Measurement of the $W^\pm Z$ Production Cross Section and Limits on Anomalous Triple Gauge Couplings in Proton-Proton Collisions at $\sqrt{s} = 7$ TeV with the ATLAS Detector

The ATLAS Collaboration

Abstract

This Letter presents a measurement of $W^\pm Z$ production in 1.02 fb$^{-1}$ of pp collision data at $\sqrt{s} = 7$ TeV collected by the ATLAS experiment in 2011. Doubly leptonic decay events are selected with electrons, muons and missing transverse momentum in the final state. In total 71 candidates are observed, with a background expectation of 12.1 ± 1.4 (stat.) $^{+0.9}_{-0.8}$ (lumi.) events. The total cross section for $W^\pm Z$ production for $Z/\gamma^* \rightarrow Z/\gamma$ masses within the range 66 GeV to 116 GeV is determined to be $\sigma_{W^\pm Z} = 20.5 ^{+3.1}_{-2.8} (\text{stat.}) ^{+1.4}_{-1.3} (\text{syst.}) ^{+0.9}_{-0.8} (\text{lumi.})$ pb, which is consistent with the Standard Model expectation of $17.3 ^{+1.3}_{-1.0}$ pb. Limits on anomalous triple gauge boson couplings are extracted.

1. Introduction

The underlying structure of the electroweak interactions in the Standard Model (SM) is the non-abelian $SU(2)_L \times U(1)_Y$ gauge group. Properties of electroweak gauge bosons such as their masses and couplings to fermions have been precisely measured at LEP and the Tevatron [1]. However, triple gauge boson couplings (TGC) predicted by this theory have not yet been determined with comparable precision.

In the SM the triple gauge boson vertex is completely fixed by the electroweak gauge structure. A measurement of this vertex, for example through the analysis of diboson production at the LHC, tests the gauge symmetry and probes for possible new phenomena involving gauge bosons. In general, electroweak boson couplings deviating from gauge constraints yield enhancements of the W boson production at the LHC, tests the gauge symmetry of this vertex, for example through the analysis of diboson production at the LHC, tests the gauge symmetry and probes for possible new phenomena involving gauge bosons. In general, electroweak boson couplings deviating from gauge constraints yield enhancements of the W boson production at the LHC, tests the gauge symmetry and probes for possible new phenomena involving gauge bosons.

At the LHC, the dominant $W^\pm Z$ production mechanism is from quark-antiquark and quark-gluon interactions at leading order (LO) and at next-to-leading order (NLO), respectively [4]. Only the s-channel diagram has a triple electroweak gauge boson interaction vertex and is hence the only channel that may contribute to anomalous TGC (aTGC).

This Letter presents a measurement of the $W^\pm Z$ production cross section and limits on aTGC with the ATLAS detector in LHC proton-proton collisions at a centre-of-mass energy, \sqrt{s}, of 7 TeV. The analysis uses four channels with leptonic decays ($W^\pm Z \rightarrow \ell\nu\ell\ell$) involving electrons and muons: $e\nu\ell\ell$, $\mu\nu\ell\ell$, $e\mu\mu\mu$ or $\mu\mu\mu\mu$, where the ν is estimated by the missing transverse momentum, E_T^{miss}. The main sources of background are ZZ, $Z\gamma$, $Z+$jets, and top-quark events.

A common phase space is defined for combining the four decay channels and measuring a “fiducial” cross section. The phase space is chosen to match closely the detector acceptance and analysis selection. The leptons from the Z and W boson decays are required to have transverse momenta $p_T^{\ell,e} > 15$ GeV, $p_T^{\ell,e}(W^\pm) > 20$ GeV, pseudorapidity $|\eta^{\ell,e}| < 2.5$, $|m_{\ell\ell}(Z) - m_Z| < 10$ GeV, $p_T^Z > 25$ GeV and the transverse mass $m_T^{W,Z}$ of the W boson is required to satisfy $m_T^{W,Z} > 20$ GeV. Final state electrons and muons whose four-momenta include all photons within $\Delta R < 0.1$ are used in the phase space definition. Since the fiducial phase space is defined by the lepton kinematics, the cross section definition includes the branching ratios of the bosons decaying into electrons or muons. The fiducial cross section definition excludes the contribution from W and Z boson decays into τ leptons.

