Search for direct CP violation in singly Cabibbo-suppressed $D^\pm \rightarrow K^+K^-\pi^\pm$ decays

J. P. Lees, V. Poireau, and V. Tisserand

Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP),
Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France

J. Garra Tico and E. Grauges

Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain

A. Palanoab

INFN Sezione di Baria; Dipartimento di Fisica, Università di Barib, I-70126 Bari, Italy

G. Eigen and B. Stugu

University of Bergen, Institute of Physics, N-5007 Bergen, Norway

Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

H. Koch and T. Schroeder

Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

D. J. Asgeirsson, C. Hearty, T. S. Mattison, J. A. McKenna, and R. Y. So

University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

A. Khan

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, V. B. Golubev, E. A. Kravchenko, A. P. Onuchin,

Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

M. Bondioli, D. Kirkby, A. J. Lankford, and M. Mandelkern

University of California at Irvine, Irvine, California 92697, USA

University of California at Riverside, Riverside, California 92521, USA

C. Campagnari, T. M. Hong, D. Kovalskyi, J. D. Richman, and C. A. West

University of California at Santa Barbara, Santa Barbara, California 93106, USA

A. M. Eisner, J. Kroseberg, W. S. Lockman, A. J. Martinez, B. A. Schumm, and A. Seiden

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

California Institute of Technology, Pasadena, California 91125, USA

R. Andreassen, Z. Huard, B. T. Meadows, M. D. Sokoloff, and L. Sun

University of Cincinnati, Cincinnati, Ohio 45221, USA

University of Colorado, Boulder, Colorado 80309, USA

R. Ayad and W. H. Toki

Colorado State University, Fort Collins, Colorado 80523, USA
J. M. Izen and X. C. Lou
University of Texas at Dallas, Richardson, Texas 75083, USA

F. Bianchi*ab*, D. Gamba*ab*, and S. Zammito*ab*
INFN Sezione di Torino*;* Dipartimento di Fisica Sperimentale, Università di Torino*;* I-10125 Torino, Italy

L. Lanceri*ab* and L. Vitale*ab*
INFN Sezione di Trieste*;* Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

F. Martinez-Vidal, A. Oyanguren, and P. Villanueva-Perez
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

University of Victoria, Victoria, British Columbia, Canada V8W 3P6

T. J. Gershon, P. F. Harrison, and T. E. Latham
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

H. R. Band, S. Dasu, Y. Pan, R. Prepost, and S. L. Wu
University of Wisconsin, Madison, Wisconsin 53706, USA

We report on a search for direct CP violation in the singly Cabibbo-suppressed decay $D^+ \rightarrow K^+K^−\pi^+$ using a data sample of 476 fb$^{-1}$ of $e^+e^−$ annihilation data accumulated with the BABAR detector at the SLAC PEP-II electron-positron collider running at and just below the energy of the $\Upsilon(4S)$ resonance. The integrated CP-violating decay rate asymmetry A_{CP} is determined to be $(0.37 \pm 0.30 \pm 0.15)\%$. Model-independent and model-dependent Dalitz plot analysis techniques are used to search for CP-violating asymmetries in the various intermediate states. We find no evidence for CP-violation asymmetry.

PACS numbers: 11.30.Er, 13.25.Ft, 14.40.Lb

I. INTRODUCTION

Searches for CP violation (CPV) in charm meson decays provide a probe of physics beyond the Standard Model (SM). Singly Cabibbo-suppressed (SCS) decays can exhibit direct CP asymmetries due to interference between tree-level transitions and $|\Delta C| = 1$ penguin-level transitions if there is both a strong and a weak phase difference between the two amplitudes. In the SM, the resulting asymmetries are suppressed by $O(|V_{cb}V_{ub}/V_{cs}V_{us}|) \sim 10^{-3}$, where V_{ij} are elements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix $[1]$. A larger measured value of the CP asymmetry could be a consequence of the enhancement of penguin amplitudes in D meson decays due to final-state interactions $[2,3]$, or of new physics $[4,5]$.

The LHCb and CDF Collaborations recently reported evidence for a non-zero CP asymmetry in the difference of the time-integrated $D^0 \rightarrow \pi^+\pi^−$ and $D^0 \rightarrow K^+K^−$ decay rates $[6,7]$. Searches for CPV in other SCS decays with identical transitions $c \rightarrow udd$ and $c \rightarrow uss$ are relevant to an understanding of the origin of CPV $[8,10]$.

