Search for resonant top plus jet production in $t\bar{t} + \text{jets}$ events with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV

The ATLAS Collaboration

Abstract

This paper presents a search for a new heavy particle produced in association with a top or antitop quark. Two models in which the new heavy particle is a color singlet or a color triplet are considered, decaying respectively to $\bar{t}q$ or tq, leading to a resonance within the $t\bar{t} + \text{jets}$ signature. The full 2011 ATLAS pp collision dataset from the LHC (4.7 fb$^{-1}$) is used to search for $t\bar{t}$ events produced in association with jets, in which one of the W bosons from the top quarks decays leptonically and the other decays hadronically. The data are consistent with the Standard Model expectation, and a new particle with mass below 430 GeV for both W' boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.
Search for resonant top plus jet production in $t\bar{t} + \text{jets}$ events with the ATLAS detector in pp collisions at $\sqrt{s} = 7\,\text{TeV}$

This paper presents a search for a new heavy particle produced in association with a top or antitop quark. Two models in which the new heavy particle is a color singlet or a color triplet are considered, decaying respectively to tq or $\bar{t}q$, leading to a resonance within the $t\bar{t} + \text{jets}$ signature. The full 2011 ATLAS pp collision dataset from the LHC (4.7 fb$^{-1}$) is used to search for $t\bar{t}$ events produced in association with jets, in which one of the W bosons from the top quarks decays leptonically and the other decays hadronically. The data are consistent with the Standard Model expectation, and a new particle with mass below 430 GeV for both W' boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.

PACS numbers: 14.80.-j

In the past few decades, remarkable agreement has been shown between measurements in particle physics and the predictions of the Standard Model (SM). The top quark sector is one important place to look for deviations from the SM, as the large top quark mass suggests that it may play a special role in electroweak symmetry breaking. The recent top quark forward-backward asymmetry measurements from the Tevatron experiments [1, 2] are in marginal agreement with SM expectations. A non-SM explanation could come from a possible top-flavor-violating process [3–5]. In these models, a new heavy particle R would be produced at the LHC in association with a top or anti-top quark. Figure 1 shows representative production diagrams for these new particles, for the cases of $R = W'$ or $R = \phi$ (see below). As shown in Ref. [6], the production mechanism in pp collisions mainly involves quarks rather than anti-quarks at $\sqrt{s} = 7\,\text{TeV}$, even for relatively low mass particles.

The larger number of quarks relative to anti-quarks produced in the initial state at the LHC leads to a resonance R that decays predominantly to either the $t+\text{jet}$ or $\bar{t}+\text{jet}$ final state, where baryon number conservation restricts the models that are available. Two models that can give rise to these final states are a color singlet resonance (W') mostly in the tq system, and a di-quark color triplet model with a resonance (ϕ) in the tq system. In both cases a $t\bar{t}+\text{jet}$ final state is produced, but a peak will be present in only one of the $t+\text{jet}$ or $\bar{t}+\text{jet}$ invariant mass distributions. The new resonances are assumed not to be self-conjugate, which makes searches for same-sign top quarks insensitive to them [7–9], and to have only right-handed couplings. The t or \bar{t} then decays to W^+b or $W^-\bar{b}$, respectively. This paper considers the decay signature of events in which one W boson decays leptonically (to an electron or muon, plus neutrino final state) and the other W boson decays hadronically. The first direct search for such particles was performed at CDF [10], which excluded color triplet resonances with masses below 200 GeV and W' resonances with masses below 300 GeV, for particles with unit right-handed coupling (g_R) to tq. As is done in this paper, CDF used the formalism in Ref. [3] to define g_R. CMS recently performed a search that excluded a new W' with a mass less than 840 GeV [11] for particles with $g_R = 2$ [12].

FIG. 1: Example production and decay Feynman diagrams for the (a) W' and (b) ϕ models.

