Local Actions in Global Context: The Pleistocene-Holocene Transition in Iberia by Sarah B. McClure and Steven Schmitz

On the Edge: Early Holocene Adaptations in Southwestern Iberia by Nuno Ferreira Bicho

Surviving the Holocene: Human Ecological Responses to the Current Interglacial in Southern Valencia, Spain by Alexandra Miller, C. Michael Barton, Oreo Garcia and Joan Bernabeu

El Tossal de la Roca and the Pleistocene-Holocene Transition in the Mediterranean Region of Eastern Spain by Carmen Cacho Quesada and Jesus F. Jordà Pardo

From the Mesolithic to the Neolithic on the Mediterranean Coast of the Iberian Peninsula by Oreo Garcia Puchol, Lluis Molina Balaguer, J. Emili Aura Torassa and Joan Bernabeu Aubán

Human Behavioral Ecology and Climate Change during the Transition to Agriculture in Valencia, Eastern Spain by Sarah B. McClure, C. Michael Barton and Michael A. Jochim

Holocene Vegetation Dynamics in Mediterranean Iberia: Historical Contingency and Climate-Human Interactions by Graciela Gil-Romera, José S. Carrion, Sarah B. McClure, Steven Schmitz and Clive Finlayson

The Late Upper Paleolithic-Mesolithic-Neolithic Transitions in Cantabrian Spain by Lawrence Guy Straus

The Process of Agricultural Colonization by Michael Jochim

Book Reviews
FROM THE MESOLITHIC TO THE NEOLITHIC on the Mediterranean Coast of the Iberian Peninsula

Otero García Puchol, Lluís Molina Balaguer,
J. Emili Aura Tortosa, and Joan Bernabeu Aubán
Departament de Prehistòria i Arqueologia, Universitat de València, Spain.
Email: otero.garcia@uv.es

KEY WORDS: Epipaleolithic, Mesolithic, Neolithic, Paleoecology, Paleoeconomy, Material Culture, Interaction

This paper summarizes early Holocene cultural sequences, economic strategies, and social dynamics on the Mediterranean coast of the Iberian Peninsula. Recent research in the central-southern regions of Valencia provides important diachronic information, particularly for discerning the nature of the shift from a hunter-gatherer lifestyle to agriculture. If biogeographic conditions played a leading role in determining exploitation strategies, then recognizing distinctive social responses is critical for understanding the impact of the changes that occurred.

The scope of the recent literature on the central region of the Mediterranean façade of the Iberian Peninsula is evidence of this area’s importance for understanding the recent prehistory of western Europe. This paper presents a general view of paleoenvironmental, paleoeconomic, and cultural changes and centers on the introduction of agriculture and animal husbandry in the region. We argue for an initial exogenous input tied to the impressed pottery tradition of the western Mediterranean, recognizing different pulses of expansion in space and time that help explain the variability detected among sites (Bernabeu et al. in press). The role of local Mesolithic groups is analyzed in light of data from the natural environment as well as economic, demographic, and territorial dynamics.

Recent excavation and survey in the central Mediterranean region of the Iberian Peninsula has painted a new picture of human settlement from the terminal Pleistocene to the Early and Middle Holocene. Research projects conducted by the University of Valencia and Arizona State University have increased the information available regarding paleoenvironmental, economic, and cultural shifts during a period that witnessed the dissolution of hunter-gatherer societies and the establishment of a production economy. In this paper we outline the general dynamic of land use in this area, centering on the specific chronological interval that begins with the Terminal Pleistocene/Early Holocene and ends with the Middle Holocene (10,500–5,000 cal bc). We focus on two main shifts in human adaptive strategies that occurred during this period: the subsistence dynamics of the hunter-gatherer groups and the introduction of an agricultural economy.

The spatial area of research corresponds to the central portion of the Autonomous Region of Valencia, located in the provinces of Valencia and...
Alicante, Spain. It is a territory full of contrasts, with extensive mountains and valleys bordering a coastal plain of varying width (Figure 1). This relief only rarely exceeds 1,300 m and is furrowed by principal and secondary natural corridors that serve as communication routes between coastal and interior areas. The irregular network of rivers articulates with a series of former river channels and is bordered to the north by the Xúquer River. The Serpis or Alcoi River and its valley are particularly relevant to this discussion. The substantial anthropogenic processes have led to varying degrees of preservation and visibility of the surficial archaeological record (Barton et al. 1999, 2002, 2004; Bernabeu et al. 2000). Pine forest and matarral are the most extensive vegetation regimes in the mountainous areas, while varied dryland (olives, grapes) and irrigated (e.g., oranges) cultivars occupy the interior valleys and the coastal plain.