We present here a study of the SCS decay $D^+ \rightarrow K^+K^−\pi^+$ $[11]$, which is dominated by quasi-two-body decays with resonant intermediate states. This allows us to probe the Dalitz-plot substructure for asymmetries in both the magnitudes and phases of the intermediate states. The results of this study include a measurement of the integrated CP asymmetry, the CP asymmetry in four regions of the Dalitz plot, a comparison of the binned D^+ and $D^−$ Dalitz plots, a comparison of the Legendre polynomial moment distributions for the $K^+K^−$ and $K^−\pi^+$ systems, and a comparison of parameterized fits to the Dalitz plots. Previous measurements by the CLEO-c Collaboration found no evidence for CPV in specific two-body amplitudes or for the integrals over the entire phase-space $[12]$. The LHCb Collaboration also finds no evidence for CPV in a model-independent search $[13]$.
II. THE BaBar DETECTOR AND DATA SAMPLE

The analysis is based on a sample of electron-positron annihilation data collected at and just below the energy of the $T(4S)$ resonance with the BaBar detector at the SLAC PEP-II collider, corresponding to an integrated luminosity of 476 fb$^{-1}$. The BaBar detector is described in detail elsewhere [14]. The following is a brief summary of the detector subsystems important to this analysis. Charged-particle tracks are detected, and their momenta measured, by means of the combination of a 40-layer cylindrical drift chamber (DCH) and a five-layer silicon vertex tracker (SVT), both operating within a 1.5-T solenoidal magnetic field. Information from a ring-imaging Cherenkov detector (DIRC) and specific energy-loss measurements (dE/dx) in the SVT and DCH are used to identify charged kaon and pion candidates.

For various purposes described below we use samples of Monte Carlo (MC) simulated events generated using the JETSET [21] program. These events are passed through a detector simulation based on the Geant4 toolkit [22]. Signal MC events refer to $D^+ \rightarrow K^+K^-\pi^+$ decays generated using JETSET as well as $D^+ \rightarrow K^+\pi^+\pi^-\gamma$ decays generated using JETSET in combination with the PHOTOS [23] program. In all cases when we simulate particle decays we include EvtGen. [24]

III. EVENT SELECTION AND $D^+ \rightarrow K^+K^-\pi^+$ RECONSTRUCTION

The three-body $D^+ \rightarrow K^+K^-\pi^+$ decay is reconstructed from events having at least three tracks with net charge +1. Two oppositely charged tracks must be consistent with the kaon hypothesis. Other charged tracks are assumed to be pions. To improve particle identification performance, there must be at least one photon in the DIRC associated with each track. Contamination from electrons is significantly reduced by means of dE/dx information from the DCH. Pion candidates must have transverse momentum $p_T > 300$ MeV/c. For lower p_T values, tracks are poorly reconstructed. Also, for lower p_T, differences in the nuclear cross sections for positively charged and negatively charged particles can lead to asymmetries. We form the invariant mass of $K^+K^-\pi^+$ candidates and require it to lie within 1.82-1.92 GeV/c2. The three tracks must originate from a common vertex, and the vertex-constrained fit probability (P_{vtx}) must be greater than 0.5%. The momentum in the CM frame (p_{CM}) of the resulting D candidate must lie within the interval [2.4, 5.0] GeV/c. The lower limit on p_{CM} reduces background from B decays by preferentially selecting $e^+e^- \rightarrow c\bar{c}$ events; this has traditionally been the way to reduce combinatoric background due to B decays. To remove background from misidentified $D^{*+} \rightarrow D^{0}\pi^+$ decays, we require $m(K^+K^-\pi^+) - m(K^-\pi^+) - m(\pi^+) > 15$ MeV/c2, where the pion and kaon masses are set to the nominal values [13]. Finally, for events with multiple D^\pm candidates, the combination with the largest value of P_{vtx} is selected. We perform a separate kinematic fit in which the D^\pm mass is constrained to its nominal value [13]. The result of the fit is used in the Dalitz plot and moments analyses described below.

To aid in the discrimination between signal and background events, we use the joint probability density function (PDF) for L_{xy}, the distance between the primary event vertex and the D meson decay vertex in the plane transverse to the beam direction, and p_{CM}, to form a likelihood ratio:

$$ R_L = \frac{P_s(p_{CM})P_s(L_{xy})}{P_s(p_{CM})P_s(L_{xy}) + P_b(p_{CM})P_b(L_{xy})}. $$

Since the two variables have little correlation we construct the two-dimensional PDF as simply the product of their one-dimensional PDFs; these one-dimensional PDFs for signal (P_s) and background (P_b) are estimated from data. The background PDFs are determined from events in the D^+ mass sidebands, while those for the signal are estimated from events in the D^+ signal region after background is subtracted using estimates from the sidebands. The signal region is defined by the $m(K^+K^-\pi^+)$ interval 1.86-1.88 GeV/c2, while the sideband regions are the 1.83-1.84 GeV/c2 and 1.90-1.91 GeV/c2 intervals. The selection on R_L is adjusted to maximize signal significance, and the resulting signal is fairly pure (see Fig. 3 in Sec. VI).