The analysis presented here uses the full ATLAS 7 TeV pp collision dataset collected in 2011, corresponding to 4.7±0.2 fb$^{-1}$ of integrated luminosity [13, 14] delivered by the LHC. ATLAS [15] is a multi-purpose particle physics detector with cylindrical geometry [16]. The inner detector (ID) system consists of a high-granularity silicon pixel detector and a silicon micro-strip detector, as well as a transition radiation straw-tube tracker. The ID is immersed in a 2 T axial magnetic field, and provides charged particle tracking in the range $|\eta| < 2.5$. Surrounding the ID, electromagnetic calorimetry is provided by barrel and endcap liquid-argon (LAr)/lead accordion calorimeters and LAr/copper sampling calorimeters in the forward region. Hadronic calorimetry is provided in the barrel by a steel/scintillator tile sampling calorimeter, and in the endcaps and forward region by LAr/copper and LAr/tungsten sampling calorimeters, respectively. The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field with a bending power of 2–8 Tm, generated by three superconducting air-core toroid systems. A three-level trigger system is used to select interesting events. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two software-based trigger levels, level-2 and the event filter, which together reduce the event rate to ~ 300 Hz.

Events with an electron (muon) are required to have passed an electron (muon) trigger with a threshold of transverse energy $E_T > 20\,\text{GeV}$ (transverse momentum
$p_T > 18 \text{ GeV}$), ensuring that the trigger is fully efficient for the off-line selection discussed below. Electrons reconstructed offline are required to have a shower shape in the electromagnetic calorimeter consistent with expectation, as well as a good quality track pointing to the cluster in the calorimeter. Candidate electrons with $E_T \geq 25 \text{ GeV}$ are required to pass the “tight” electron quality criteria to fall inside a well-instrumented region of the detector ($|\eta| < 2.47$, excluding $1.37 < |\eta| < 1.52$), and to be isolated from other objects in the event. Muons with transverse momentum $p_T > 20 \text{ GeV}$ are required to pass muon quality criteria, to be well measured in both the ID and the muon spectrometer, to fall within $|\eta| < 2.5$, and to be isolated from other objects in the event.

Jets are reconstructed in the calorimeter using the anti-k_T algorithm with a radius parameter of 0.4. Jets are required to satisfy $p_T > 25 \text{ GeV}$ and $|\eta| < 2.5$. Events with jets arising from electronic noise bursts and beam backgrounds are rejected. Jets are calibrated to the hadronic energy scale using p_T- and η-dependent corrections derived from simulation, as well as from test-beam and collision data. Jets from the decay of heavy flavor hadrons are selected by a multivariate b-tagging algorithm at an operating point with 70% efficiency for b-jets and a mistag rate for light quark jets of less than 1% in simulated $t\bar{t}$ events. Neutrinos are inferred from the magnitude of the missing transverse momentum (E_T^{miss}) in the event.

The signal region for this analysis is defined by requiring exactly one charged lepton and five or more jets, from the magnitude of the missing transverse momentum for b and collision data [21]. Jets from the decay of heavy bosons in association with extra jets is modeled by the ALPGEN. The ALPGEN matching scheme [24] is used to form inclusive W boson + jets samples such that overlapping events produced in both the hard scatter and parton showering are removed. In addition, the heavy flavor contributions are reweighted using the data-driven procedures of Ref. [35] using the full 2011 LHC dataset. Diboson events are generated using HERWIG. Single-top-quark events are modeled by MC@NLO, interfaced with HERWIG for the parton showering, in the s-channel and Wt channel, and by AcerMC v3.8 in the t-channel. The small background in which multi-jet processes are misidentified as prompt leptons is modeled from a data-driven matrix method [36]. In determining the expected event yields, the $t\bar{t}$ cross section is normalized to approximate next-to-next-to-leading-order QCD calculations of 167^{+17}_{-18} pb for a top quark mass of 172.5 GeV [37, 28], and the total W+jets background is normalized to inclusive next-to-next-to-leading-order predictions [39]. Signal events are produced, for a range of W' and ϕ masses, with MadGraph v5.1.3.16 [40] and interfaced to PYTHIA v6.425. Next-to-leading-order (NLO) cross sections are used for the predicted W' boson signal normalization, leading-order (LO) cross sections using MSTW2008 are used for the ϕ-resonance normalization [3].