Various paleoenvironmental studies of the Pleistocene-Holocene transition are available for the area, primarily related to archaeological projects in the Alcoi Valley and its surroundings. Charcoal and palynological data from archaeological deposits in caves and rockshelters dating to the Tardiglacial and Early/Middle Holocene—Cova de Santa Maia, Tossal de la Roca, Abric de la Falguera, Cova de l’Or, and Cova de les Cendres—indicate a series of vegetational oscillations representing a climate amelioration (Badal et al. 1994; Carrión 2002, 2006; Dupré 1988; Gil-Romera et al. 2009; Uzquiano 1990). Increases in temperature and humidity are correlated with the expansion of Mediterranean climax forest, especially oak, in a landscape that was previously more open and dominated by juniper. These transformations have a direct impact on the distribution of resources available for human exploitation. In Mediterranean regions where no significant shift in fauna and vegetation is observed for this period, we expect a redistribution of these resources on a smaller scale. Changes in coastline from the postglacial sea-level rise are equally relevant for the configuration of these new Holocene landscapes. In light of newly published data, current work emphasizes the impact of paleoclimatic pulsations. The 8.2 kya event was a cold spell of short duration, and its biogeographic consequences must still be identified generally as well as on regional and microregional scales (Naughton et al. 2007). This is particularly important for identifying its role in the study area since it coincides with the development of the Geometric Mesolithic and its possible impact in the period immediately preceding the introduction of the food production economy.

THE CULTURAL SEQUENCE

The regional archaeological sequence as it is currently known is based on intensive research that began in the early twentieth century. The depth of research in this area is perhaps a key reason for the great number of identified prehistoric sites, although many of them have not been adequately published. Several of these assemblages, especially cave and rockshelter deposits, are known to date to the Tardiglacial and Holocene (Figure 2; Table 1). We highlight the Epipaleolithic and Mesolithic sites of Cueva de la Cocina (Dos Aguas, Valencia), Abric Tossal de la Roca (Alcalá de la Javada, Alicante), Cova de la Santa Maia (Castell de Castells, Alicante), and Abric de la Falguera (Alcoi, Alicante), and the Early Neolithic sites of Cova de la Sarsa (Bocairent, Valencia), Cova de l’Or (Beniarres, Alicante), Abric de la Falguera (Alcoi, Alicante), Mas d’Ils (Pennagulla, Alicante), and Cova de les Cendres (Moraira-Teulada, Alicante) because of their extensive publications. A number of significant surface assemblages that date to this period are also considered and broaden the study area to include the headwaters of the Serpis or Alcoi River (Barton 2006; Barton et al. 1999, 2002, 2004; Bernabeu et al. 2006; Garcia et al. 2001).

The cultural sequence for this region has recently been revised based on new data. The beginning of the Holocene sequence includes a series of chronologically distinct lithic technological complexes (Aura Tortosa 2001; Aura Tortosa et al. 2006). Some of the detected radiocarbon gaps may be indicative of changes in the dynamics of human occupation, or they may be the result of erosion episodes (Aura et al. 2006). The Magdalenian/Azilian tradition is apparent in lithic assemblages at the beginning of the Holocene, known as the Micro laminar Epipaleolithic (tenth millennium cal BC). Within this complex, the sauveterroid Epipaleolithic is characterized by the appearance of triangles, segments, and curved dorsals around the mid-ninth millennium cal BC. The only site south of the Ebro River with this component, however, is Santa Maia.
An important technological shift, known as the Denticulate Mesolithic, is characterized by the presence of massive notches and denticulates in association with a decline in blades. Its chronological development, concentrated in the eighth and mid-seventh millennia cal BC, has been confirmed by numerous dates published for the Mediterranean region and the Ebro River Basin (Utrilla et al. 1998; Alday 2006). This limited chronology, in addition to its distinctive character in comparison with earlier and later lithic complexes, has resulted in the identification of the earliest Mesolithic in the area (Aura Tortosa 2001).
The Geometric Mesolithic represents a change of course in the lithic technology and corresponds to a characteristic laminar knapping style (Montbani style) that served as the basis for the manufacture of geometric stone tools. Its initial appearance dates to the mid-seventh millennium cal BC. A series of evolutionary phases within this cultural tradition is visible in the distinctive geometric forms—for example, trapezes, triangles, and segments. This tradition likely had uneven spatial and temporal distributions. Its disappearance is marked by the arrival of the first Neolithic groups in the area around the mid-sixth millennium cal BC. The introduction of agriculture and animal husbandry coincides with the appearance of a new lithic industry with distinctive forms, including different strategies of raw material use, blade technology, and typological composition (e.g., appearance of sickle sheen and drills). These features accompany the introduction of a series of economic novelties (domesticated plants and animals), technologies (ceramics, polished stone, etc.), and symbolism (macroschematic and schematic rock art; Figure 3). Furthermore, they are correlated with a new occupation dynamic on the landscape. Territory is distributed unequally between these two groups, although current data suggest a rapid expansion of the Neolithic and consequently a rapid decline of the Mesolithic tradition.