The reconstruction efficiency for D^+ decays is determined from a sample of MC events in which the decay is generated according to phase space (i.e., the Dalitz plot is uniformly populated). To parameterize the selection efficiency, we use the distribution of reconstructed events as a function of the cosine of the polar angle of the D meson in the CM frame [$\cos(\theta_{CM})$] and the $m^2(K^-\pi^-)$ versus $m^2(K^+K^-)$ Dalitz plot. The selection efficiency is determined as the ratio of N_{Reco}/N_{Gen} in intervals of $\cos(\theta_{CM})$ and separately in intervals of the Dalitz plot, where N_{Reco} is the number of selected events in an interval and N_{Gen} is the number of events generated in the same interval. The binned Dalitz-plot efficiency is parameterized with a feed-forward artificial neural network (ANN) [16] consisting of two hidden layers with three and five nodes. Use of an ANN procedure allows us to adequately model the efficiency near the edges of the Dalitz plots. The ANN efficiency function is tested by creating separate training and validation samples, which are satisfactorily fit by the ANN.

IV. CORRECTIONS TO SIMULATED EVENTS

In order to describe accurately the reconstruction efficiency, we apply corrections to the reconstructed MC events to account for known differences between simulated events and data. The differences arise in the reconstruction asymmetry of charged-pion tracks, and in the
production model for charm mesons. Differences in kaon particle identification efficiency have a negligible asymmetry effect since the K^+ and K^- are common to D^+ and D^- decays.

To correct the production model used in the simulation, we construct the ratio of the two-dimensional p_{CM} versus $\cos(\theta_{CM})$ PDFs between data and simulation and apply this ratio as a correction to the reconstructed MC events before calculating the efficiency. For this procedure the signal PDF for data is background-subtracted while the signal MC events are weighted by the Dalitz plot amplitude-squared determined from data (see Sec. VIII).

To correct for differences in the reconstruction asymmetry of charged-pion tracks, we use a sample of $e^+e^- \rightarrow \tau^+\tau^-$ events in which one τ decays leptonically via $\tau^\pm \rightarrow \mu^\mp \nu_{\mu}\bar{\nu}_{\tau}$ while the other τ decays hadronically via $\tau^\pm \rightarrow h^\pm h^\mp h^\pm \nu_{\tau}$. We tag events with a single isolated muon on one side of the event and reconstruct the hadronic τ decay in the opposite hemisphere. We refer to this sample as the “Tau31” sample. We further require two of the three hadrons to have an invariant mass consistent with the rho mass to within 100 MeV/c^2. Due to tracking inefficiencies, tau decays to three tracks are sometimes reconstructed with only two tracks. We use the two-dimensional distributions of $\cos(\theta_{\pi\pi})$ and $p_{T_{\pi\pi}}$ (with respect to the beam axis) of the rho-decay pions for 2-hadron and 3-hadron events to determine the pion inefficiency and asymmetry. We allow for a differential efficiency for positive and negative tracks (ε_{\pm}) by introducing the asymmetry $a(p_{Lab})$ as a function of pion laboratory momentum (p_{Lab}):

$$a(p_{Lab}) = \frac{\varepsilon_+(p_{Lab}) - \varepsilon_-(p_{Lab})}{\varepsilon_+(p_{Lab}) + \varepsilon_-(p_{Lab})}. \quad (2)$$

The results for $a(p_{Lab})$ are shown in Fig. 1. The average value for $0 < p_{Lab} < 4$ GeV/c is $(0.10 \pm 0.26)\%$, which is consistent with zero [17]. We use linear interpolation between data points, or extrapolation beyond the first and last data points, to obtain the ratio of track-efficiency asymmetries between data and MC as a function of momentum. This ratio is then used to correct track efficiencies determined from signal MC.

V. INTEGRATED CP ASYMMETRY AS A FUNCTION OF $\cos(\theta_{CM})$

The production of D^+ (and D^-) mesons from the $e^+e^- \rightarrow \pi^\pm$ process is not symmetric in $\cos(\theta_{CM})$; this forward-backward (FB) asymmetry, coupled with the asymmetric acceptance of the detector, results in different yields for D^+ and D^- events. The FB asymmetry, to first order, arises from the interference of the separate annihilation processes involving a virtual photon and a Z^0 boson. We define the charge asymmetry A in a given interval of $\cos(\theta_{CM})$ by

$$A(\cos(\theta_{CM})) = \frac{N_{D^+/\varepsilon_{D^+}} - N_{D^-/\varepsilon_{D^-}}}{N_{D^+/\varepsilon_{D^+}} + N_{D^-/\varepsilon_{D^-}}}. \quad (3)$$

where N_{D^\pm} and ϵ_{D^\pm} are the yield and efficiency, respectively, in the given $\cos(\theta_{CM})$ bin. We remove the FB asymmetry by averaging A over four intervals symmetric in $\cos(\theta_{CM})$, i.e., by evaluating

$$A_{CP} = \frac{A(\cos(\theta_{CM})) + A(-\cos(\theta_{CM}))}{2}. \quad (4)$$

The interval boundaries in $\cos(\theta_{CM})$ are defined as $[0, 0.2, 0.4, 0.6, 1.0]$. The D^\pm yields are determined from fits to the reconstructed $K^{\pm}\pi^{\pm}$ mass distributions, as described in Sec. VI. This technique has been used in previous BaBar measurements in both three-body and two-body decays [18–20]. The weighted average of values obtained using Eq. (4) is $A_{CP} = (0.37 \pm 0.30 \pm 0.15)\%$, where the uncertainties are statistical and systematic, respectively, with a probability of 21% that the asymmetries are null in all four intervals (Fig. 2).