Events are reconstructed with a kinematic fitting algorithm that utilizes knowledge of the over-constrained $t\bar{t}$ system to assign jets to partons. In the fit, the two top quark masses are each constrained at the particle level to 172.5 GeV by a penalty in the likelihood, computed from variations from this nominal value and the natural top quark width of 1.5 GeV. The two W boson masses are similarly constrained to 80.4 GeV within a width of 2.1 GeV. This allows the z-component of the momentum of the neutrino from the leptonically decaying W boson to be computed. Both solutions from the quadratic ambiguity of this computation are tested when computing the likelihood. Charged lepton, neutrino and jet four-momenta are constrained in the fit by resolution transfer functions derived from simulated $t\bar{t}$ events that relate the measured momenta in the detector to true particle momenta. The full shapes of these transfer functions are used in the likelihood computation. All assignments of any four jets to partons from the $t\bar{t}$ decay are tested and the assignment with the largest likelihood output for the $t\bar{t}$ hypothesis is selected. After the assignment is selected, the originally measured jet and lepton momenta and E_T^{miss} are used. The remaining jets not associated with the $t\bar{t}$ partons are included to form m_{ij} and m_{ij} masses, where the charge of the lepton is used to infer which is the top candidate and which is the anti-top candidate. All combinations of extra jets with the top and anti-top quark candidates are considered, and the pairings that give the largest m_{ij} and m_{ij} masses are used. In this way, the same extra jet can (but does not necessarily have to) be used to form m_{ij} and m_{ij}. These two masses are used as observables for the search.

Several control regions are used to ensure good model-
The distribution in Figure 3 shows good agreement between data and the prediction. The second major background, production of single W bosons in association with extra jets, is tested in a control region with five or more jets, vetoing events with b-tagged jets. The requirement of zero b-tagged jets reduces both signal and tt contamination.

Figure 4 shows the expected and observed upper limits on the signal cross section, with the jet multiplicity distribution. The data are found to be consistent with the SM expectation. A variety of potential systematic effects are evaluated for the predicted signal and the background rates and shapes. The dominant systematic effects of the jet energy scale [21] and resolution [11] lead to uncertainties of up to 10% on the total background rate and up to 21% on the total signal expectation, depending on the mass of the new particle. The other dominant systematic uncertainty from the difference in b-tagging efficiency between simulation and data leads to uncertainties of roughly 16% on both the signal and background rates. Effects due to lepton trigger uncertainties and ID efficiency as well as the total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production and multi-jet events.

The data require at least four jets, but does not require a b-tag. The dominant tt background is tested in a control region with exactly four jets (including at least one b-tagged jet). The rejection of events with more than four jets reduces signal contamination. A second tt control region is defined by events with exactly four jets with p_t above 25 GeV, one of which must be b-tagged, and exactly one additional jet with p_t between 20 GeV and 25 GeV. Signal contamination is further reduced by requiring that the ΔR ≡ √((Δη)^2 + (Δφ)^2) between the fifth jet and both the reconstructed top and anti-top quarks is greater than π/2. Figure 2 shows distributions in the two tt control regions, where good agreement is observed between data and the prediction. The second major background, production of single W bosons in association with extra jets, is tested in a control region with five or more jets, vetoing events with b-tagged jets. The requirement of zero b-tagged jets reduces both signal and tt contamination.

Expected and observed upper limits on the signal cross section are computed at discrete mass points as follows. For each benchmark signal mass point under consideration, a signal region is defined in the m_{tj} – m_{tj} plane. When setting limits for the W' (φ) model, the m_{tj} (m_{tj}) window is significantly wider than the m_{tj} (m_{tj}) window.
to account for the fact that the resonance is predominantly in the m_{tj} ($m_{lj})$ system. The windows are optimized to maximize sensitivity, accounting for the full effect of systematic uncertainties. Typical mass windows are shown in Table I. For each mass window, 95% confidence level (C.L.) upper limits on the signal cross section (times the branching ratio to t or \bar{t}) are computed using a single bin frequentist CL$_S$ method [42]. No shape information is used within the mass windows. Table I shows the expected and observed event yields in several of the signal region windows. Expected and observed 95% C.L. upper limits on the signal cross section are derived, assuming a coupling of $g_R = 1$ and $g_R = 2$, and are shown in Figure 5. Assuming that the cross section scales as g_R^2, the exclusion in the mass-coupling plane is shown in Figure 6. As shown, most of the parameter space in this model, which was favored by the Tevatron forward-backward asymmetry and $t\bar{t}$ cross section measurements, has been excluded.