In order to measure the total cross section, the experimentally accessible phase space is extrapolated to the full phase space. The region dominated by the contribution of a γ^* propagator in singly resonant diagrams to the theoretical cross section is highly suppressed by requiring the invariant mass of the dilepton system from Z/γ^* to satisfy $66 < m_{\ell\ell} < 116$ GeV for the full phase space.

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (ρ,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ as $\eta = -\ln\tan(\theta/2)$.

2The transverse mass is defined as $m_T^2 = 2E_T^\ell E_T^\nu - 2p_T^\ell p_T^\nu$.

3ΔR is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.
In the SM the only allowed boson combinations for TGC vertices are $WW\gamma$ and WWZ, and the latter is addressed in this Letter. Expressions for the most general effective Lagrangian for a TGC vertex with two charged and one neutral vector boson can be found in Refs. [5] and [6]. If only terms that separately conserve charge conjugation and parity are considered, then the couplings can be represented by three dimensionless parameters g_1^Z, κ_Z and λ_Z. In the SM $g_1^Z = 1$, $\kappa_Z = 1$ and $\lambda_Z = 0$. Anomalous couplings, defined as deviations from these SM values, are then Δg_1^Z, $\Delta \kappa_Z$ and λ_Z.

To avoid tree-level unitarity violation, which occurs in the effective Lagrangian approach at sufficiently high energies, the anomalous couplings must be suppressed at higher energy scales. To achieve this, an arbitrary form factor can be introduced to mitigate the effect of anomalous couplings at higher energy scales. For comparison with previous studies, results are presented using a dipole form factor $f(\hat{s}) = 1/(1 + \hat{s}/\Lambda^2)^2$, where $\Lambda = 2$ TeV is a cut-off energy scale and $\sqrt{\hat{s}}$ is the partonic centre-of-mass energy. This choice ensures that unitarity is not violated. However, since the choice of the scale is arbitrary and the experimental centre-of-mass energy scale is finite, the interpretation of the data in the framework of anomalous couplings is also presented without using a form factor, corresponding to setting $\Lambda = \infty$.

2. The ATLAS Detector and Event Samples

The ATLAS detector [7] consists of an inner detector (ID) surrounded by a superconducting solenoid which provides a 2 T magnetic field, electromagnetic and hadronic calorimeters and a muon spectrometer (MS) with a toroidal magnetic field. The ID provides precision charged particle tracking for $|\eta| < 2.5$. It consists of a silicon pixel detector, a silicon strip detector and a straw tracker that also provides transition radiation measurements for electron identification. The calorimeter system covers the range $|\eta| < 4.9$ and comprises sampling calorimeters with either liquid argon (LAr) or scintillating tiles as the active media. In the region $|\eta| < 2.5$ the electromagnetic LAr calorimeter is finely segmented and plays an important role in electron identification. The muon spectrometer has separate trigger and high-precision tracking chambers which provide muon identification in $|\eta| < 2.7$.

This study uses 1.02 ± 0.04 fb$^{-1}$ [8, 9] of collision data collected up to the end of June 2011.

Candidate events are selected online with single-lepton triggers requiring p_T of at least 18 (20) GeV for muons (electrons). The trigger efficiency for $W^\pm Z \rightarrow t\bar{t}V\ell\ell$ events which pass all selection criteria is in the range of 96–99% depending on the final state.

The $W^\pm Z$ production processes and the subsequent purely leptonic decays are modelled by the MC@NLO [10] [11] generator, which incorporates the NLO QCD matrix elements into the parton shower by interfacing to the HERWIG [12] program. The generator also provides matrix element information which allows a given sample to be reweighted to a different set of anomalous coupling parameters on an event-by-event basis. The parton density function (PDF) set CTEQ6.6 [13] is used and the underlying event is modelled with JIMMY [14] [15]. HERWIG is used to model the hadronization, initial state radiation and QCD final state radiation (FSR). PHOTOS [16] is used for QED FSR, and TAUOLA [17] for the τ lepton decays.

The $W^\pm Z$ production cross section at NLO in α_s as previously defined is calculated with the program MC@NLO [18] to be $17.3^{+1.3}_{-0.8}$ pb. Electroweak corrections are not considered as they are not relevant at the currently available integrated luminosity [19, 20].