VI. D^+ MASS FIT

The $K^{+}K^{-}\pi^{\pm}$ mass distribution is fitted with a double-Gaussian function with a common mean and a linear background (Fig. 3), plus a function describing radiative decays $D^{+} \rightarrow K^{+}K^{-}\pi^{+}\gamma$. The PDF for radiative decays is obtained from the reconstructed mass distribution of $K^{+}K^{-}\pi^{+}\gamma$ events selected at the generator-level in our MC additionally convolved with a Gaussian of width 2.26 MeV/c^2, and accounts for 1.5% of the signal. The fit to data gives a D^+ mass value of 1869.70 ± 0.01 MeV/c^2, where the uncertainty is statistical only. The signal region is defined to lie within $\pm 2\sigma_{D^+}$ of the peak, where $\sigma_{D^+} = \sqrt{f_0\sigma_1^2 + (1-f_0)\sigma_2^2}$ is 5.04 MeV/c^2, and contains a total of 227874 events;
FIG. 2: (color online) CP asymmetry as a function of $|\cos(\theta_{CM})|$. The solid line represents the central value of A_{CP} and the dashed lines the ±1 standard deviation statistical uncertainty, determined from a χ^2 fit to a constant value.

$\sigma_1(\sigma_2)$ is the standard deviation of the first (second) Gaussian component and $f_1 = 0.63$ is the fraction of the signal in the first Gaussian component. Separate fits to the $K^+K^-\pi^+$ and $K^+K^-\pi^-$ distributions yield $N_{D^+} = 113037 \pm 469$ and $N_{D^-} = 110663 \pm 467$ events, respectively. The ratio of efficiency-corrected yields (N/ϵ) is $R \equiv N_{D^+}/N_{D^-} = 1.020 \pm 0.006$. This ratio is used to account for remaining asymmetries that arise from physics- or detector-related processes, such as an insufficiently accurate simulation of the FB asymmetry or a residual detector asymmetry. Also, it is a less accurate measure of the asymmetry when the efficiency varies significantly as a function of $|\cos(\theta_{CM})|$, as for our experiment.

VII. MODEL-INDEPENDENT SEARCHES FOR CP VIOLATION IN THE DALITZ PLOTS

Model-independent techniques to search for CP violation in the Dalitz plots are presented in Ref. [18]. The techniques include a comparison of the moment distributions, and the asymmetry in the D^+ and D^- yields in various regions of the Dalitz plot. We scale the D^- yields by the factor R described in Sec. VI. By applying this correction, we remove residual detector-induced asymmetries and decouple, as far as possible, the search for CPV in the Dalitz plot from the search for CPV integrated over the phase space, which was described in Sec. VI. We measure the CP asymmetry in the four regions of the Dalitz plot labeled A, B, C, and D in Fig. 4.

We report the fitted yields, average Dalitz plot efficiencies, and CP asymmetries in Table I.

We pursue a second technique in search of CPV, by measuring normalized residuals Δ for the efficiency-corrected and background-subtracted D^+ and D^- Dalitz plots, where Δ is defined by

$$\Delta = \frac{n(D^+) - Rn(D^-)}{\sqrt{\sigma^2(D^+) + R^2\sigma^2(D^-)}}$$

(5)

with $n(D^+)$ and $n(D^-)$ the observed number of D^+ and D^- mesons in an interval of the Dalitz plot, where $\sigma(D^+)$ and $\sigma(D^-)$ are the corresponding statistical uncertainties. The results for Δ are shown in Fig. 5. Note that the intervals for Fig. 5 are adjusted so that each interval
TABLE I: Yields, efficiencies, and CP asymmetry in the regions of the Dalitz plot shown in Fig. 4. For the CP asymmetry, the first uncertainty is statistical and the second is systematic.

<table>
<thead>
<tr>
<th>Dalitz plot region</th>
<th>(N(D^+))</th>
<th>(\epsilon(D^+)) [%]</th>
<th>(N(D^-))</th>
<th>(\epsilon(D^-)) [%]</th>
<th>(A_{CP}) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Below (K^+(892)^0)</td>
<td>1882 ± 70</td>
<td>7.00</td>
<td>1859 ± 90</td>
<td>6.97</td>
<td>−0.7 ± 1.6 ± 1.7</td>
</tr>
<tr>
<td>(B) (\bar{K}^*(892)^0)</td>
<td>36770 ± 251</td>
<td>7.53</td>
<td>36262 ± 257</td>
<td>7.53</td>
<td>−0.3 ± 0.4 ± 0.2</td>
</tr>
<tr>
<td>(C) (\phi(1020))</td>
<td>48856 ± 289</td>
<td>8.57</td>
<td>48009 ± 289</td>
<td>8.54</td>
<td>−0.3 ± 0.3 ± 0.5</td>
</tr>
<tr>
<td>(D) Above (K^+(892)^0) and (\phi(1020))</td>
<td>25616 ± 244</td>
<td>8.01</td>
<td>24560 ± 242</td>
<td>8.00</td>
<td>1.1 ± 0.5 ± 0.3</td>
</tr>
</tbody>
</table>

