2}, \frac{g}{\sqrt{2}\pi} e^{-\sqrt{2}\pi} \right) \\
+ \frac{1}{\pi - g} \ _2F_1\left(1, \frac{1}{2} - \frac{g}{\sqrt{2}\pi}, \frac{3}{2}, \frac{g}{\sqrt{2}\pi} e^{-\sqrt{2}\pi} \right) \right]. \]

Thus, the value of European call can be expressed as:
Option pricing based on the generalised Tukey distribution

\[e^{rT} C_t(K) = \frac{2(K - \theta)}{\pi} \left(\frac{\theta}{\sqrt{2}} \right)^{\frac{\delta^{LS}}{2 \pi}} \left[-\delta^{LS} _2 F_1 \left(\frac{1, 1, 2}{2}, \frac{g}{\sqrt{2 \pi}}, \frac{3}{2}, \frac{g}{\sqrt{2 \pi}}, e^{2 \theta \gamma^{LS}} \right) \\
+ \frac{1}{\sqrt{2}} _2 F_2 \left(\frac{1, 1, 2}{2}, \frac{g}{\sqrt{2 \pi}}, \frac{g}{\sqrt{2 \pi}}, \frac{3}{2}, e^{2 \theta \gamma^{LS}} \right) \\
- \frac{K - \theta}{\pi} \left[\text{Li}_2 \left(-\tan \left(\frac{\pi \delta^{LS}}{2 \sqrt{2}} \right) \right) - 2 \text{Li}_2 \left(\tan \left(\frac{\pi \delta^{LS}}{2 \sqrt{2}} \right) \right) \\
+ \sqrt{2 \pi \delta^{LS}} \ln \left(-\tan \left(\frac{\pi \delta^{LS}}{2 \sqrt{2}} \right) \right) \right]. \]
A generalization of Tukey’s $g − h$ family of distributions

J.A. Jiméneza, V. Arunachalamb and G.M. Sernac

a Department of Mathematics, Universidad Nacional de Colombia, Bogotá, Colombia.
b Department of Statistics, National University of Colombia, Bogotá, Colombia.
c Department of Business Studies, University of Alcalá de Henares, España.

a josajimenezm@unal.edu.co, b varunachalam@unal.edu.co, c gregorio.serna@uah.es

A new class of distribution function based on the symmetric densities is introduced, these transformations also produce nonnormal distributions and its pdf and cdf can be expressed in parametric form. This class of distributions depend on the two parameters, namely g and h which controls the skewness and the elongation of the tails, respectively. This class of skewed distributions is a generalization of Tukey’s $g − h$ family of distributions.

In this paper, we calculate a closed form expression for the density and distribution of the Tukey’s $g − h$ family of generalized distributions, which allows us to easily compute probabilities, moments and related measures.

Keywords: Tukey’s $g − h$ family of distributions, generalized error distribution, Lambert’s function, Fourier transform.

MSA 2010: 60E05, 62E15

1. Introduction

On many occasions, statistical data show asymmetry, indicating some kind of skewness. This is of the case of actuarial and financial data, which have characteristic asymmetrically distributed structures with extreme values yielding heavier tails. For example, the probability distributions of financial asset returns are not normally distributed, but usually have asymmetry and leptokurtosis. The most important and useful characteristic of the Tukey’s $g − h$ family of distributions is that it covers most of the pearsonian family of distributions, and also can generate several known distributions, for example lognormal, Cauchy, Exponential, Chi-squared (see Martínez & Iglewicz (1984)). Tukey’s $g − h$ family of distributions has been used in the context of statistical, simulation studies that include such topics as financial markets Badrinath & Chatterjee (1988), Mills (1995), and Badrinath & Chatterjee (1991) have used the g and h to model the return on a stock index, also the return on shares in several markets. Dutta & Babbel (2004) showed that the skewed and leptokurtic behavior of LIBOR was modeled effectively using the distribution $g − h$. Dutta & Babbel (2005) used g and h to model interest rates and options on interest rates, while Dutta & Perry
(2007) used the $g - h$ to estimate operational risk; Tang & Wu (2006) studied the portfolio management. Jiménez & Arunachalam (2011) provided the explicit expressions of skewness and kurtosis for VaR and CVaR calculations. They propose the use of Tukey’s classical g and h transformations applied to the normal distribution to capture these distributional features.

In this paper, we propose a generalization of Tukey’s $g - h$ family of distributions, when the standard normal variate is replaced by a continuous random variable U with mean 0 and variance 1. The attraction of this family of distribution is that from a symmetric variate with probability density function (pdf), a large class of distributions can be generated with the parameters g and h which controls the skewness and the elongation of the tails. This new class of distribution allows us to models with large kurtosis measures and will useful in financial and other application in asymmetrical distributions.

The paper is organized as follows: Section 2 presents the Tukey’s $g - h$ family of generalized distributions. Section 3 presents its statistical properties: pdf, cumulative distribution function (cdf), expressions for the nth moment and quantile-based measures of skewness and kurtosis are derived. Section 4 introduces very briefly the generalized distribution and its moments. Section 5 explains the adjustment methodology based on real data, i.e., we demonstrate how the $g - h$ can be used to simulate or model combined data sets when only the mean, variance, skew, and kurtosis associated with the underlying individual data sets are available. Finally, conclusion are presented.

2. Tukey’s $g - h$ family of generalized distributions

Tukey (1977) introduced a family of distributions by two nonlinear transformations called the $g - h$ distributions, which is defined by

$$ Y = T_{g,h}(Z) = \frac{1}{g} \exp\{gZ\} - 1 \exp\{hZ^2/2\} \quad \text{with } g \neq 0, h \in \mathbb{R} \quad (2.1) $$

where the distribution of Z is standard normal. When these transformations are applied to a continuous random variable normalized U, i.e., with mean 0 and variance 1, such that its pdf $f_U(\cdot)$ is symmetric about the origin and cdf $F_U(\cdot)$, the transformation $T_{g,h}(U)$ is obtained, which henceforth will be termed Tukey’s $g - h$ generalized distribution:

$$ Y = T_{g,h}(U) = \frac{1}{g} \exp\{gU\} - 1 \exp\{hU^2/2\} \quad \text{with } g \neq 0, h \in \mathbb{R}. \quad (2.2) $$

The parameters g and h represent the skewness and the elongation of the tails of the Tukey’s $g - h$ generalized distribution, respectively.