Figure 3. Macroschematic and Levantine rock art in La Sarga (Rockshelter 1, panel 2) (Alicat, Alacante; after Hernández Pérez and Segura Martí 2002)

FROM THE MESOLITHIC TO THE NEOLITHIC

ADAPTATIONS AND SHIFTS IN SUBSISTENCE STRATEGIES

Terminal Hunter-Gatherers

The ecological shifts associated with climatic amelioration in the Holocene coincide with the last hunter-gatherers to live in the region and the subsequent appearance and expansion of Neolithic domestication economies. For hunter-gatherers, ecological transformations tied to forest expansion may have significantly impacted settlement dynamics and economic strategies. Paleoenvironmental data confirm the decline of conifers during the Preboreal, although stands of junipers remained (e.g., at Santa Maíra and Tossal de la Roca; see Cacho Quesada and Jordá Pardo 2009). An expansion of oak woodland (Quercus caduceifolia and Q. perennifolia) is also documented.

At the same time, increases in sea level created new landscape configurations along the coastal plain. The distribution of known archaeological sites and published paleoenvironmental studies suggest a colonization of the mid-mountainous zones that complemented the occupation of the coastal valleys (Aura 2001). For the Tardiglacial, economic data confirm an increase in the exploitation of mid-mountainous species, such as roe deer, chamois, and wild boar, in addition to goats, deer, and small prey, such as lagomorphs, birds, fish, and mollusks (Aura 2001). This dynamic is particularly visible in the Boreal with the arrival of the Atlantic phase. Around 7,000 cal BC a climatic optimum has been documented that coincides with maximum expansion of the sclerophyllous Mediterranean forest, dominated by Quercus ilex cocceifera and associated shrubs.

The increase in the number of identified Mesolithic geometrics beginning around 6,500 cal BC reveals important variability in the nature and distribution of this technology. It is found in caves and rockshelters, where the exploitation of goats, deer, and small species is documented, as well as archaeological sites located in or near wetlands in interior valleys and the coastal plain. The number of sites in the area with these characteristics (e.g., Collado, Encantada, Casa de Lara, Anna) may reflect the dietary importance of these faunal resources. Though we have relatively little information regarding the nature of the deposits or the paleoenvironmental information they may supply, the large Mesolithic cemetery at Collado suggests an increasing degree of permanence on the landscape by the last woodland hunter-gatherers and an economic intensification accompanying the appearance of new management strategies for economic and social territories.

More or less pronounced territorial adjustments and a recognizable regionalization of these hunter-gatherer groups coincide with the Neolithic colonization of this area. Changes in biogeographic configurations cannot be seen as deterministic given the evidence for different social responses to similar environmental changes.

First Farmers

The appearance of agriculture and animal husbandry in the Iberian Peninsula resulted from a process of initial colonization by human groups tied to the western Mediterranean cultural tradition of impressed ceramics (Zilhão 2000, 2001). The absence of local wild progenitors amenable to domestication suggests agriculture
and animal husbandry were foreign introductions. This is implicitly supported by distribution patterns that, where data are available, coincide with Neolithic population gaps. Currently, indigenous (i.e., Mesolithic groups as determinant factors; see Cruz Berrocal and Vicent Garcia 2007) or migrationist (i.e., exogenous introduction; see Zilhão 2001; Bernabeu et al. 2006; Juan Cabanilles 2007) approaches frame the discussion of the appearance of agriculture and animal husbandry. Notwithstanding this debate, direct data from the Mesolithic and Neolithic archaeological records in the central Mediterranean region denote a noticeable distinction in territory, economy, and material culture between the two traditions (García Puchol 2005; Bernabeu et al. 2006; Juan Cabanilles 2007). Recent data further suggest a Neolithic input whose initial avenues of expansion and chronology were more complex than traditionally thought (Bernabeu et al. work in progress).