FIG. 4: (color online) \(D^\pm \to K^+K^-\pi^\pm \) Dalitz plot and fit projections assuming no CPV, with the regions used for model-independent comparisons indicated as boxes. The A/B boundary is at \(m_{K\pi} = 0.6 \text{ GeV}^2/c^4 \), the B/C boundary at \(m_{K\pi} = 1.0 \text{ GeV}^2/c^4 \), and the C/D boundary at \(m_{KK} = 1.3 \text{ GeV}^2/c^4 \). In the fit projections, the data are represented by points with error bars and the fit results by the histograms. The normalized residuals below each projection, defined as \((N_{\text{Data}} - N_{\text{MC}})/\sqrt{N_{\text{MC}}} \), lie between ±5σ. The horizontal lines correspond to ±3σ.

contains approximately the same number of events. We calculate the quantity \(\chi^2/\nu = (\sum_i^\nu \Delta_i^2)/(\nu - 1) \),
VIOLATION IN THE DALITZ PLOT

We find χ^2/ndof to be 1.10 and 1.09 for the K^+K^- and $K^+\pi^+$ moments using

$$\chi^2 = \sum_i \sum_{l_1} \sum_{l_2} X_i^{l_1} \rho_{i,l_1,l_2} X_i^{l_2},$$

where ρ_{i,l_1,l_2} is the correlation coefficient between $X_i^{l_1}$ and $X_i^{l_2}$,

$$\rho_{i,l_1,l_2} \equiv \frac{\langle X_i^{l_1}(X_i^{l_2}) \rangle - \langle X_i^{l_1} \rangle \langle X_i^{l_2} \rangle}{\sqrt{\langle X_i^{l_1}(X_i^{l_1}) \rangle - \langle X_i^{l_1} \rangle^2} \sqrt{\langle X_i^{l_2}(X_i^{l_2}) \rangle - \langle X_i^{l_2} \rangle^2}}.$$

and where the number of degrees of freedom (ndof) is given by the product of the number of mass intervals and the number of moments, minus one due to the constraint that the overall rates of D^+ and D^- mesons be equal. We find χ^2/ndof to be 1.10 and 1.09 for the K^+K^- and $K^+\pi^+$ moments, respectively (for ndof = 287), which corresponds to a probability of 11% and 13%, again respectively, for the null hypothesis (no CPV).

VIII. MODEL-DEPENDENT SEARCH FOR CP VIOLATION IN THE DALITZ PLOT

The Dalitz plot amplitude A can be described by an isobar model, which is parameterized as a coherent sum of amplitudes for a set of two-body intermediate states r. Each amplitude has a complex coefficient, i.e., $A_r[m^2(K^+K^-), m^2(K^-\pi^+)] = \sum_{\text{resonances}} A_{r,\text{res}}(m^2(K^+K^-), m^2(K^-\pi^+)) e^{i\phi_{r,\text{res}}}$.
\[\sum_{r} \mathcal{M}_{r} e^{i \phi_{r}} F_{r} \left[m^{2}(K^{+}K^{-}), m^{2}(K^{-}\pi^{+}) \right] \]

where \(\mathcal{M}_{r} \) and \(\phi_{r} \) are real numbers, and the \(F_{r} \) are dynamical functions describing the intermediate resonances. The complex coefficient may also be parameterized in Cartesian form, \(x_{r} = \mathcal{M}_{r} \cos \phi_{r} \) and \(y_{r} = \mathcal{M}_{r} \sin \phi_{r} \). We choose the \(K^{*}(892)^{0} \) as the reference amplitude in the CP-symmetric and CP-violating fits to the data, such that \(\mathcal{M}_{K^{*}(892)^{0}} = 1 \) and \(\phi_{K^{*}(892)^{0}} = 0 \).

Using events from the sideward regions (defined in Fig. 3) of the \(D^{+} \) mass distribution, we model the CP conserving background, which is comprised of the \(K^{*}(892)^{0} \) and \(\phi(1020) \) resonance contributions and combinatorial background. The combinatorial background outside the resonant regions has a smooth shape and is modeled with the non-parametric \(k \)-nearest-neighbor density estimator \[29\]. The \(K^{*}(892)^{0} \) and \(\phi(1020) \) regions are composed of the resonant structure and a linear combinatorial background, which we parameterize as a function of the two-body mass and the cosine of the helicity angle. The model consists of a Breit-Wigner (BW) PDF to describe the resonant line shape, and a first-order polynomial in mass to describe the combinatorial shape. These are further multiplied by a sum over low-order Legendre polynomials to model the angular dependence.