The background sources for which data-driven methods could not be used were estimated with simulated samples. The diboson processes WW and ZZ are modelled with HERWIG, and $W/Z + \gamma$ with MADGRAPH [21] and PYTHIA [22]. MC@NLO [10] is used to model the $t\bar{t}$ and single top-quark background in the $W^\pm Z \rightarrow\ell\nu\ell\ell$ decay channel. Whenever LO event generators are used, the cross sections are corrected by using k-factors to NLO or NNLO (if available) matrix element calculations [10, 18, 23, 24].

The response of the ATLAS detector is simulated [25] with GEANT4 [26]. Small response and efficiency corrections, based on studies in data and simulated control samples, are applied to the simulated samples. All event samples are simulated with in-time pile-up (multiple pp interactions within a single bunch crossing) and out-of-time pile-up (signals from nearby bunch crossings). The weights of simulated events are defined such that the distribution of multiple collisions per bunch crossing matches the observation in the data period under consideration.

3. Object Reconstruction

The main physics objects necessary to select $W^\pm Z$ events are electrons, muons, and E_T^{miss}. Muons are identified by matching tracks reconstructed in the MS to tracks reconstructed in the ID. Their momenta are calculated by combining information from the two tracks and correcting for energy deposited in the calorimeter. ID tracks that are tagged as muons on the basis of matching with track segments in the MS (‘segment-tagged’ muons [23]) are also included. Only muons with $p_T > 15$ GeV and $|\eta| < 2.5$ are considered. Non-prompt muons from hadronic jets are rejected by selecting only isolated muons, requiring the scalar sum of the p_T of tracks within $\Delta R < 0.2$ of the muon to be less than 10% of the muon p_T [23].

Electrons are reconstructed by matching clusters found in the electromagnetic calorimeter to tracks in the ID. Electron candidates must have $E_T > 15$ GeV, where E_T is calculated from the cluster energy and track direction. To avoid the transition regions between the calorimeters, the electron cluster must satisfy $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$. Electrons are required to pass the ‘medium’ identification criteria described in Ref. [29]. To ensure isolation,
the sum of the calorimeter energy in a cone of $\Delta R = 0.3$
around the electron candidate, not including the energy of
the cluster associated to the candidate itself, must be less
than 4 GeV.

The $E_{\text{T}}^{\text{miss}}$ is calculated with reconstructed electrons
within $|\eta| < 2.47$, muons within $|\eta| < 2.7$, and jets and
calorimeter energy clusters outside of other reconstructed
objects within $|\eta| < 4.5$. The clusters are calibrated as
electromagnetic or hadronic energy according to cluster
topology. A small correction avoids double-counting the
energy deposited by muons in the calorimeters [30].

4. Event Selection

At least one single electron or muon trigger is required for
the event selection. A minimum of one reconstructed
vertex, with at least three tracks associated with it, is re-
quired to remove non-collision backgrounds. The vertex
with the largest sum of the p_T^2 computed from the associ-
ated tracks is selected as the primary vertex. Events with
two leptons of the same flavour and opposite charge with
an invariant mass within 10 GeV of the Z boson mass are
selected. For the $e\nu e\nu$ and $\mu\nu\mu\nu$ channels more than one
lepton pair combination may satisfy this criterion and the
pair closest to the Z boson mass is chosen. This require-
ment of a lepton pair consistent with originating from a
Z boson reduces much of the background from multijet
and top-quark production, and a fraction of the diboson
background.

Events are then required to have at least three recon-
structed leptons originating from the primary vertex; their
longitudinal impact parameters with respect to the pri-
mary vertex required to be less than 10 mm.

The lepton not attributed to the Z boson decay must
pass more stringent identification criteria than the leptons
attributed to the Z boson, and have $p_T > 20$ GeV. Elec-
trons are additionally required to pass the ‘tight’ identifi-
cation criteria [29] with cuts on the matched track quality,
the ratio of the energy measured in the calorimeter to
the momentum of the matched track, and the detection of
transition radiation. Segment-tagged muons may not be
used as the third lepton.

Events are required to have $E_{\text{T}}^{\text{miss}} > 25$ GeV and the
transverse mass of the W^{\pm} boson candidate, m_{T}^{W}, formed
from the $E_{\text{T}}^{\text{miss}}$ and the third lepton, is required to be
greater than 20 GeV. These cuts suppress the remaining
backgrounds from Z and ZZ production.