In these “pioneer” territories (Zilhão 2001), a clear shift in land use and appropriation is apparent with the arrival of Neolithic populations. For the Early Neolithic (ca. second half of the sixth millennium cal BC), the available paleobotanical information suggests minimal human impact on the environment (Badal et al. 1994; Vernet et al. 1987). The common vegetation community—Quercus cerris, and the Prunus, Sorbus, and Acer shrubs typically found with it—is found throughout the region. However, it is also clear that this image could be modified with the incorporation of other data, especially pollen sequences, from areas in which the initial Neolithic population was centered. Deforestation of open areas for cultivation resulted in a dynamic increase in conifers by the end of this period based on the available charcoal data (especially Pinus halepensis and Pinus pinea: Carrión 2002, 2006; Gil-Romera et al. 2009).

Systematic and intensive surveys of the valleys of the Serpis/Alcoi drainage (Barton et al. 1999), integrated ongoing excavations at Mas d’Is, Abric de la Falguera, Segadinet, Alt del Puxó, and Barranc de l’Encantada (García Puchol and Aura Tortosa 2006; Bernabeu et al. 2003), offer a detailed picture with the potential to explain how the region’s first agricultural and pastoral communities began. During this period, a group of Neolithic farmers may have established themselves in the middle Serpis Valley and headwaters of the Serpis River, as well as surrounding valleys, basing their settlement organization on economic and social factors (Navarro 2005). Productive and extractive activities resulted in unique spatial patterns. Survey data from many of these valleys document a varying intensity of occupation during the Early Neolithic (Barton et al. 2004). We know that small hamlets or dispersed, open-air cores of population formed the demographic basis of this society. These nodes were located preferentially on what would have been terraces of subsidiary channels of the Serpis River, away from the lowest portions of the valleys. The greater fertility as well as the lightness of soils in these areas may have been key elements for their selection.

This settlement distribution reflects social as well as natural conditions. The Neolithic population was not equally distributed in all locations with the above-described traits throughout the region. On the contrary, they concentrated around certain elements that likely articulated the entire settlement system. Although excavations have not been completed, research conducted at Mas d’Is (Penagulla) has uncovered a monumental structure formed by two concentric rings of large trenches (between 12 and 14 m wide and 3.5-4 m deep). Both trenches were constructed in this period, with the interior ring created first (Bernabeu et al. 2003; Bernabeu and Orozco 2005). We know little about what these features housed. Unfortunately, fluvial downcutting has destroyed a large area of the site. However, the space between the two structures does not show any evidence of occupation. The presence of domestic structures, including possible houses, outside the monumental area suggests that the function of these trenches is likely not domestic. This runs contrary to other Mediterranean areas during the same period, such as the villages of the Tavoliere in Italy.

From information provided by the ceramic assemblage, primarily the development of diverse decorative styles, we can approximate a chronology of the different settlements in the area around Mas d’Is. Interestingly, almost no sites were occupied longer than a single cultural phase, and sites increased in number from the earliest to the latest Neolithic. The general settlement model in this period is characterized by the establishment of small hamlets dispersed in the core territory. These were located in proximity to one another and subject to significant socioeconomic tensions (e.g., soil exhaustion, bad harvests, demographic crises, etc.) that may have led to the failure of specific hamlets (Bernabeu et al. 2006). Nonetheless, the increase in sites during the period may be interpreted as a demographic increase, demonstrating the success of the system overall.

The economic basis for this was a well-established production system from the earliest part of the Neolithic sequence. Cereals were the focus of agricultural exploitation, and a variety of wheat and barley species are documented. Legumes, specifically Lens culinaris, Vicia faba, and Pisum sativum, are present in smaller proportions; however, we cannot eliminate the possibility that the small sample sizes are a result of taphonomic processes and may not accurately reflect the actual dietary importance of legumes. Domesticated species, especially ovicaprids (primarily sheep), also dominate the faunal record from the beginning of the Neolithic sequence.

Surrounding this settlement core is a large area with evidence of more extensive activities, including animal management as well as the exploitation of organic and mineral resources (wood, chert, pigments). Figure 2 documents the significant number of caves located in the most rugged areas of the region which contained materials from this period. The map illustrates a network of temporary occupations, possibly reflective of specialized activities (e.g., pastoralism) and/or the exploitation of certain resources.

Excavations conducted at Abric de la Falguera have provided important data on this type of settlement (Molina et al. 2006). The rockshelter was used as a corral for ovicaprids (based on the presence of microsclerite ontological indicators, neonate remains, and deciduous dentition in the faunal record), as well as a temporary human shelter (based on the variety and quantity of artifacts, presence of fires, and excavated storage pits). This use as a seasonal or temporary habitation is documented in other caves and rockshelters in the area and should be seen as complementary to the known open-air sites. The diversity of raw materials identified in a technological study of ceramics from this period (McClure 2006)
may indicate a large variety of source areas for those who occupied these temporary sites, thereby highlighting their mobility.