TABLE II: Resonance mass and width values determined from the isobar model fit to the combined Dalitz-plot distribution.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass (MeV/c²)</th>
<th>Width (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^{*}(892)^{0})</td>
<td>895.53 ± 0.17</td>
<td>44.90 ± 0.30</td>
</tr>
<tr>
<td>(\phi(1020))</td>
<td>1019.48 ± 0.01</td>
<td>43.77 ± 0.02</td>
</tr>
<tr>
<td>(a_{0}(1450))</td>
<td>1441.59 ± 3.77</td>
<td>268.58 ± 5.28</td>
</tr>
<tr>
<td>(\bar{K}^{0}(1430)^{0})</td>
<td>1431.88 ± 5.89</td>
<td>293.62 ± 3.83</td>
</tr>
<tr>
<td>(K^{*}(1680)^{0})</td>
<td>1716.88 ± 21.03</td>
<td>319.28 ± 109.07</td>
</tr>
<tr>
<td>(f_{0}(1370))</td>
<td>1221.59 ± 2.46</td>
<td>281.48 ± 6.6</td>
</tr>
<tr>
<td>(\kappa(800))</td>
<td>798.35 ± 1.79</td>
<td>405.25 ± 5.05</td>
</tr>
</tbody>
</table>

Assuming no CPV, we perform an unbinned maximum-likelihood fit to determine the relative fractions for the resonances contributing to the decay: \(K^{+}(892)^{0}, K^{+}(1430)^{0} \), \(\phi(1020), a_{0}(1450), \phi(1680), \bar{K}^{0}(1430)^{0}, K^{*}(1680)^{0}, \bar{K}^{0}(1410)^{0}, f_{2}(1270), f_{0}(1370), f_{0}(1500), f_{2}'(1525), \kappa(800), f_{0}(980), f_{0}(1710) \), and a non-resonant (NR) constant amplitude over the entire Dalitz plot. We minimize the negative log likelihood (NLL) function

\[
-2 \ln \mathcal{L} = -2 \sum_{i=1}^{N} \left[p(m_{i}) \int \int \frac{e_{\text{MC}}(x_{1},x_{2}) S(x_{1},x_{2})}{B(x_{1},x_{2})} d x_{1} d x_{2} + (1 - p(m_{i})) \int \int \frac{B(x_{1},x_{2})}{B(x_{1},x_{2})} d x_{1} d x_{2} \right],
\]

where \(N \) is the number of events. The reconstructed \(D^{+} \) mass-dependent probability \(p(m) \) is defined as \(p(m_{i}) = \frac{S(m_{i})}{S(m_{i}) + B(m_{i})} \), where \(S(m) \) and \(B(m) \) are the signal and background PDFs, whose parameters are determined from the mass fit described in Sec. VII. \(x_{1} = m^{2}(K^{+}K^{-}) \) and \(x_{2} = m^{2}(K^{-}\pi^{+}) \), \(S(x_{1},x_{2}) \) is the Dalitz plot amplitude-squared, \(e_{\text{MC}} \) is the ANN efficiency, and \(B(x_{1},x_{2}) \) is the CP-symmetric background PDF.

The mass and width values of several resonances, including the \(K^{*}(892)^{0} \) and \(\phi(1020) \), are determined in the fit (Table II). The \(f_{0}(980) \) resonance is modeled with an effective BW parameterization:

\[
A_{f_{0}(980)} = \frac{1}{m_{0}^{-2} - m^{-2} - i m_{0} \Gamma_{0} \rho_{KK}},
\]

determined in the partial-wave analysis of \(D^{+} \to K^{+}K^{-}\pi^{+} \) decays [31], where \(\rho_{KK} = 2p/m \) with \(p \) the momentum of the \(K^{+} \) in the \(K^{+}K^{-} \) rest frame, \(m_{0} = 0.922 \text{ GeV}/c^{2} \), and \(\Gamma_{0} = 0.24 \text{ GeV} \). The remaining resonances (defined as \(r \to AB \)) are modeled as relativistic BWs:

\[
\text{RBW}(M_{AB}) = \frac{F_{r} F_{D}}{M_{r}^{2} - M_{AB}^{2} - i \Gamma_{AB} M_{r}},
\]

where \(\Gamma_{AB} \) is a function of the momentum \(M_{AB} \), the momentum \(p_{AB} \) of either daughter in the \(AB \) rest frame, the spin of the resonance, and the resonance width \(\Gamma_{r} \). The form factors \(F_{r} \) and \(F_{D} \) model the underlying quark structure of the parent particle of the intermediate resonances. Our model for the \(K^{-}\pi^{+} \) -wave term consists of the \(\kappa(800) \), the \(\bar{K}^{0}(1430)^{0} \), and a nonresonant amplitude. Different parameterizations for this term [31, 32] do not provide a better description of data. The resulting fit fractions are summarized in Table III. We define a \(\chi^{2} \) value as

\[
\chi^{2} = \sum_{i} \frac{(N_{i} - N_{MC_{i}})^{2}}{N_{MC_{i}}},
\]

where \(N_{\text{bins}} \) denotes 2209 intervals of variable size. The \(i^{th} \) interval contains \(N_{i} \) events (around 100), and \(N_{MC_{i}} \) denotes the integral of the Dalitz-plot model within the interval. We find \(\chi^{2}/\text{ndof} = 1.21 \) for \(\text{ndof} = 2165 \). The distribution of the data in the Dalitz plot, the projections of the data and the model of the Dalitz plot variables, and the one-dimensional residuals of the data and the model, are shown in Fig. 4.