At least one of the leptons is required to have fired the
trigger. To ensure that the trigger is well onto the effi-
ciency plateau above the threshold of the primary single-
lepton trigger, trigger-matched leptons are required to have
$p_T > 20$ GeV for muons and 25 GeV for electrons.

5. Signal Efficiency and Background Estimate

The fiducial efficiency is defined as the ratio of simu-
lated signal events meeting the event selection criteria to
the numbers of simulated events explicitly having the event selection criteria to
within the fiducial phase space region. The values for each channel are
shown in Table I. The fraction of selected simulated signal events which come from outside the fiducial phase space is 13%.

The total systematic uncertainty on the efficiency is
3–7% depending on the decay channel and is dominated
by the uncertainties on the electron and muon reconstruc-
tion. These include uncertainties associated with the re-
construction and identification efficiencies, energy scale,
and isolation. The uncertainties are determined by com-
paring simulated events with data in control regions and are 2–6% depending on the decay channel. The uncertain-
ties on the objects involved in the $E_{\text{T}}^{\text{miss}}$ calculation are used to derive the systematic uncertainties on $E_{\text{T}}^{\text{miss}}$
following Ref. [40]. Uncertainties in the description of the
pile-up conditions by the simulation are also considered. The total systematic uncertainty on the acceptance of the
$E_{\text{T}}^{\text{miss}}$ and transverse mass cuts due to the imperfect sim-
ulation is 1–2%.

Data-driven methods are used to estimate the back-
grounds from Z+jets and top-quark production. Simu-
lation is used for the remaining background sources, in-
cluding $W/Z + \gamma$ events where the photon converts into
an electron-positron pair. The backgrounds from W^+W^-
and multijet production are negligible. For simulated events, the uncertainties on the theoretical cross section of the
background processes are included in the systematic un-
certainty.

In the $\mu\nu e\nu$, $e\nu\nu\nu$ and $\mu\nu\mu\nu$ channels, the top-quark
background contribution is evaluated from the average den-
sity of events in the side-bands around the Z mass peak
after applying all selection cuts except the Z boson mass
cut. Since the background from top-quark production does
not contain a Z boson, this density is used to estimate
the background from top-quark production in the signal
region within the Z mass window. The systematic un-
certainty is estimated from various cross checks, including
a comparison of the difference between the side-band esti-
mate and the prediction within the Z mass window in
simulated events. This method is not applicable to the
e$\nu e\nu$ channel, since the Z+jet background dominates the
side-bands due to electron misidentification, therefore a
simulated event sample is used.

In order to estimate the background from Z+jets events,
a sample of events containing a Z boson candidate selected
as described above and one “lepton-like” jet is identified.
The lepton-like jet is a lepton candidate which does not
explicitly have to satisfy lepton quality (e) or isolation (μ)
requirements. To ensure that the control sample is as sim-
ilar to the signal as possible, all other event selection crite-
rion, including the $E_{\text{T}}^{\text{miss}}$ and m_{T}^{W} requirements, are applied.
The background contribution is then estimated by scaling
each event in the resulting sample by the probability $f(p_T)$

\footnote{Contributions from τ lepton decays are excluded.}
that a “lepton-like” jet satisfies the quality or isolation requirements. The scaling factor \(f(p_T) \) is determined from a data sample of events containing a Z boson plus an extra lepton-like jet, with a low missing transverse momentum, \(E_T^{\text{miss}} < 25 \text{ GeV} \). The validity of extrapolation to high values of \(E_T^{\text{miss}} \) has been verified with dijet events from simulation and data. An estimate of the systematic uncertainty is derived from the \(E_T^{\text{miss}} \) extrapolation in dijet data.

6. Results

The numbers of expected and observed events after the full selection are shown in Table 1. A total of 71 \(W^\pm Z \) candidates are observed in data, with 12.1\(\pm 1.4 \) (stat.)\(\pm 4.1 \) (syst.) expected background events. The expected signal events shown in the table include the contribution from \(\tau \) lepton decays into electrons or muons. The discrepancy between channels in the number of observed to expected events is consistent with a statistical fluctuation at the 16\% level. The invariant mass and the transverse momentum of the Z boson in \(W^\pm Z \) candidate events are shown in Figures 1 and 2, respectively.