In this paper, for $h \neq 0$, we assume that the random variable U has a Generalized Error Distribution of parameter α, denoted $U \sim GED(\alpha)$, with pdf given by

$$ f_U(u, \alpha) = \frac{1}{2\lambda \Gamma(\alpha + 1)} \exp\left\{-\left|\frac{u}{\lambda}\right|^\alpha\right\}, \quad u \in \mathbb{R}, 0 < \alpha \leq 1, \quad (2.3) $$

where $\lambda = \sqrt{\frac{\Gamma(\alpha)}{\Gamma(3\alpha)}}$ and $\Gamma(\cdot)$ is the gamma function, α is a tail-thickness parameter. When $\alpha = \frac{1}{2}$ then $U \sim N(0, 1)$ and when $\alpha = 1$ then $U \sim \text{Laplace} \left(0, \frac{\sqrt{2}}{2}\right)$, which are symmetric with standardized skewness of zero and standardized kurtosis of 3 and 6, respectively. Also, we present for $h = 0$ five special cases of the Tukey’s $g - h$ distributions, when $U \sim GED\left(\frac{1}{2}\right)$, $U \sim GED(1)$, $U \sim \text{Logistic} \left(0, \frac{\sqrt{3}}{\pi}\right)$, the hyperbolic secant (HyperSec) and the hyperbolic cosecant (HyperCsc).
A generalization of Tukey’s $g-h$ family of distributions

When we assume $h = 0$ in (2.2) the Tukey’s $g-h$ generalized distribution reduces to

$$T_{g,0}(U) = \frac{1}{g} (\exp(gU) - 1) \quad (2.4)$$

which is said to be Tukey’s g generalized distribution. When $U \sim \text{GED} \left(\frac{1}{2} \right)$ its distribution also known as the family of lognormal distributions, because they have a lengthening of the tails than the standard normal distribution and they are skewed as well.

Similarly, when g goes to 0 the Tukey’s $g-h$ generalized distribution is given by

$$T_{0,h}(U) = U \exp \left\{ hU^2/2 \right\} \quad (2.5)$$

known as the Tukey’s h generalized distribution. This distribution has the characteristic of being symmetrical but with tails heavier than the distribution of a random variable U with increasing value of the parameter h.

If we wish to model an arbitrary random variable X using the transformation given in (2.2), we introduce two new parameters, A (location) and B (scale) and propose the following model

$$X = A + BY \quad \text{with} \quad Y = T_{g,h}(U). \quad (2.6)$$

We must estimate four parameters that satisfy either of the following relationships:

$$x_p = A + B y_p, \quad \text{and} \quad x_{1-p} = A - B \exp \{-g u_p\} y_p. \quad (2.7)$$

where $p > 0.5$ and x_p is the p-th quantile of the random variable X, such that

$$x_p = \inf \{ x | P[X < x] > p \} = \sup \{ x | P[X > x] < p \}.$$

Quantile p-value is the median, quartiles, eighth digit. Hoaglin et al. (1985) refer to them as the letter values, respectively, for the M (median), F (fourths), E (eighths), etc. The estimation of parameters of Tukey’s $g-h$ family of generalized distributions can be obtained using the method of moments Majumder & Ali (2008) or with the method of quantiles proposed by Hoaglin (1985).

3. Statistical properties of the Tukey’s $g-h$ family

In this section we discuss the statistical properties Tukey’s $g-h$ family of generalized distributions.

3.1. Density function

In Jiménez (2004) using the inverse function theorem provides the following relation

$$\left(F_U^{-1} \right)' (F_U (u_p)) = \frac{d}{dp} u_p = \frac{1}{F_U'(u_p)} = \frac{1}{f_U(u_p)} \quad (3.1)$$

where p is the only number that satisfies $F_U(u_p) = p$ and $f_U(\cdot)$ is the pdf of the continuous random variable U. The pdf for the Tukey’s $g-h$ generalized distribution is obtained by using the following result

$$t_{g,h}(y_p) = \frac{f_U(u_p)}{T_{g,h}'(u_p)} \quad \text{whenever} \quad |h| u_p \frac{e^{-gu_p} - 1}{g} < 1, \quad (3.2)$$

where y_p and u_p denote the p-th quantile of the transformation $Y = T_{g,h}(U)$ and the continuous random variable U, respectively. From equation (2.7) and using the expression (3.1) (Jiménez &
Martinez (2006) obtained the pdf for the random variable X as follows:

$$f_X(x_p) = f_X(A + By_p) = \frac{1}{|B|} t_{g,h}(y_p).$$

(3.3)

The parameter g controls the skewness with positive values of g generating positive skewness and negative values generating negative skewness and $g = 0$ corresponds to symmetry.

3.2. Cumulative distribution function

We now proceed to find the cdf of the Tukey’s $g - h$ family of generalized distributions, denote by $F_{g,h}(y)$. The following equality can be easily verified:

$$\int_a^b t_{g,h}(u) \, du = \int_{T_{g,h}^{-1}(a)}^{T_{g,h}^{-1}(b)} f_U(v) \, du = F_U\left(T_{g,h}^{-1}(b)\right) - F_U\left(T_{g,h}^{-1}(a)\right),$$

(3.4)

where $T_{g,h}^{-1}(\cdot)$ is the inverse of the transformation given in (2.2) and $F_U(\cdot)$ is the cdf of the continuous random variable U.

There is no explicit form for the inverse of the transformation of $T_{g,h}(U)$. However we get the inverse transformation when $h = 0$ or $g = 0$ as given below,

- If $h = 0$ then $T_{g,0}(U)$ is given by (2.4) and

 $$T_{g,0}^{-1}(y) = \frac{1}{g} \ln(1 + gy), \quad gy > -1.$$

 (3.5)

- If $g = 0$ then $T_{0,h}(U)$ is given by (2.5), it must be

 $$hY^2 = h[T_{0,h}(U)]^2 = hU^2 \exp\{hU^2\},$$

 (3.6)

 the expression (3.6) is of the form $u = w \exp\{w\}$, where $w = W(z)$ is the Lambert’s function. Then the solution of (3.6) is given by

 $$hU^2 = W(hy^2) \quad \Rightarrow \quad T_{0,h}^{-1}(y) = \sqrt{\frac{1}{h} W(hy^2)}.$$

 (3.7)

The basic properties of the function $W(z)$ are given in Olver et al. (2010).

Though the inverse of the transformation of $T_{g,h}(U)$ cannot be evaluated analytically, it can be evaluated numerically.