To allow for the possibility of CPV in the decay, resonances with a fit fraction of at least 1% (see Table III) are permitted to have different \(D^{+} \) and \(D^{-} \) magnitudes and phase angles in the decay amplitudes (\(A \) or \(\bar{A} \)). We perform a simultaneous fit to the \(D^{+} \) and \(D^{-} \) data, where we parameterize each resonance with four parameters: \(\mathcal{M}_{r}, \phi_{r}, r_{CP}, \) and \(\Delta \phi_{CP} \). The CP-violating parameters are \(r_{CP} = \frac{\mathcal{M}_{r}^{2} - M_{r}^{2}}{1 M_{r}^{2} + M_{r}^{2}} \) and \(\Delta \phi_{CP} = \phi_{r} - \phi_{\bar{r}} \). In the case of the \(S \)-wave resonances in the \(K^{+}K^{-} \) system, which make only small contributions to the model, we use instead the Cartesian-form of the CP parameters, \(\Delta x \) and \(\Delta y \), to parameterize the amplitudes and asymmetries. This choice of parameterization removes or eliminates technical problems with the fit. For these resonances we therefore introduce the parameters \(x_{r}(D^{\pm}) = x_{r}(\pm \Delta x_{r}/2 \) and
TABLE III: Fit fractions of the resonant and nonresonant amplitudes in the isobar model fit to the data. The uncertainties are statistical.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^*(892)^0$</td>
<td>21.15 ± 0.20</td>
</tr>
<tr>
<td>$\phi(1020)$</td>
<td>28.42 ± 0.13</td>
</tr>
<tr>
<td>$K_0^*(1430)^0$</td>
<td>25.32 ± 2.24</td>
</tr>
<tr>
<td>NR</td>
<td>6.38 ± 1.82</td>
</tr>
<tr>
<td>$\kappa(800)$</td>
<td>7.08 ± 0.63</td>
</tr>
<tr>
<td>$a_0(1450)^0$</td>
<td>3.84 ± 0.69</td>
</tr>
<tr>
<td>$f_0(980)$</td>
<td>2.47 ± 0.30</td>
</tr>
<tr>
<td>$f_0(1370)$</td>
<td>1.17 ± 0.21</td>
</tr>
<tr>
<td>$\phi(1680)$</td>
<td>0.82 ± 0.12</td>
</tr>
<tr>
<td>$K_1^*(1410)$</td>
<td>0.47 ± 0.37</td>
</tr>
<tr>
<td>$f_0(1500)$</td>
<td>0.36 ± 0.08</td>
</tr>
<tr>
<td>$a_2(1320)$</td>
<td>0.16 ± 0.03</td>
</tr>
<tr>
<td>$f_2(1270)$</td>
<td>0.13 ± 0.03</td>
</tr>
<tr>
<td>$K_2^*(1430)$</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td>$K^*(1680)$</td>
<td>0.05 ± 0.16</td>
</tr>
<tr>
<td>$f_0(1710)$</td>
<td>0.04 ± 0.03</td>
</tr>
<tr>
<td>$f_2'(1525)$</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>Sum</td>
<td>97.92 ± 3.09</td>
</tr>
</tbody>
</table>

$y_r(D^\pm) = y_r \pm \Delta y_r/2$. The masses and widths determined in the initial fit (shown in Table I) are fixed, while the remaining parameters are determined in the fit. In Table IV we report the CP asymmetries, i.e., either the polar-form pair ($r_{CP}, \Delta \phi_{CP}$) or the Cartesian pair ($\Delta x_r, \Delta y_r$). Figure 5 shows the difference between the Dalitz-plot projections of the D^+ and D^- decays, for both the data and the fit, where we weight the D^- events by the quantity R described in Sec. VII. It is evident from the figure that both the charge asymmetry of the data and fit are consistent with zero and with each other.

IX. SYSTEMATIC UNCERTAINTIES

We consider the following sources of systematic uncertainty: the R_L selection, corrections applied to the MC, binning of the data in $\cos(\theta_{CM})$, and the Dalitz plot model.

To evaluate the uncertainty due to the R_L selection, we vary the selection such that the yield varies by at least ±1 standard deviation, and assign a systematic uncertainty defined by the largest variation with respect to the nominal value of the CP asymmetry.

The uncertainty due to corrections of the production model in the simulation (described in Sec. IV) is evaluated by randomly sampling the correction factors from a Gaussian distribution using their central values and uncertainties as the mean and sigma, respectively. The efficiency is then re-evaluated and the fit is re-performed floating the CP parameters while keeping other parameters fixed. This entire procedure is repeated 50 times. We take the RMS deviation of the 50 fit values of the CP parameters to obtain the systematic uncertainty estimate.