The fiducial cross section is calculated from

\[
\sigma_{WZ \rightarrow l\ell\ell}^{\text{fid}} = \frac{N_{\text{obs}}}{E \times C_{WZ \rightarrow l\ell\ell}} \times \left(1 - \frac{N_{\text{MC}}}{N_{\text{MC} \text{sig}}} \right)
\]

where \(N_{\text{obs}} \) and \(N_{\text{bkg}} \) are the numbers of observed and background events, \(E \) the integrated luminosity and \(C_{WZ \rightarrow l\ell\ell} \) is the fiducial efficiency defined above. The last term corrects for the \(\tau \) lepton contribution estimated from the selected simulated signal sample, where \(N_{\text{MC}} \) is the number of \(W^\pm Z \) events with at least one of the bosons decaying to a \(\tau \) lepton and \(N_{\text{MC} \text{sig}} \) is the number of \(W^\pm Z \) events with decays into any lepton flavour. For each final state, the simulated signal samples include \(W \) and \(Z \) bosons decaying into \(\tau \) leptons. The contribution from \(\tau \) lepton decays is 3.7\% summing over all channels.

The total cross section is calculated as

\[
\sigma_{WZ}^{\text{tot}} = \frac{\sigma_{WZ \rightarrow l\ell\ell}^{\text{fid}}}{B(WZ \rightarrow l\ell\ell) \times A_{WZ \rightarrow l\ell\ell}}
\]

Figure 1: The invariant mass of the lepton pair attributed to the Z boson in candidate events after the full selection. The stacked histograms represent the predictions from simulation or, where applicable, data-driven estimates including the statistical and systematic uncertainty shown by shaded bands. The shape of the top-quark background is taken from simulation.

Figure 2: The transverse momentum of Z bosons in candidate events after full selection. The stacked histograms represent the predictions from simulation or, where applicable, data-driven estimates including the statistical and systematic uncertainty shown by shaded bands. The last bin includes the overflow. The shape of the top-quark background is taken from simulation.

Table 1: Fiducial efficiency per channel. The uncertainty due to simulated sample size and parton distribution functions is shown.
nals. Systematic uncertainties are included as Gaussian-constrained nuisance parameters. For each systematic uncertainty, correlations between signal and background predictions are taken into account. All uncertainties are allowed to vary simultaneously in the fit.

The measurements of the combined fiducial cross section for the $W^\pm Z$ bosons decaying directly into electrons and muons, and the total inclusive cross section, are

$$\sigma_{WZ\rightarrow ee\mu}^{\text{fid}} = 102^{+15}_{-14}(\text{stat.})^{+7}_{-4}(\text{syst.})^{+4}_{-4}(\text{lumi.}) \text{ fb} \quad (3)$$

$$\sigma_{WZ}^{\text{tot}} = 20.5^{+3.1}_{-2.8}(\text{stat.})^{+1.4}_{-1.3}(\text{syst.})^{+0.9}_{-0.6}(\text{lumi.}) \text{ pb} \quad (4)$$

The latter can be compared with the SM expectation, 17.3$^{+1.3}_{-0.8}$ pb, calculated with MCFM [18].

In order to set limits on the anomalous coupling parameters, a frequentist approach [31] is used with the profile likelihood ratio used as the test statistic. The limits are set separately on each parameter with the other couplings fixed to their SM values. A reweighting procedure is used to predict the numbers of expected events as functions of the parameter being studied. The uncertainties on the signal acceptance and efficiency and on the background estimates are included as nuisance parameters with Gaussian constraints in the likelihood function. The 95% confidence interval (C.I.) is defined as the range(s) of the coupling parameter(s) for which at least 5% of randomly generated pseudo-experiments result in a smaller value of the profile likelihood ratio than is observed with the data.

The observed and expected 95% C.I. for the anomalous couplings are summarized in Table 3. The observed limits are compared with DØ results from $W^\pm Z$ production in Figure 3. Other results on anomalous couplings from W^+W^- production can be found in Refs. [32,35]. Significant improvements in these limits are expected with more integrated luminosity and refined extraction methods which take advantage of the differential spectra of kinematic quantities. The anomalous couplings influence the kinematic properties of $W^\pm Z$ events and thus the fiducial efficiency. The C_{WZ} variation within the measured aTGC limits results maximally in a 3% decrease of the fiducial cross section.

$$\Delta g_1^Z, \Delta \kappa_Z, \text{ and } \lambda_Z.$$ Expected experimental limits assume SM values.