3.3. Measures of skewness and kurtosis

Since the transformation given in (2.2) is simply a quantile-based distribution, we use quantile-based measures of skewness (SK) and kurtosis (KR). For $0.5 < p < 1$ the measure proposed by Hinkley
A generalization of Tukey’s $g - h$ family of distributions (1975) is given by

$$SK_2(p) = \frac{UHS_p/LHS_p - 1}{UHS_p/LHS_p + 1} = \frac{\exp \{ gu_p \} - 1}{\exp \{ gu_p \} + 1} = \tanh \left\{ \frac{g}{2} u_p \right\},$$

where $UHS_p = x_p - x_{0.5}$ and $LHS_p = x_{0.5} - x_{1-p}$, denote the p-th upper half-spread and lower half-spread, respectively (Hoaglin et al. (1985)). Note that this expression only depends on the parameter g. For fixed p one can have values of $SK_2(p)$ varying values of g as is illustrated in Figure 1.

![Coefficient of skewness for $p = 0.975$](image)

Fig. 1. Measure of skewness $SK_2(p)$

When $U \sim GED\left(\frac{1}{2}\right)$ we use the measure of skewness given in Groeneveld & Meeden (1984) to obtain

$$SK_3 = \frac{1 - \exp \left\{ -\frac{1}{2} \frac{g^2}{1-h} \right\}}{2\Phi\left(\frac{g}{\sqrt{1-h}}\right) - 1} = \frac{1 - \exp \left\{ -\frac{1}{2} \frac{g^2}{1-h} \right\}}{\tanh \left\{ \sqrt{\frac{2}{\pi}} \frac{g}{\sqrt{1-h}} \right\}},$$

Here we use the expression given in Tocher (1964). Note that this last expression depends on two parameters g, h which is zero when $g = 0$. Also Groeneveld & Meeden (1984) present four properties that any reasonable coefficient of skewness must satisfy.

Furthermore, assuming that $U \sim GED\left(\frac{1}{2}\right)$ measure of kurtosis presented in Hogg (1974) we would read

$$KR_2(p; q) = \frac{\overline{U_p - L_p}}{\overline{U_q - L_q}},$$

where

$$\overline{U_s - L_s} = \frac{1}{s} \left[\mu_{g,h} \Phi(\delta_2s) + \frac{\Phi(\delta_2s) - \Phi(\delta_1s)}{(1 - h)(\delta_{2s} - \delta_{1s})} - \mu_{g,h} \Phi(\delta^*_2s) + \frac{\Phi(\delta^*_2s) - \Phi(\delta^*_1s)}{(1 - h)(\delta^*_{2s} - \delta^*_{1s})} \right] = \mu_{g,h} \Phi(\delta_2s) - \Phi(\delta^*_2s) + \frac{1}{s} \left[\frac{\Phi(\delta_2s) - \Phi(\delta_1s)}{\delta_{2s} - \delta_{1s}} + \frac{\Phi(\delta^*_1s) - \Phi(\delta^*_2s)}{\delta^*_{1s} - \delta^*_{2s}} \right].$$

aSK_1 and KR_1 are the standardized values for skewness and kurtosis, respectively.
where
\[\delta_{1s} = \sqrt{1 - h z_s}, \quad \delta_{2s} = \delta_{1s} + \frac{g}{\sqrt{1 - h}}, \quad \delta_{2s}^* = \delta_{1s} - \frac{g}{\sqrt{1 - h}}. \]

Making use of the measure for kurtosis in Crow & Siddiqui (1967) for \(p > q > 0.5 \) we have

\[KR_3(p; q) = \begin{cases} \frac{\sinh(q u_p)}{\sinh(q u_q)} \exp\left\{\frac{h}{2} \left(u_p^2 - u_q^2 \right) \right\} & \text{if } g \neq 0, \\ \frac{u_p}{u_q} \exp\left\{\frac{h}{2} \left(u_p^2 - u_q^2 \right) \right\} & \text{if } g = 0. \end{cases} \]

3.4. Moments of the Tukey’s \(g - h \) family of generalized distribution

The next two propositions spell out the moments of the Tukey’s \(g - h \) family of generalized distributions. The corresponding proofs are given Appendix A.

Proposition 3.1. The \(m \)-th power the Tukey’s \(g - h \) family of generalized distribution is given by

\[Y^m = T_{g, h}^m(U) = \frac{m}{g^{m-1}} \sum_{k=0}^{m-1} (-1)^k \binom{m-1}{k} T_{g, h}(U), \quad m \geq 1, \tag{3.9} \]

where \(\tilde{g} = (m-k)g \) and \(\tilde{h} = mh \).

Proposition 3.2.

Let \(f_U(u) \) and \(F_U(u) \) be the pdf and the cdf, respectively, of a continuous random variable \(U \). If \(F_U'(u) \) is never zero, then \(F_U^{-1}(u) \) is differentiable and satisfies

\[\mu_n' = \mathbb{E}(U^n) = \int_{-\infty}^{\infty} w^n f_U(w) \, dw = \int_0^1 [F_U^{-1}(q)]^n \, dq, \tag{3.10} \]

where \(q \) is the unique value that satisfies \(F_U(u_q) = q \).

Proposition 3.3.

Let the transformation \(Y = T_{g, h}(U) \) be given as in (2.2), then the \(n \)-th moments of the random variable \(Y \) are given by

\[\mu_n' = \begin{cases} \frac{2}{k^{n-1}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \int_0^\infty \cosh(\tilde{g} u) \exp\left\{\frac{1}{2} \tilde{h} u^2 \right\} f_U(u) \, du & \text{if } g \neq 0, \\ [1 + (-1)^n] \int_0^\infty u^n \exp\left\{\frac{1}{2} \tilde{h} u^2 \right\} f_U(u) \, du & \text{if } g = 0. \end{cases} \tag{3.11} \]

where \(\tilde{g} = (n-k)g \) and \(\tilde{h} = nh \).

Proof. Using the expression (3.10) when \(g \neq 0 \) we obtain

\[\mathbb{E}(Y^n) = \int_0^1 Y_q^n \, dq = \int_{-\infty}^{\infty} y^n T_{g, h}(y) \, dy = \int_{-\infty}^{\infty} y^n \frac{f_U(T_{g, h}^{-1}(y))}{T_{g, h}'(T_{g, h}^{-1}(y))} \, dy. \]

Making the following change of variable

\[u = T_{g, h}^{-1}(y) \]

\[du = \frac{dy}{T_{g, h}'(T_{g, h}^{-1}(y))}, \tag{3.12} \]
A generalization of Tukey’s $g − h$ family of distributions

and using the expression (3.9) we have

$$
\mathbb{E}(Y^n) = \frac{n}{g^n} \sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} \int_{-\infty}^{\infty} T_{\tilde{g}, \tilde{h}}(u) f_U(u) du
$$

$$
= \frac{2}{\tilde{g}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \int_{0}^{\infty} \cosh (\tilde{g}u) \exp \left\{ \frac{1}{2} \tilde{h}u^2 \right\} f_U(u) du,
$$

where $\tilde{g} = (n - k) g$ and $\tilde{h} = nh$. In the latter term, we used that $f_U(u)$ is a function symmetrical about the origin.