The uncertainty due to the tracking asymmetry correction is evaluated by comparing the measurement with two different corrections, namely the "Tan31" correction and the correction used in our analysis of $D^+ \rightarrow K_S^0 \pi^+$ decays [20]. The average tracking asymmetry in the latter analysis is (0.23 ± 0.05)%, which is consistent with the result presented in Sec. IV after accounting for the different momentum spectra. We take the difference between the CP asymmetry central values using the two different tracking asymmetry corrections as the systematic uncertainty.

The integrated measurement results from binning the data in $\cos(\theta_{CM})$. To evaluate the effect of the binning in $\cos(\theta_{CM})$ for the integrated CP measurement, we vary the number of intervals and the interval edges, and measure the CP asymmetry as the average asymmetry from a single forward interval and a single backward interval. Systematic uncertainties are determined from the difference between the nominal central value and the value determined from the alternative methods. We report these uncertainties for the integrated measurement in Table V. These systematic uncertainties are combined in quadrature to obtain the final result.

To determine the model-dependent uncertainty on the Dalitz-plot CPV parameters, we remove resonances with fit fractions less than 1%, one resonance at a time, and repeat the fit. We change the standard value of the radius parameter in the Blatt-Weisskopf form factor [28] for the intermediate resonance decay vertex from 1.5 GeV$^{-1}$ to 1.0 GeV$^{-1}$. We take the maximum variation as the model-dependent systematic uncertainty. Systematic uncertainties for the Dalitz plot fit CPV parameters are listed in Table IV.

Finally, we study possible systematic effects on the binned Dalitz-plot results presented in Sec. VII. The nominal probability for the null CPV hypothesis is 72% for 100 intervals, while it is 42%, 62%, and 73%, respectively, for 25, 49 and 144 intervals. In comparison, changing the R_L selection, as described above, changes the nominal probability to 81%.

X. SUMMARY

In summary, we do not find any evidence for CP violation in the SCS decay $D^+ \rightarrow K^+ K^- \pi^+$. The integrated CP asymmetry obtained using Eq. (4) is $(0.37 \pm 0.30 \pm 0.15)\%$. We find that the asymmetries in four regions of the Dalitz plot are consistent with zero, as listed in Table I. In addition, the D^+ and D^- Dalitz plots are consistent with no CP asymmetry with a probability of 72% according to the analysis of the normalized residuals for the D^+ and D^- Dalitz plot divided into 100 equally populated intervals. Finally, we find no evidence for CP asymmetry in decays through various intermediate states.
TABLE IV: CP-violating parameters from the simultaneous Dalitz plot fit. The first uncertainties are statistical and the second are systematic.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>r_{CP} (%)</th>
<th>$\Delta \phi$ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^*(892)^0$</td>
<td>0. (FIXED)</td>
<td>0. (FIXED)</td>
</tr>
<tr>
<td>$\rho(1020)$</td>
<td>$0.35^{+0.82}_{-0.82} \pm 0.60$</td>
<td>$7.43^{+3.55}_{-3.50} \pm 2.35$</td>
</tr>
<tr>
<td>$K^*_0(1430)^0$</td>
<td>$-9.40^{+5.65}_{-5.36} \pm 4.42$</td>
<td>$-6.11^{+3.29}_{-3.24} \pm 1.39$</td>
</tr>
<tr>
<td>NR</td>
<td>$-14.30^{+11.67}_{-12.57} \pm 5.98$</td>
<td>$-2.56^{+7.01}_{-6.17} \pm 8.91$</td>
</tr>
<tr>
<td>$\kappa(800)$</td>
<td>$2.00^{+5.09}_{-4.96} \pm 1.85$</td>
<td>$2.10^{+2.42}_{-2.45} \pm 1.01$</td>
</tr>
<tr>
<td>$a_0(1450)^0$</td>
<td>$5.07^{+6.86}_{-6.54} \pm 9.39$</td>
<td>$4.00^{+4.04}_{-3.96} \pm 3.83$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Δx</th>
<th>Δy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_0(980)$</td>
<td>$-0.199^{+0.106}_{-0.110} \pm 0.084$</td>
</tr>
<tr>
<td>$f_0(1370)$</td>
<td>$0.019^{+0.049}_{-0.048} \pm 0.022$</td>
</tr>
</tbody>
</table>

FIG. 6: (color online) The difference between the D^+ and D^- Dalitz plot projections of data (points) and of the fit (cyan band). The width of the band represents the ±1 standard deviation statistical uncertainty expected for the size of our data sample.

The expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

XI. ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on

From a study of the two-body mass distributions, as seen in Fig. 6, and from a parameterization of the Dalitz plot for which the CP asymmetries in amplitudes are listed in Table IV.

[11] All references in this paper to an explicit decay mode imply the use of the charge conjugate decay also, unless otherwise specified.