In conclusion, this paper presents a search for a new heavy particle R in the $t\bar{lj}$ or ljt system of $t\bar{t}$ plus extra jet events with the ATLAS detector. Such new particles have been proposed as a potential explanation of the difference from the SM values of the forward-backward asymmetries measured in top quark pair production at the Tevatron. The full 2011 ATLAS pp dataset (4.7 fb$^{-1}$) is used in the search. Assuming unit coupling, the expected 95% C.L. lower limit on the mass of the new particle is 500 (700) GeV in the W' (ϕ) model. No significant excess of data above SM expectation is observed, and 95% C.L. lower limits of 430 GeV for both the W' and ϕ models are set. At $g_R = 2$, the limits are 1.10 (1.45) TeV for the W' (ϕ) model, with expected limits of 0.93 (1.30) TeV. These are the most stringent limits to date on such models. Most of the regions of parameter space for these models that are more consistent with the Tevatron forward-backward asymmetry and $t\bar{t}$ cross section measurements than the SM are excluded at 95% C.L. by these results.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; BMBF, DMSR and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF

Table I: Expected and observed yields in the four control regions (CR). Total refers to the total expected background, including $t\bar{t}$, W+jets and the other smaller backgrounds: single top production, diboson production and multi-jet events. The last two lines show the expected number of events for two benchmark signal samples in each of these control regions. The errors include all systematic uncertainties.

<table>
<thead>
<tr>
<th></th>
<th>Preselection CR</th>
<th>W+jets CR</th>
<th>four-jet tt CR</th>
<th>five-jet tt CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>50000 ± 4700</td>
<td>2000 ± 400</td>
<td>19000 ± 600</td>
<td>2100 ± 200</td>
</tr>
<tr>
<td>W+jets</td>
<td>46000 ± 14000</td>
<td>7000 ± 2900</td>
<td>3800 ± 800</td>
<td>360 ± 170</td>
</tr>
<tr>
<td>Total</td>
<td>116000 ± 21000</td>
<td>12000 ± 3600</td>
<td>26000 ± 1300</td>
<td>2900 ± 440</td>
</tr>
<tr>
<td>Observed</td>
<td>110933</td>
<td>11858</td>
<td>26197</td>
<td>2736</td>
</tr>
<tr>
<td>300 GeV W</td>
<td>13900 ± 670</td>
<td>930 ± 110</td>
<td>3000 ± 400</td>
<td>400 ± 80</td>
</tr>
<tr>
<td>400 GeV ϕ</td>
<td>6100 ± 200</td>
<td>430 ± 60</td>
<td>1100 ± 100</td>
<td>200 ± 20</td>
</tr>
</tbody>
</table>

Table II: Expected and observed yields in different signal regions. The errors include all systematic uncertainties. Total refers to the total expected background, including $t\bar{t}$, W+jets and the other smaller backgrounds: single top production, diboson production and multi-jet events, which are not tabulated separately here. Signal window eff. refers to the efficiency for the signal to fall inside the optimized two-dimensional mass window. The signal region yield is calculated in the mass window at each benchmark signal point. Signal σ refers to the total expected signal cross section, not taking into account the t (or \bar{t}) plus jet branching fraction.