3.4.1. Special cases of moments

In general, when the continuous random variable U is symmetrically distributed about the origin, then the moment generating function (mgf) can be written as follows

$$
M_U(t) = \mathbb{E} \left(e^{tU} \right) = 2 \int_{0}^{\infty} \cosh (tu) f_U(u) du,
$$

(3.13)

and the characteristic function for the random variable U is given by

$$
\Psi_U(t) = \mathbb{E} \left(e^{itU} \right) = 2 \int_{0}^{\infty} \cos (tu) f_U(u) du,
$$

(3.14)

where i is the imaginary quantity whose value is equal to $\sqrt{-1}$. Since that $f_U(u)$ is an even function, then the Fourier integral representation of $f_U(u)$ may be written as

$$
f_U(u) = \int_{0}^{\infty} A(t) \cos (ut) dt,
$$

with $A(t) = \frac{1}{\pi} \Psi_U(t)$.

Using the Fourier frequency convolution theorem we can write

$$
2 \int_{0}^{\infty} \cos (gt) f_U(t) e^{-\frac{|h|^2}{2}} dt = \tilde{g} \left[f_U(t) \exp \left\{ -\frac{|h|^2}{2} \right\} \right] = \frac{1}{\sqrt{2|h|} \pi} \exp \left\{ -\frac{\tilde{g}^2}{2|h|} \right\} * \tilde{g} \left[f_U(t) \right],
$$

where $*$ denotes convolution. The expression (3.13) allows us to obtain the moments of Tukey’s $g − h$ distribution. However moments of some orders do not exist for a certain range of values of the parameter h, considering that we have the following cases:

1. Supposing that $U \sim GED \left(\frac{1}{h} \right)$ and $h < \frac{1}{n}$, we have

$$
\mathbb{E}(Y^n) = \begin{cases}
\frac{1}{g^n \sqrt{1 - nh}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} M_U \left(\frac{\frac{n-k}{\sqrt{1-nh}} g}{\sqrt{1-nh}} \right) & g \neq 0 \\
\frac{1 + (-1)^n}{1 + (-1)^n} \frac{\Gamma(n)}{\Gamma(n/2)} & g = 0
\end{cases}
$$

(3.15)

where $M_U(t)$ is the mgf of a standard normal random variable and $\Gamma(\cdot)$ is the Gamma function. This expression is consistent with those obtained by Martínez & Iglewicz (1984).
When \(U \sim GED(1) \) and \(h < 0 \), we have \(^b\)

\[
\mu_n = \left\{ \begin{array}{ll}
\frac{1}{g} \sqrt{\frac{\pi}{n|h|}} & \left\{ \sum_{k=0}^{n-1} (-1)^k \binom{n}{k} \right. \\
\exp \left\{ \frac{\beta_{n,k}}{2} \right\} \Phi \left(\beta_{n,k} \right) & + 2(-1)^n e^{\frac{\beta_{n,k}}{2}} \Phi \left(-\frac{\sqrt{2}}{\sqrt{h}} \right) \}
\end{array} \right.,
\]

\(g \neq 0, \quad (3.16) \)

\[
= \frac{1 + (-1)^n}{2 \sqrt{n|h|}} \left(\frac{\pi}{n|h|} \right) e^{\frac{n}{\sqrt{2|h|}}} \sum_{k=0}^{n} \binom{n}{k} (-1)^k \left[\Gamma \left(\frac{k+1}{2} \right) \right.
\]

\[
- \int_0^{\frac{n}{\sqrt{2|h|}}} u^{(k-1)} e^{-u} \, du \],
\]

\(g = 0, \quad (3.19) \)

where \(\alpha_{n,k} \) and \(\beta_{n,k} \) are the larger and smaller roots respectively, of the quadratic equation

\[
n|h|r^2 - 2(n - k) \sqrt{n|h|}g + (n - k)^2 g^2 - 2 = 0. \quad (3.17)\]

Expression (3.16) was wrongly calculated in Klein & Fischer (2002).

From the preceding equations we obtain the expected value \(\mu \) for \(g \neq 0 \):

1. Assumes that \(U \sim GED \left(\frac{1}{2} \right) \). Using the expression (3.15) with \(n = 1 \) for calculated \(\mathbb{E}[Y] \), then we must

\[
\mathbb{E}[Y] = \frac{1}{g \sqrt{1 - h}} \left(e^{\frac{1}{2} \sqrt{2|h|}} - 1 \right). \quad (3.18)\]

2. Assuming in the expression (2.6) that the variable \(U \sim GED(1), \ h < 0 \) and using the expression (3.16) with \(n = 1 \), we obtain

\[
\mu_{L_{n,h}} = \frac{1}{g \sqrt{|h|}} \left[e^{\frac{1}{2} \sqrt{2|h|}} \Phi \left(-\alpha_{1,0} \right) + e^{\frac{1}{2} \sqrt{2|h|}} \Phi \left(\beta_{1,0} \right) - 2 e^{\frac{1}{2} \sqrt{2|h|}} \Phi \left(-\frac{\sqrt{2}}{|h|} \right) \right], \quad (3.19)\]

where \(\alpha_{1,0} \) and \(\beta_{1,0} \) be the larger and smaller roots of the quadratic equation given in (3.17), respectively.

4. The \(g \) generalized distribution

The \(g \) generalized distribution given by equation (2.4) is a nonlinear transform of a continuous random variable \(U \) and is parameterized by \(g \). This subfamily contains distributions whose skewness increases when the value of the parameter \(g \) increases. This subfamily of distributions to help them get to have great importance in the statistical analysis to be a suitable means to study skewed distributions. Its distributional form includes only the parameter \(g \) which fixes the amount and direction of skewness.