Domesticated resources played an essential role in the diets of the people at Abric de la Falguera. Excavations documented a larger volume of cereal remains in Neolithic levels at the site. People may have brought cereals with them from their usual settlement area, or they may have tended fields in open areas at the entrance to the gorge where the rockshelter is located. In contrast, the faunal assemblage documents an unusually high quantity of wild species, especially rabbits. This is not surprising given the nature of temporary human occupations—wild game is more likely to be available and accessible, lessening the need to exploit domestic animals. Furthermore, pastoralists would have limited their impact on a domestic herd to injured animals, conserving the herd for exploitation at the main settlement.

Finally, the artistic manifestations that these groups developed (schematic and macro-schematic rock art) are outward expressions of the appropriation of exploited territories. The distribution of the rock art has been interpreted as a phenomenon tied to the definition of territories, control of communication routes, and the existence of aggregation ceremonies in “sanctuaries” (Fairén 2004).

From the beginning of the region’s Neolithic occupation, a qualitative shift took place in the relationship between humans and the environment. The existence of different economic activities (production) and their underlying social factors explain the regional distribution of the human population. If natural factors (location and quality of resources) played a limited role, we must then focus on the social factors that organized the human community and distributed humans in the area. Unequal social relations have already been documented for the mid-sixth millennium cal bc (Bernabeu et al. 2006; Castro et al. 2006). The mobilization of labor represented by the trenches at Mas d’1s documents the complexity of internal relationships in these farming communities. The variety and types of known settlements define an important structuring of activities on the landscape. Humans simultaneously dominated nature, took control of it, and were subject to it.

MESOLITHIC AND NEOLITHIC INTERACTION

As one might expect, the introduction of the Neolithic in the area was a turning point for indigenous hunter-gatherers. Even if initial colonization occurred in unoccupied areas, it is clear that the subsequent rapid expansion would have quickly created situations in which hunter-gatherers and farmers interacted. Abric de la Falguera, located at the head of a valley in the Serpis River drainage, shows a rupture between Mesolithic and Neolithic occupations in terms of stratigraphy as well as economic activities and material culture (Garcia Puchol and Aura Tortosa 2006).

This example, however, also highlights stratigraphic problems with deposits that were laid down during the Middle Holocene. Erosion processes that culminated during the Mesolithic sequence in Abric de la Falguera call into question the continuity of the strata and possibly skew the archaeological sequence. Nevertheless, we do not know of any Mesolithic deposits in the Serpis Valley that postdate 6,000 cal bc (Figure 4). Despite intensive surveys, only one site in the entire drainage, Barranc de l’Encantada, can be ascribed to this period (Garcia et al. 2001). However, Encantada’s recovered assemblages extend chronologically from the Middle Paleolithic to the Bronze Age. Given that these are mixed surface assemblages, unambiguously assigning parts of them to the Mesolithic Phase B may not be possible.

These problems in interpreting assemblages relevant to hunter-gatherer populations further underscore the uncertainty of Mesolithic reconstructions. For example, at the head of the Vinalopó Valley, in an area neighboring the Serpis River drainage, surface assemblages at Casa de Lara and Arenal de la Virgen identified as evidence of Mesolithic Phase B occupations (beginning 6,000 cal bc) were found next to Neolithic surface materials (Cardial ceramics). Furthermore, Cueva de la Cocina documented both Mesolithic and Neolithic occupations, although recent revisions in the lithic tools analysis indicate the presence of breaks in the sequence (Garcia 2005). This population dynamic incorporates Mesolithic occupations in other nearby areas. Covacha de Llatas, Muntanya Cavall, and La Mangranera, in mountainous areas north of the Turia River, document Mesolithic occupations beginning in Phase B (Garcia 2005). As a consequence, it is possible

Figure 4. Radiocarbon dates (cal bc) in the Serpis Valley during the neolithization process.
to suggest a territorial reorganization during which specific areas defined by the presence of Mesolithic sites were incorporated quickly into the Neolithic world (Figure 5). The mechanisms may have included assimilation, acculturation, or a dramatic Mesolithic population decline as a consequence of newly introduced pathogens. The question of mechanisms is open to future research. We argue that in the case of the Mediterranean region on the Iberian Peninsula, the rapidity of this expansion suggests greater weight should perhaps be given to the dynamics of population assimilation.

Figure 5. Mesolithic and Neolithic site distributions during the neolithization process.

A. Geometric Mesolithic Phase A
B. Dark gray: Neolithic area; Light gray: Geometric Mesolithic Phase B area
C. Dark gray: Neolithic area, Light gray: Geometric Mesolithic Phase C area