Table 2: Summary of observed events and expected signal and background contributions for the four trilepton channels and their combination.

<table>
<thead>
<tr>
<th>Final State</th>
<th>$ee + E_T^{\text{miss}}$</th>
<th>$e\mu + E_T^{\text{miss}}$</th>
<th>$e\mu + E_T^{\text{miss}}$</th>
<th>$\mu\mu\mu + E_T^{\text{miss}}$</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>11</td>
<td>9</td>
<td>22</td>
<td>29</td>
<td>71</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.4±0.0</td>
<td>1.1±0.1</td>
<td>0.8±0.1</td>
<td>1.7±0.1</td>
<td>3.9±0.1</td>
</tr>
<tr>
<td>W/Z+jets</td>
<td>2.0±0.5</td>
<td>0.7±0.3</td>
<td>1.7±0.5</td>
<td>0.4±0.3</td>
<td>4.8±0.8</td>
</tr>
<tr>
<td>Top</td>
<td>0.2±0.1</td>
<td>0.8±0.6</td>
<td>0.9±0.7</td>
<td>0.4±0.5</td>
<td>2.3±1.0</td>
</tr>
<tr>
<td>$W/Z + \gamma$</td>
<td>0.5±0.3</td>
<td>–</td>
<td>0.6±0.4</td>
<td>–</td>
<td>1.1±0.5</td>
</tr>
<tr>
<td>Total Background</td>
<td>3.1±0.6</td>
<td>2.5±0.7</td>
<td>3.9±0.9</td>
<td>2.6±0.6</td>
<td>12.1±1.4</td>
</tr>
<tr>
<td>Expected Signal</td>
<td>7.7±0.2</td>
<td>11.6±0.2</td>
<td>12.4±0.2</td>
<td>18.6±0.3</td>
<td>50.3±4.3</td>
</tr>
<tr>
<td>Total Expected Events</td>
<td>10.9±0.6</td>
<td>14.0±0.7</td>
<td>16.4±1.0</td>
<td>21.2±0.7</td>
<td>62.4±1.5</td>
</tr>
</tbody>
</table>

Table 3: Observed and expected 95% C.I. for the anomalous couplings Δg_1^Z, $\Delta \kappa_Z$, and λ_Z.

<table>
<thead>
<tr>
<th>Coupling</th>
<th>Observed $(\Lambda = 2 \text{ TeV})$</th>
<th>Expected $(\Lambda = \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δg_1^Z</td>
<td>$[-0.20, 0.30]$</td>
<td>$[-0.16, 0.24]$</td>
</tr>
<tr>
<td>$\Delta \kappa_Z$</td>
<td>$[-0.9, 1.1]$</td>
<td>$[-0.8, 1.0]$</td>
</tr>
<tr>
<td>λ_Z</td>
<td>$[-0.17, 0.17]$</td>
<td>$[-0.14, 0.14]$</td>
</tr>
</tbody>
</table>

7. Conclusion

A measurement of the $W^\pm Z$ production cross section has been performed using final states with electrons and muons, in LHC pp collisions at $\sqrt{s} = 7 \text{ TeV}$ with ATLAS. In data with an integrated luminosity of 1.02 fb$^{-1}$, a total of 71 candidates is observed with a background expectation of 12.1 ± 1.4(stat.)$^{1.4}_{-2.0}$(syst.) events. The SM expectation for the number of signal events is 50.3 ± 4.3(syst.). The fiducial and total cross sections determined in the present work are given in equations 3 and 4, respectively. The total cross section is in good agreement with the SM expectation. Limits on the anomalous triple gauge couplings Δg_1^Z, $\Delta \kappa_Z$, and λ_Z are reported and the results are consistent with zero, as expected from the SM.

8. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.
Figure 3: 95% C.I. for anomalous couplings from ATLAS and DØ experiments. ATLAS limits are extracted from a fit to the cross section while the DØ limits are extracted from a fit to the $p_T(Z)$ spectrum. Luminosities, centre-of-mass energy and cut-off Λ are shown.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; INFN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR and DSMR and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/Irfu, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubière Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Science, Hiroshima University, Hiroshima, Japan
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
73