\(^b\)Appendix B contains the respective proof of this expression.
Now, we give below an empirical rule for a random variable X which can be expressed as (2.6) with $Y = T_{g,0}(U)$,

$$
\frac{x_p - \theta}{x_{0.5} - \theta} = \frac{\theta - x_{0.5}}{\theta - x_{1-p}} \quad \text{for all} \quad p > 0.5.
$$

(4.1)

In particular, the expression (4.1) is satisfied if

$$
\theta = A - \text{sgn}(g) \frac{B}{|g|},
$$

(4.2)

where $\text{sgn}(\cdot)$ denote the signum function. The constant θ relates to the location and scale parameters, known as “threshold parameter” and was given by Hoaglin et al. (1985). Taking $h = 0$ in expression (3.2) and replacing the expression (3.5) we get that

$$
t_{g,0}(y) = \frac{1}{1 + gy} f_U \left(\frac{\ln(1 + gy)}{g} \right), \quad gy > -1.
$$

(4.3)

Moreover, if we solve for the variable y in equation (2.7) by substituting the expression given in (4.3), we obtain

$$
t_{g,0} \left(\frac{x - A}{B} \right) = f_U \left(\frac{1}{g} \ln \left(1 + \frac{x - A}{B/g} \right) \right) \left[1 + \frac{x - A}{B/g} \right]^{-1}, \quad \frac{x - A}{B/g} > -1
$$

Since $g \in \mathbb{R}$ then

$$
t_{g,0} \left(\frac{x - A}{B} \right) = \begin{cases}
\frac{B}{g} f_U \left(\frac{1}{g} \left(\ln(x - \theta) - \ln \left(\frac{B}{g} \right) \right) \right) & \text{if} \ g > 0 \\
\frac{B}{g} f_U \left(\frac{1}{g} \ln \left(\frac{B}{g} \right) - \ln \left(\theta - x \right) \right) \right) & \text{if} \ g < 0
\end{cases}
$$

(4.4)

where $\frac{B}{g} > 0$, for simplicity and without loss of generality we assume $g > 0$ and we replace the expression (4.2) and if we use the result given in (3.3), which relates the pdf of X and $Y = T_{g,h}(Z)$ on the quantiles, we can rewrite (4.4) as follows

$$
f_X(x) = \frac{1}{g(x - \theta)} f_U \left(\frac{1}{g} \left(\ln(x - \theta) - \mu^* \right) \right), \quad x > \theta.
$$

(4.5)

where $\mu^* = \ln \left(\frac{g}{B} \right)$. We say that the random variable X has a log-symmetric distribution with threshold parameter θ, scale parameter μ^* and shape parameter g, denoted by $X \sim \text{LS}(\mu^*, g, \theta)$. If $\theta = 0$ we denote by $X \sim \text{LS}(\mu^*, g)$. The cdf of the random variable X given by

$$
F_X(x) = F_U \left(\frac{1}{g} \left(\ln(x - \theta) - \mu^* \right) \right), \quad x > \theta.
$$

(4.6)

Expression (4.5) allows us to obtain the following pdf associated with the Tukey’s g function.
4.1. Special cases

(1) If \(U \sim GED \left(\frac{1}{2} \right) \) and \(g \neq 0 \), we have that

\[
fx(x) = \frac{1}{\sqrt{2\pi}g(x-\theta)} \exp \left\{ -\frac{1}{2} \left(\frac{\ln(x-\theta) - \mu^*}{g} \right)^2 \right\},
\]

(4.7)

where \(\mu^* = \ln(\mu_x - \theta) - \frac{1}{2}g^2 \) and \(x > \theta \). Note that when \(\theta = 0 \) the last expression coincides with the pdf of the classic Log Normal random variable. In this case, we say that \(X \) is Log-Normal distributed with three parameters \(\mu_x, g \) and \(\theta \). Many practical applications of this distribution are discussed in the literature, for example, Aitchison & Brown (1963) and Crow & Shimizu (1988).

(2) When \(U \sim GED(1) \) and \(0 < g < \frac{\sqrt{2}}{\pi} \), the resulting distribution is given by the pdf

\[
f_x(x) = \frac{\beta}{2(\varepsilon - \theta)} \left\{ \begin{array}{ll}
\frac{\varepsilon - \theta}{\varepsilon} \beta - 1, & x < \varepsilon \\
\frac{\varepsilon - \theta}{\varepsilon} \beta + 1, & x \geq \varepsilon,
\end{array} \right.
\]

(4.8)

where \(\beta = \frac{\sqrt{2}}{\pi} g \) and \((\varepsilon - \theta) = (\mu_x - \theta) \left(1 - \frac{1}{\beta^2} \right) \). Note again that this expression coincides with the pdf of log-Laplace with three parameters \(\mu_x, g \) and \(\theta \).

(3) If \(U \sim \text{Logistic} \left(0, \lambda^{-1} \right) \), \(0 < g < \frac{1}{\lambda} \) and \(\lambda = \frac{\sqrt{3}}{\pi} g \), then the pdf of \(X \) can be expressed as

\[
f_x(x) = \frac{\pi}{\varepsilon - \theta} \left\{ \frac{\pi x - \theta}{\alpha \varepsilon - \theta} \right\}^{\alpha - 1} \left[1 + \frac{\pi x - \theta}{\alpha \varepsilon - \theta} \right]^{-2\alpha},
\]

(4.9)

where \(\alpha = \frac{1}{2} y (\varepsilon - \theta) = (\mu_x - \theta) \sin(\sqrt{3}g) \). Note that this expression coincides with the pdf of three parameters Log-Logistic \((\mu_x, g \) and \(\theta) \).

Taking the expectation of the linear transformation given in equation (2.6) we obtain

\[
\mathbb{E}(X - \theta) = \frac{B}{g} \mathbb{E}[e^{gU}] = \frac{B}{g} M_U(g) \quad \Rightarrow \quad B = g \frac{\mathbb{E}(X) - \theta}{M_U(g)},
\]

where \(M_U(g) \) is the mgf of the random variable \(U \). The \(n \)th moment of the random variable \(X \) could be obtained using the formula

\[
\mathbb{E}[(X - \mathbb{E}[X])^n] = \mu_n(X) = \exp(n\mu^*) \sum_{k=0}^{n} (-1)^k \binom{n}{k} M_U(g)^k M_U^2(g),
\]

note that these expressions do not depend on the parameter \(\theta \). Thus, the standardized values for skewness and kurtosis corresponding to linear transformation given by equation (2.6) with \(Y = T_{g,0}(U) \) can be expressed as

\[
SK_1(X) = \frac{M_U(3g) - 3M_U(2g)M_U(g) + 2M_U^3(g)}{[M_U(2g) - M_U^2(g)]^{\frac{3}{2}}},
\]

(4.10)

\[KR_1(X) = \frac{M_U(4g) - 4M_U(3g)M_U(g) + 6M_U(2g)M_U^2(g) - 3M_U^3(g)}{[M_U(2g) - M_U^2(g)]^2}.
\]

(4.11)

Note that the above expressions depend only on the parameter \(g \).
The n-th moment of the random variable $X - \theta$ is given by
\[
\mathbb{E}[(X - \theta)^n] = \left(\frac{B}{g} \right)^n M_U(ng). \tag{4.12}
\]
When we rewrite the expression (4.12) and use properties of the mgf, we obtain
\[
\mathbb{E}\left(e^{n \ln(X - \theta)}\right) = M_V(n) = e^{n \ln \left(\frac{B}{g} \right)} M_U(ng) = M_{\ln\left(\frac{B}{g} \right) + gU(n)}, \tag{4.13}
\]
where $V = \ln(X - \theta)$, then $\mathbb{E}(V) = \mu_V = \ln \left(\frac{B}{g} \right)$ and $\text{Var}(V) = \sigma^2_v = g^2$. When the relation (4.1) is satisfied, then $h = 0$ and if we assume that $\theta > x_{\text{min}}$, we can conclude that the value of g is estimated by $g = \text{sgn}(SK_1(X)) \sigma_V$. Here $SK_1(X)$ denote the coefficient of skewness from the variable we want to approximate. The scale parameter is estimated by $B = g \exp\{\mathbb{E}(V)\}$.