<table>
<thead>
<tr>
<th></th>
<th>300 GeV W</th>
<th>600 GeV W</th>
<th>400 GeV ϕ</th>
<th>800 GeV ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{tj} window [GeV]</td>
<td>344 < m_{tj} < 494</td>
<td>566 < m_{tj} < 904</td>
<td>401 < m_{tj} < 455</td>
<td>766 < m_{tj} < 819</td>
</tr>
<tr>
<td>m_{lj} window [GeV]</td>
<td>292 < m_{lj} < 339</td>
<td>549 < m_{lj} < 650</td>
<td>371 < m_{lj} < 608</td>
<td>628 < m_{lj} < 973</td>
</tr>
<tr>
<td>Signal window eff.</td>
<td>7.5%</td>
<td>9.9%</td>
<td>11.9%</td>
<td>5.7%</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>18000 ± 3000</td>
<td>740 ± 160</td>
<td>270 ± 60</td>
<td>660 ± 150</td>
</tr>
<tr>
<td>W+jets</td>
<td>1700 ± 560</td>
<td>60 ± 30</td>
<td>30 ± 20</td>
<td>80 ± 40</td>
</tr>
<tr>
<td>Total</td>
<td>22000 ± 3700</td>
<td>820 ± 190</td>
<td>320 ± 80</td>
<td>780 ± 180</td>
</tr>
<tr>
<td>Observed</td>
<td>22731</td>
<td>970</td>
<td>343</td>
<td>923</td>
</tr>
<tr>
<td>Signal region yield</td>
<td>560 ± 120</td>
<td>98 ± 24</td>
<td>410 ± 100</td>
<td>20 ± 6</td>
</tr>
<tr>
<td>Signal σ</td>
<td>19.0 pb</td>
<td>1.55 pb</td>
<td>7.9 pb</td>
<td>0.67 pb</td>
</tr>
</tbody>
</table>
FIG. 3: Expected and observed distribution of m_{tj} in the W+jets control region. The example signal-only distributions are overlaid for comparison, where unit coupling for the new physics process is assumed. The total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production and multi-jet events.

FIG. 4: Expected and observed distributions of (a) m_{tj} and (b) $m_{\bar{t}j}$ in the signal region. The example signal distributions assume unit coupling for the new physics process. The total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production and multi-jet events.
FIG. 5: Expected and observed 95% C.L. upper limits on the (a) W' and (b) ϕ model cross sections. The CDF result is documented in Ref. 10. The W' cross sections are NLO calculations, and the ϕ cross sections are LO calculations.

FIG. 6: Expected and observed 95% C.L. upper limits on the (a) W' and (b) ϕ model cross sections assuming a cross section which scales with g_R^2. The hatched area shows the region of parameter space excluded by this search at 95% C.L. The CDF result is documented in Ref. 10. The W' cross sections are NLO calculations, and the ϕ cross sections are LO calculations. The region favored by the Tevatron A_{FB} and σ_t measurements is shown as the dark band [43].
[12] There are several differences between the models in Refs. [3] and [4]. The Lagrangian in the former (used in this paper) includes a factor of $1/\sqrt{2}$, and the one in the latter (used by CMS) does not. In addition, Ref. [4] includes additional non-resonant diagrams with cross section that scale as g_R. Such diagrams are not included in Ref. [3].
[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse $(x - y)$ plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
[43] This region simultaneously satisfies the observed high-m$_t$ A_{FB}, low-m$_t$ A_{FB} and σ_t observed at the Tevatron. Mathematically it is defined as the region with $\chi^2 < 2.8$, where χ^2 is defined in Equation 22 in M. Gresham et al., Phys. Rev. D 85 (2012) 014022, arXiv:1107.4364 The χ^2 for the Standard Model is 2.8.
Universidad Técnica Federico Santa María, Valparaíso, Chile

Instituto de High Energy Physics, Chinese Academy of Sciences, Beijing; Department of Modern Physics, University of Science and Technology of China, Anhui; Department of Physics, Nanjing University, Jiangsu; School of Physics, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

(a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern-und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Section de Physique, Université de Genève, Geneva, Switzerland

(a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy

(a)E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

(a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro-und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

(a)INFN Sezione di Lecce; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Surrey, London, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Novosibirsk State University, Novosibirsk, Russia
Also at Fermilab, Batavia IL, United States of America
Also at Department of Physics, University of Coimbra, Coimbra, Portugal
Also at Department of Physics, UASLP, San Luis Potosi, Mexico
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Department of Physics, Middle East Technical University, Ankara, Turkey
Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Also at Department of Physics and Astronomy, University College London, London, United Kingdom
Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
Also at Department of Physics, University of Cape Town, Cape Town, South Africa
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Manhattan College, New York NY, United States of America
Also at School of Physics, Shandong University, Shandong, China
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at California Institute of Technology, Pasadena CA, United States of America
Also at Institute of Physics, Jagiellonian University, Krakow, Poland
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
* Deceased