4.2. Approximations

We first assume the value of θ to be negligibly small in (4.12) to obtain
\[
\mathbb{E}(X^n) = \left(\frac{B}{g} \right)^n M_U(ng). \tag{4.14}
\]
The above expression allows to obtain the various moments about the origin of the random variable X, when the distribution of U includes the normal, hyperbolic secant, hyperbolic cosecant, Logistic and Laplace, which are all symmetric with standardized skewness of zero.

In (4.14) if we let $U \sim GED \left(\frac{1}{2}\right)$ and $g > 0$, we obtain
\[
\mathbb{E}(X^n) = \left(\frac{B}{g} \right)^n \exp\left\{ \frac{1}{2} n^2 g^2 \right\} = \exp\left\{ n \ln \left(\frac{B}{g} \right) + \frac{1}{2} n^2 g^2 \right\}. \tag{4.15}
\]
This expression coincides with the mgf of a Normal random variable with parameters $\mu = \ln \left(\frac{B}{g} \right)$ and $\sigma = g$. By the uniqueness of the mgf, we conclude that $V = \ln(X) \sim N \left(\ln \left(\frac{B}{g} \right), g \right)$, i.e., V is a Lognormal random variable with parameters $\mu = \ln \left(\frac{B}{g} \right)$ and $\sigma = g$.

Similarly, we show that the relation between the random variables X and U presented in Table 1, for the selected set of well known symmetrical distributions.

<table>
<thead>
<tr>
<th>Distribution of the r.v. U</th>
<th>Parameters</th>
<th>Distribution of the r.v. V</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laplace</td>
<td>μ, a</td>
<td>Log-Laplace</td>
<td>$\ln \left(\frac{B}{g} \right),</td>
</tr>
<tr>
<td>Logistic</td>
<td>μ, a</td>
<td>Logistic</td>
<td>$\ln \left(\frac{B}{g} \right),</td>
</tr>
<tr>
<td>Normal</td>
<td>μ, a</td>
<td>Lognormal</td>
<td>$\ln \left(\frac{B}{g} \right),</td>
</tr>
<tr>
<td>HyperSec</td>
<td>μ, a</td>
<td>LoghyperSec</td>
<td>$\ln \left(\frac{B}{g} \right),</td>
</tr>
<tr>
<td>HyperCsc</td>
<td>μ, a</td>
<td>LoghyperCsc</td>
<td>$\ln \left(\frac{B}{g} \right),</td>
</tr>
</tbody>
</table>

Table 1. Parameters of the pdf of the random variable $V = \ln(X)$.
5. An Illustration

We consider now data concerning the circumference measures (centimeters) taken from the ankle, chest, hip, neck and of 252 adult men. The data have been previously analyzed in Headrick (2010) and are available for download at http://lib.stat.cmu.edu/datasets/bodyfat. The following table presents the statistics for these data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>SK1</th>
<th>KR1</th>
<th>JB test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankle</td>
<td>23.1024</td>
<td>1.6949</td>
<td>2.2417</td>
<td>14.6858</td>
<td>1631.8565</td>
</tr>
<tr>
<td>Chest</td>
<td>100.8242</td>
<td>8.4305</td>
<td>0.6775</td>
<td>3.9441</td>
<td>28.4092</td>
</tr>
<tr>
<td>Hip</td>
<td>99.9048</td>
<td>7.1641</td>
<td>1.4882</td>
<td>10.3002</td>
<td>647.4181</td>
</tr>
<tr>
<td>Neck</td>
<td>37.9921</td>
<td>2.4309</td>
<td>0.5493</td>
<td>5.6422</td>
<td>85.2964</td>
</tr>
</tbody>
</table>

Table 2. Summary Descriptive Statistics

By using the test proposed by Jarque & Bera (1987), the statistics in Table 2 clearly indicate that the distribution of each of the variables cannot be normal random variable. When $U \sim GED\left(\frac{1}{2}\right)$, the g and h parameter estimates result in a fitted distribution matching the sample moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>A</th>
<th>B</th>
<th>g</th>
<th>h</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>SK1</th>
<th>KR1</th>
<th>JB test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankle</td>
<td>22.7282</td>
<td>1.2843</td>
<td>0.5125</td>
<td>0.0376</td>
<td>23.1016</td>
<td>1.6915</td>
<td>2.2417</td>
<td>14.6858</td>
<td>1631.8565</td>
</tr>
<tr>
<td>Chest</td>
<td>99.9523</td>
<td>8.0301</td>
<td>0.2117</td>
<td>0.0082</td>
<td>100.8225</td>
<td>8.4138</td>
<td>0.6775</td>
<td>3.9441</td>
<td>28.4092</td>
</tr>
<tr>
<td>Hip</td>
<td>98.9186</td>
<td>5.7427</td>
<td>0.2933</td>
<td>0.0846</td>
<td>99.9028</td>
<td>7.1498</td>
<td>1.4882</td>
<td>10.3001</td>
<td>647.4181</td>
</tr>
<tr>
<td>Neck</td>
<td>37.8553</td>
<td>2.0760</td>
<td>0.1143</td>
<td>0.0871</td>
<td>37.9918</td>
<td>2.4261</td>
<td>0.5493</td>
<td>5.6422</td>
<td>85.2964</td>
</tr>
</tbody>
</table>

Table 3. Estimation results

When $U \sim GED(1)$, the g and h parameter estimates result in a fitted distribution matching the sample moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>A</th>
<th>B</th>
<th>g</th>
<th>h</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>SK1</th>
<th>KR1</th>
<th>JB test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankle</td>
<td>22.8330</td>
<td>1.5613</td>
<td>0.3349</td>
<td>-0.0273</td>
<td>23.0878</td>
<td>1.6915</td>
<td>2.2417</td>
<td>14.6858</td>
<td>1631.8565</td>
</tr>
<tr>
<td>Chest</td>
<td>100.0895</td>
<td>9.6635</td>
<td>0.1771</td>
<td>-0.0721</td>
<td>100.8069</td>
<td>8.4137</td>
<td>0.6775</td>
<td>3.9441</td>
<td>28.4092</td>
</tr>
<tr>
<td>Hip</td>
<td>99.1886</td>
<td>6.9025</td>
<td>0.2040</td>
<td>-0.0098</td>
<td>99.8867</td>
<td>7.1498</td>
<td>1.4882</td>
<td>10.3001</td>
<td>647.4181</td>
</tr>
<tr>
<td>Neck</td>
<td>37.8884</td>
<td>2.4850</td>
<td>0.0856</td>
<td>-0.0122</td>
<td>37.9914</td>
<td>2.4261</td>
<td>0.5493</td>
<td>5.6422</td>
<td>85.2964</td>
</tr>
</tbody>
</table>

Table 4. Estimation results

Inspection of these tables indicates that both the Normal $g - h$ and Laplace $g - h$ pdfs provide good approximations to the empirical data.

Figures 2 for Hip and Neck, respectively, shows such a histogram and the pdfs indicate that the two transformations will produce similar approximations for this particular set of sample statistics.

Since the value of h for variable Chest when $U \sim GED\left(\frac{1}{2}\right)$ is very small, we assume this parameter equal to zero, to illustrate the process of adjusting using Tukey’s g generalized family of distributions, we assume zero to approximate g by Tukey’s generalized.
A generalization of Tukey’s $g - h$ family of distributions

To pursue elongation in these data, we first verify whether it satisfies the condition given in (4.1). The value of θ turns out to be -66.5955. Letting the parameter h equal to zero, the mean and standard deviation of the variable Z are 5.1193 and 0.04969, respectively. The expression (2.6) reduces to

$$X = \frac{B}{g} \exp\{gU\} + \theta; \quad (5.1)$$

where

$$g = 0.04969 \quad \text{and} \quad B = 8.3088.$$

Figure 3 shows such a histogram and it is evident that the data have a slight degree of skewness to the left, leptokurtic and do not follow the normal distribution.

As shown in Figure 3, there is a marked difference between the empirical distribution of the data (represented by the histogram) and the normal distribution. Tukey’s $g - h$ family of generalized distributions better approximates the empirical.

In order to determine how the fitted distribution agrees with fitted data, we use the methodology described by Hoaglin et al. (1985) to determine the sample quantiles of the form $p = 2^{-k}, k = 1, 2, \ldots, 8$. In Table 5 we present these quantile p—values along with their estimates, calculated using (5.1) by varying the variable U.
Table 5. Observed and estimated values by the expression (5.1) for the heights of Australian athletes

<table>
<thead>
<tr>
<th>p</th>
<th>$X^{(1)}$</th>
<th>$X^{(2)}$</th>
<th>$X^{(3)}$</th>
<th>$X^{(4)}$</th>
<th>$X^{(5)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>83.4</td>
<td>81.0038</td>
<td>76.7796</td>
<td>78.7795</td>
<td>77.6844</td>
</tr>
<tr>
<td>16</td>
<td>85.1</td>
<td>82.3667</td>
<td>79.1386</td>
<td>80.8365</td>
<td>80.0255</td>
</tr>
<tr>
<td>8</td>
<td>86.7</td>
<td>84.0673</td>
<td>82.1685</td>
<td>83.2546</td>
<td>82.7684</td>
</tr>
<tr>
<td>4</td>
<td>88.2</td>
<td>85.6874</td>
<td>84.8543</td>
<td>85.4107</td>
<td>85.1965</td>
</tr>
<tr>
<td>2</td>
<td>89.2</td>
<td>88.2914</td>
<td>88.7569</td>
<td>88.5973</td>
<td>88.7254</td>
</tr>
<tr>
<td>1</td>
<td>92.1</td>
<td>91.3309</td>
<td>92.6691</td>
<td>91.9394</td>
<td>92.2918</td>
</tr>
<tr>
<td>1</td>
<td>94.2</td>
<td>95.0540</td>
<td>96.5453</td>
<td>95.6102</td>
<td>95.9715</td>
</tr>
<tr>
<td>1</td>
<td>99.6</td>
<td>100.5735</td>
<td>100.5883</td>
<td>100.5753</td>
<td>100.5787</td>
</tr>
<tr>
<td>15</td>
<td>105.3</td>
<td>106.2579</td>
<td>104.6864</td>
<td>105.6713</td>
<td>105.2917</td>
</tr>
<tr>
<td>15</td>
<td>115.3</td>
<td>113.6521</td>
<td>112.9997</td>
<td>113.2513</td>
<td>113.0733</td>
</tr>
<tr>
<td>18</td>
<td>118.5</td>
<td>116.5300</td>
<td>117.2418</td>
<td>116.7229</td>
<td>116.9047</td>
</tr>
<tr>
<td>18</td>
<td>119.8</td>
<td>119.0230</td>
<td>121.4055</td>
<td>120.0352</td>
<td>120.6461</td>
</tr>
<tr>
<td>20</td>
<td>121.6</td>
<td>121.1539</td>
<td>125.3393</td>
<td>123.1144</td>
<td>124.1705</td>
</tr>
<tr>
<td>16</td>
<td>128.3</td>
<td>122.8980</td>
<td>128.8264</td>
<td>125.8167</td>
<td>127.2879</td>
</tr>
</tbody>
</table>

The columns of Table 5 provide the following information:

$X^{(1)}$: Sample quantiles.
$X^{(2)}$: Values obtained using equation (5.1) with $U \sim GED(\frac{1}{2})$.
$X^{(3)}$: Values obtained using equation (5.1) with $U \sim GED(1)$.
$X^{(4)}$: Values obtained using equation (5.1) with $U \sim \text{Logistic}(0, \sqrt{3})$.
$X^{(5)}$: Values obtained using equation (5.1) with $U \sim \text{sech}(0, \frac{2}{\pi})$.

Note that these adjustments are satisfactory for the four distributions used in the expression (5.1).

Table 6 summarize the statistical results for the pdf of each estimated $g - h$.

<table>
<thead>
<tr>
<th>Fitted distribution</th>
<th>Mean</th>
<th>Stan. Dev.</th>
<th>SK1</th>
<th>KR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal $g - h$</td>
<td>100.8222</td>
<td>8.3189</td>
<td>0.1426</td>
<td>2.9492</td>
</tr>
<tr>
<td>Laplace $g - h$</td>
<td>100.8194</td>
<td>8.2724</td>
<td>0.3109</td>
<td>5.3597</td>
</tr>
<tr>
<td>Logistic $g - h$</td>
<td>100.8207</td>
<td>8.2891</td>
<td>0.2087</td>
<td>3.8893</td>
</tr>
<tr>
<td>HyperSec $g - h$</td>
<td>100.8199</td>
<td>8.2811</td>
<td>0.2534</td>
<td>4.5306</td>
</tr>
</tbody>
</table>

Table 6. Results for the estimation of Chest taken from 252 men.

These results indicate the importance of selecting a distribution on the $g - h$ transformation, when $U \sim \text{Logistic}(0, \sqrt{3})$ the sample moments are closer to the theoretical moments.
6. Conclusion

This paper presents a generalization of the well-known Tukey’s \(g - h \) family of distributions for fitting skewed data. We calculate explicitly the \(cdf \) and \(pdf \), and also the set of regularity properties obtained with respect to the expected values and variances. We also present a simulation procedure to estimate the value of the parameter \(g \), that is, the standard deviation of the random variable \(\ln(X - \theta) \), when the parameter \(h \) goes to zero. The proposed generalization is also used to generated a large class distributions from a symmetric density of the parameters \(g \) and \(h \) which controls the skewness and the elongation of the tails, respectively.

References

Appendix

Appendix A: Proof of propositions 3.1 and 3.2

Proof. (Proposition 3.1)
We consider the \(m \)-th power of the expression (2.2),

\[
Y^m = \frac{1}{g^m} \sum_{k=0}^{m} \binom{m}{k} (-1)^k \exp \left\{ \tilde{g}U + \frac{1}{2} \tilde{h}U^2 \right\} = \frac{m}{g^{m-1}} \sum_{k=0}^{m-1} \binom{m-1}{k} \frac{(-1)^k}{g} \exp \left\{ \tilde{g}U + \frac{1}{2} \tilde{h}U^2 \right\} + \frac{(-1)^m}{mg} e^{\frac{1}{2} \tilde{h}U^2},
\]

where \(\tilde{g} = (m - k)g \) and \(\tilde{h} = mh \), since \((-1)^m = - \sum_{k=0}^{m-1} \binom{m}{k} (-1)^k \), then

\[
Y^m = \frac{m}{g^{m-1}} \sum_{k=0}^{m-1} \binom{m-1}{k} \frac{(-1)^k}{g} \left[\exp \left\{ \tilde{g}U + \frac{1}{2} \tilde{h}U^2 \right\} - e^{\frac{1}{2} \tilde{h}U^2} \right] = \frac{m}{g^{m-1}} \sum_{k=0}^{m-1} \binom{m-1}{k} \frac{(-1)^k}{g} \left[\exp(\tilde{g}U) - 1 \right] \exp(\tilde{h}U^2/2)
\]

which is the required result.
Proof. (Proposition 3.2)
Suppose that \(u_q \) is the smallest number satisfying \(F_U(u_q) = q \) i.e. \(q \)-th quantile of \(U \), making the change of variable

\[
w = u_q = F_U^{-1}(q)
\]

\[
dw = du_q = \frac{dq}{F_U'(u_q)},
\]

here we use the expression given in (3.1), since \(F_U'(w) = f_U(w) \), and

\[
\lim_{u \to -\infty} F_U(u) = 0 \quad \text{and} \quad \lim_{u \to \infty} F_U(u) = 1,
\]

moreover given that \(f_U(w) \) is a function with domain the real line and counterdomain the infinite interval \([0, \infty)\), we solve for \(dq \) and we obtain

\[
\int_0^1 |F_U^{-1}(q)|^n dq = \int_0^\infty w^n f_U(w) dw.
\]

Appendix B: Proof of formula given in (3.16)
In this Appendix, we present the calculation details of the equation given in (3.16), using the Table I of Fourier transforms (Oberhettinger (1973), of expression (79)) after some calculations and simplifying, we get

\[
2 \int_0^\infty \cos(\tilde{q}t) f_U(t) \exp \left\{ -\frac{|\tilde{q}|^2}{2} t^2 \right\} dt = \sqrt{\frac{\pi}{n|h|}} \left[\exp \left\{ \left(\frac{\sqrt{2} - i \tilde{g}}{\sqrt{2n|h|}} \right)^2 \right\} \Phi \left(\frac{i \tilde{g} - \sqrt{2}}{\sqrt{n|h|}} \right) + \exp \left\{ \left(\frac{\sqrt{2} + i \tilde{g}}{\sqrt{2n|h|}} \right)^2 \right\} \Phi \left(\frac{-i \tilde{g} + \sqrt{2}}{\sqrt{n|h|}} \right) \right],
\]

where \(i \) is the imaginary quantity and \(\Phi(\cdot) \) is the cdf of a standard normal variable, then

\[
2 \int_0^\infty \cosh(\tilde{q}t) f_U(t) e^{-\frac{|\tilde{q}|^2}{2} t^2} dt = \sqrt{\frac{\pi}{n|h|}} \left[\exp \left\{ \left(\frac{\sqrt{2} + \tilde{g}}{\sqrt{2n|h|}} \right)^2 \right\} \Phi \left(\frac{-\tilde{g} + \sqrt{2}}{\sqrt{n|h|}} \right) + \exp \left\{ \left(\frac{\sqrt{2} - \tilde{g}}{\sqrt{2n|h|}} \right)^2 \right\} \Phi \left(\frac{\tilde{g} - \sqrt{2}}{\sqrt{n|h|}} \right) \right].
\]

Substituting the above expression in (3.11) and simplifying we get,

\[
\mu^n_n' = \frac{1}{\tilde{g}n} \sqrt{\frac{\pi}{n|h|}} \sum_{k=0}^n (-1)^k \binom{n}{k} \left[\exp \left\{ \frac{1}{2} \left(\frac{\tilde{g} + \sqrt{2}}{\sqrt{n|h|}} \right)^2 \right\} \Phi \left(\frac{-\tilde{g} + \sqrt{2}}{\sqrt{n|h|}} \right) + \exp \left\{ \frac{1}{2} \left(\frac{\tilde{g} - \sqrt{2}}{\sqrt{n|h|}} \right)^2 \right\} \Phi \left(\frac{\tilde{g} - \sqrt{2}}{\sqrt{n|h|}} \right) \right].
\]

When \(g = 0 \) and \(h < 0 \), we have

\[
\mu^n_n' = \frac{1}{2} \left(-1 \right)^n \left(\frac{\sqrt{2}}{n|h|} \right)^n e^{\frac{\tilde{g}n}{2}} \sum_{k=0}^n \binom{n}{k} (-1)^k \left[\Gamma \left(\frac{k+1}{2} \right) - \int_0^{\frac{1}{n|h|}} u^{k-1} e^{-u} du \right].
\]